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Harmonic oscillators with Neumann condition on the half-line

V. Bonnaillie-Noél*

November 3, 2010

Abstract

This paper is devoted to the computation of the minimum O of the first eigenvalues for the Neumann
realization of harmonic oscillators on the half-line. We propose an algorithm to determine this minimum
and we estimate the accuracy of these computations. We also give numerical computations of constants
appearing in superconductivity theory.

1 Introduction

Before motivating our analysis, we first define the parameters ©y and ®(0). We consider the operator
—d?/dt* + (t — ¢)? on (0,40c0). Its Friedrichs extension from C§°([0, +00)) is denoted by H(¢) and
defined on

D = {u € H*(0,400)| t*u € L*(R") and «'(0) = 0}.

We denote by 111 (¢) the k-th eigenvalue of this operator arranged in the ascending order with the multiplicity
taken into account. The behavior of the first eigenvalue is well known (see, for example, [12]]):

Proposition 1.1. There exists (o > 0 such that p; is strictly decreasing from (—oo, () onto (+00, ©q) and
strictly increasing from [(p, +00) onto [©g, 1). Furthermore, if ® denotes a normalized positive eigenvector
associated with 11 ((o), then

/OO(|<I>/(75)|2+(t—C0)2|‘I)(t)\2)dt:@0, /°°<t—co>|<1><t>|2dt=o,
0 0

2 _ MY(CO)
2’

An estimate of Oy by 0.59010 was already given in [[13]], using the Weber functions but there is no
mention of the accuracy of this estimate. Using an integral representation [[11], Chapman approximates O
by 0.59 without any estimate of the error. In the literature, we can find some estimates of ©¢ but there is no
mention of the accuracy of the computations. To our knowledge, we do not find any computation of ®(0).
The aim of this article is to give accurate estimates of Oy and ®(0) and of the error between exact values
and numerical computations. The numerical method implemented here is very standard since we use finite
difference and element methods.

[2(0)] Qo = (5.
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In Section [2] we remind of some results concerning the localization of the superconductivity and we

notice that the parameters O and ®(0) appear frequently (see Propositions . The analysis of the
onset of superconductivity is based on those of the low-lying eigenmodes for the Schrédinger operator (see
7, 18,117, 30] and Propositions[2.2] 2.6).
To estimate the error of the computations, we establish in Section [3]error estimates on eigenmodes: Theo-
rem quantifies the gap between the eigenvalue O and the energy associated with a quasi-mode for the
operator H (¢). In Theorem we prove H'-estimate between the normalized eigenfunction ® associated
with © for the operator H((p) and a normalized quasi-mode for H (). We deduce in Theorem [3.5(an es-
timate of ®(0). In Section 4}, we construct an adequate quasi-mode combining the finite difference method
and analysis of the ODE theory for the differential equations depending on parameters. We implement this
method in Subsection 4.5|and obtain an accurate approximation of Oy and ®(0):

Theorem 1.2.
|80 — 0.590106125| < x 10 and |®(0) — 0.87304| < 5 x 1077,

Section [3] presents computations with the finite element method. From a numerical point of view, we
also mention papers [4, 3] which deal with the numerical computations for the bottom of the spectrum of
—d?/dt? + (t — ¢)? on a symmetric interval using a finite difference method.

2 Motivation

To highlight how is important to compute accurately these parameters O and ®(0), we recall some results
about superconductivity modelled by Ginzburg-Landau theory. It is well-known that superconductors of
type II lose their superconducting property when submitted to a sufficiently strong external magnetic field.
This transition takes place for a value H, CsF_-I of the field which appears as a function of a material-dependent
parameter x. We recall here results about the calculation of this critical field for large values of x in two
situations: smooth domains and domains with corners.

Let  C R? be a bounded simply-connected domain with Lipschitz boundary. The Ginzburg-Landau func-
tional reads

2
Enrilth, Al = / {11V = kHAWP = 2|2 + |l do + f<a2H2/ jeurl A — 112 d
Q 2 R?

with (¢, A) € WH2(Q;C) x {A = Ag + Awith A € H'(R%,R?),div A = 0}, Ag(z) = 1/2(—z3,21).
We use the notation H'(R?) for the homogeneous Sobolev spaces. We define the critical field Hq, as the
value of H where the transition between the normal and superconducting state takes place:

Hey (k) =inf{H >0 : (0, Ap) is a minimizer of &, p } .

The calculation of this critical field H¢, for large values of « has been the focus of much activity (see
[22, 12,127,128, 129, 25, 14, (15, 116]). In the works [14, (15,116, 17], the definition of H, in the case of samples
with smooth section has been clarified and the asymptotic is given by:

Proposition 2.1 (see [16]). Suppose Q) is a bounded simply-connected domain in R? with smooth boundary.
Let Kpaz be the maximal curvature of 9S). Then
K 01

He, (k) = o " o7z s + 0"V with O =
0

"The first rigorous definition of the critical field Hc, appeared in [28].



It was realized that the asymptotics of the critical field is completely determined by the linear eigenvalue
problem. Indeed, if we denote by 1) (h) the n-th eigenvalue of the magnetic Neumann operator Pj, =
(=ihV — Ap)? defined on D(Py) = {u € H*(Q)|v - (=ihV — Ao)ujpq = 0}, then the asymptotics of
11" (h) was established by Fournais-Helffer in [13]:

Proposition 2.2 (see [15]). Suppose that Q) is a smooth bounded and simply connected domain of R?, that
the curvature 9) 5 s +— K(s) at the boundary has a unique maximum F,q, reached at s = so and that
the maximum is non-degenerate, i. e. ko := —r"(sg) # 0. Then for all n € N, there exists a sequence

{¢ j(-n) 721 C Rsuch that 1™ (h) admits the following asymptotic expansion (for h — 0):

3k o i/8.(n
1) (h) ~ Ooh — KmazC1h3? + C1OF %y 72(% — DRT 4 RIS RS,
=0

To carry through an analysis of the critical field H ¢, in the case of domains with corners, a linear spectral
problem, studied in depth in [5} 6} 7, 8], is usefull. Let us first give estimates for the Schrodinger operator in
a model geometry: the infinite sector.

Proposition 2.3 (see [6]]). Let G* be the sector in R? with opening o and Q® be the Neumann realization
of the Schridinger operator —(N — iAg)? on G We denote by jy,(c) the k-th smallest element of the
spectrum given by the max-min principle. Then:

1. The infimum of the essential spectrum of Q% is equal to ©y.
2. Forall « € (0,7/2], p1 () < Og and py(m) = O.

3. Let o € (0,2m), k > 1 be such that p(«) < ©g and V§ an associated normalized eigenfunction.
Then ¥} satisfies the following exponential decay estimate:

Ve > 0,3C.q > 0, [|elVOomml@=olelge || o 0y < C.g.

Thanks to the model situation given by the analysis of the angular sector, we are able to determine the
asymptotic expansion of the low-lying eigenmodes of the Schrodinger operator on curvilinear polygons:

Proposition 2.4 (see [7]). Let 2 be a bounded curvilinear polygon, 3 be the set of its vertices, as be the
angle at the vortex s. We denote by \,, the n-th eigenvalue of the model operator ®scx»Q°, and ,u(") (h) the
n-th smallest eigenvalue of Py,. Let n be such that A,, < ©q. There exist hg > 0 and (m;)j>1 such that for
any N > 0and h < hy,

N
PO (h) = hi\y + 1S mhd? £ O3,
j=1

If Q is a bounded convex polygon, there exists r, > 0 and for any € > 0, C; > 0 such that

1
< Ceexp (—\/E(rn\/@g - A, - 5)> .

For non constant magnetic field, the low-lying eigenvalues admit an asymptotic expansion in power of
V'h. These results highlight the importance of comparing pr (a) with ©¢ and then of computing precisely
©p. It is also natural to wonder for which angle o we have py(a) < ©g. It was conjectured in [1} 8] that

pl (h) = h,




w1 is strictly increasing from (0, ) onto (0, ©¢) and is equal to ©¢ on [, 27). This conjecture is based on
numerical computations and could be strengthened with an accurate estimate of ©.

As in the case of smooth domains, spectral informations produce results about the minimizers of the
Ginzburg-Landau functional for domains with corners. We obtain in particular a complete asymptotics of
Hc, for large values of « in terms of linear spectral data and precise estimates on the location of nucleation
of superconductivity for magnetic field strengths just below the critical field:

Proposition 2.5 (see [10]). Ler Q2 be a curvilinear polygon and A1 = minges, 11 (as). There exists a real-
valued sequence {n;}32. such that

o0
K .
HC3(/<;):A—1 1+E nik 7 |, fork — +oo.
=1

Let i € (A1,0©0) and define X' = {s € X|u1(a) < p}. There exist constants ko, M, C, € > 0 such that if
K> ko, H/k > u_l, and (1, A) is a minimizer of €, g, then

[T / 1
/ eV rH dist(z,3) (\w(ac)Q + — (V- i/@HA)w(:c)P) de < C [v(2)|? da.
Q kH {z:v/kHdist(z,2) <M}
This Agmon type estimate describes how superconductivity can nucleate successively in the corners,
ordered according to their spectral parameter j1 (o) seeing that 11 (as) < ©p. This reinforces the interest
to compare precisely p1(a) and ©.

When we consider the Schrodinger operator in dimension 3, see [23} 124} 30]], we have to analyze some
new operators: the Neumann realization of h>D? + h2D} + (hD, +tcos§ — ssin0)? on RY = {(r, s,t) €
R3 : ¢t > 0} where 6 € [0, 5] is the angle that makes the magnetic field with the boundary at each point
(approximated by the tangent plane). We first make a Fourier transform in ». When 6 = 0, we are led to the
so-called de Gennes operator H ({) on the half-line (see [12] and this present paper). If § # 0, we perform
a translation in s and a rescaling. Thus we are reduced to a Schrodinger operator with an electric potential
on the half-plane R2 = {(s,t) € R? : ¢ > 0}:

Ly = D? 4 D? + (tcosf — ssin0)>.
This operator is deeply studied in [9], both theoretically and numerically. The authors prove an isotropic

estimate and anisotropic estimate for the eigenvectors. They also analyze the asymptotics when § — 0. In
particular, they prove the following result:

Proposition 2.6. We have the following upper-bound for the n-th eigenvalue c,,(0) of Ly:
on(0) < Ogcosf + (2n — 1)siné, Vn > 1. 2.1
For all My > 1, there exist hg > 0 and C(My) > 0 such that for all 0 < 0 < hgand 1 < n < My:

"
|0(0) — O — O ay (2n —1)| < C(My) 6°/2, with a; = M§@=¢mxﬁ@ (22)

If we denote by n(6) the number of eigenvalues of £y below the essential spectrum, we have with 2.1)):

1—0©gcosf 1
> 074 .
"0z —me T3 23)

If we bound from below ©g by 1, 0.6, 0.591, we lower-bound shows that n(7/2000) is greater than 0, 127
and 130 respectively. A greater approximation of O we have, a greater lower-bound of n(6) we deduce.

4



3 Error estimates on eigenmodes

This section concerns the analysis of the operator H(() and error estimates between Og and the energy
associated with a quasi-mode for H(().

Notation 3.1. For any ( € R, we define q% and qg onD by

)= [ G-OuOPd S = [ - PP G
R+ R+
Let ¢ € R and ¢ be a normalized positive function of D. We define [i(C) and r¢ by

Q) = (H(Cwe o)y e =H(C)pe — (O

We denote also

e = Q) +2(¢ — G)af () + (€~ Q). (3.2)

2
ie = (Irellzae + 21 - 6V Sle0)) - 63
With these Notation[3.1] we have
H(Qpe = i(Qpc +re with — {r¢,00) = 0.
Theorem 3.2. Let ¢ € R and o be a normalized positive function of D. With Notation we assume
ne < pa(Co)-

Then we can compare ©¢ and [i(():

Cac—4(¢— 60)?af ()
p2(Co) — ne

s < 09 < ().

Proof. The upper-bound is trivial: by definition of the minimum Og, ©¢g = u1({p) < p1(¢) and by the
min-max principle 1(¢) < f1(¢) = (H({)¢¢, ¢¢). Thus:
o = p1(Co) < p1(¢) < fi(Q).

To prove the lower-bound, we bring to mind the Temple inequality (see [26], [19, Theorem 1.15]): Let
A be self-adjoint and ¥ € D(A), | V|| = 1. Suppose that A is the unique eigenvalue of A in an interval
(o, B). Letn = (¥, AV) and £? = ||[(A — n)¥||%. If 2 < (B — n)(n — ), then

[\

9 62

n— <A<n+ :
B—n n—a«

We apply this inequality with A = H((p), ¥ = ¢¢. Since Oy is the first eigenvalue for H((p), we can
choose @ = —o0, B = ua((p). We rewrite H ((y) with H(():

H(Go) = H(¢)+2(¢ — o)t — )+ (¢ = ¢o)*.

34



Since ¢, is normalized and (r¢, ¢¢) = 0, we obtain p = (¢, H((o)pc) = n¢ with definition (3.2). The
assumption €2 < (8 — 1) (n — «) is then obviously fulfilled. Consider now &2.

2

2 = /]R+ ’rc(t) +2(¢ = Go)(t — Qe (t) — 2(C — Co)as (we)pe(t)| dt

2
< (||r<||L2<R+>+2|<—co| qgw) A - ) (o) 35)

Temple inequality (3.4) gives

e2

m < p(Go) < e -

e —
Let us now prove an estimate on the eigenfunction.

Theorem 3.3. Let ( € R and ¢ be a normalized and positive function of D. With Notation we assume
¢ < p2(Co)- Then

<ac + (¢ —¢)? (C —Co+ 4qf(<p<)>>l/2
v2 p2(Co) — A(C) ’

ac — 4Q§(<Pc)2(4 — ¢o)?
12(Co) — n¢

loe — @llr2@msy <

1/2
lo¢ = ¥llL2@me) < ( + A(Q)[|® - ‘PC”%%R*)) :

To prove this result, we use an estimate of quasi-modes established in [21), Proposition 4.1.1, p. 30] :

Proposition 3.4. Let A be a self-adjoint operator in a Hilbert space H. Let I C R be a compact interval,
Uy,..., Yy € H linearly independent in D(A) and 1, ...,un € I such that AV; = p;V; + r; with
|l7ill# < e. Let a > 0 and assume that Sp(A) N (I + B(0,2a) \ I) = 0. Then if E is the space spanned by
Uy, ..., Yy and if F is the space associated to o(A) N I, we have

evV/N
ay/ Ag‘in

where B0 s the smallest eigenvalues of S = ((¥;, V)3 and d the non-symmetric distance defined by
d(E,F) = |llg — Upllg||x, with I1g, 1§ the orthogonal projections on E and F.

d(E,F) <

Proof of Theorem We apply Propositionwith N =1,A=H({), ¥1 = ¢¢, E the space spanned
by ¢ and F' the space spanned by ®.
We first connect the distance d with the norm |[¢¢ — ®|| z2(r+) by noticing that

1
d(E, F) = |loc = (p¢, )@l Lomey = /1 = (e, ®)I? > EH% — @[ L2 (rt)- (3.6)

Writing
H(Go)pe = i(Q)pe +7¢  with  7¢ = (H(¢o) = H(¢))p¢ +7¢,



we estimate ||7¢|| z2(r+) using the orthogonality relation (r¢, ¢¢) = 0:
. 2
el = [ 1€ = @)t = Celt) + (¢ = Wleclt) +rc(o)f

< ac+(C= ) (¢ - o+ daf(vo) G.7)

Relations (3.6), (3.7) and Propositionwith a = (p2(¢o) — f1(€))/2 give the L%-estimate of (¢ — ®).
Let us now estimate the L?-norm of ((pé — ®’). An integration by parts gives:

(H(C)(® = ¢0),® — o) remey > 19 = ¢l 22mer - (3.8)
On the other hand,
(H(Co)(pe — @)oo — )2y = (H(C)ee 9¢)r2@+) — 200(®, 0¢) L2m+) + Oo
= ¢ =60+ 00| — ¢l 2@+ (3.9)

We deduce from (3.8)), (3.9) and Theorem a upper-bound for the L2-norm of &' — Pe

ac — 4qg(¢c)2(C — (o)?
p2(Co) — ¢

1" — Ll 2apey < + O — cllFo@ey:

We deduce now an estimate for ¢ — ® at point ¢ = 0.

Theorem 3.5. Using the same notation and assumptions as Theorem we have

[2(0) — ¢ (0)[* < 2/|® — el 2@+ 19— el Le@r)- (3.10)
Proof. As ® — p € HY(R"), it suffices to write

|2(0) — c(0)]* = 2/000 |D(t) — e ()| ¥'() — pe (2] dt.

We conclude with the Cauchy-Schwarz inequality. O

4 Construction of a quasi-mode by a finite difference method

Theorem gives bounds for ©( as soon as we get quasi-modes for the operator H((). Of course, the
closer ( is from (j, the better the bounds. A heuristic approach based on finite difference method and the
ODE theory gives a sequence of approximated values for ¢.. Then we use this sequence to construct a test-
function with energy as small as possible and thus try and give a good approximation of ©y. We organize
this approximation in several steps:

1. Reduce the problem to a finite interval,
. Write a finite difference scheme,

. Study the dependence of the discrete solution on the parameter ¢,

2
3
4. Construct a regular function on R™ from the discrete solution,
5. Deduce an algorithm to approximate Oy,

6

. Estimate the accuracy of the computations.



4.1 Reduction to a finite interval

In a first step, we reduce the domain R™ to an interval [0, L]: We know that the eigenvector is exponentially
decreasing so, if L is large enough, the error due to cut-off is exponentially small. Let ¢ be a normalized

eigenvector associated with 111 (¢) for the operator H (¢). This function . is decreasing like ¢ — exp (— %)
as t — —+oo. Therefore there exists a positive constant C' such that, for L > 0,

00 00 .y
/ |<pg(t)|2dt§2§/L pear = Y 4.1)

L

L
Consequently, to approximate [|¢¢||z2(r+) by / ¢ (t)|? dt with a better accuracy than 10~ it is enough
0
that L satisfies

L c

It is equivalent to find L such that L? 4+ In L > N In 10 + In C. So it is reasonnable to restrict the study to
the interval (0, 10) for numerical computations. The numerical quasi-mode will be extend by 0 on (L, +00)
to define a function on R™. We will control the error due to the cut-off.

We conclude this section with a comparaison between the fundamental energy on a finite interval and Oy.

Lemma 4.1. Let L > 0. We denote by u™"" (¢, L) and p™-P (¢, L) the smallest eigenvalue of —d?/dt* +
(t — ¢)? with Neumann condition at t = 0 and respectively Neumann and Dirichlet condition at t = L.
Then NP (¢, L) is decreasing with respect to L and for any L > 0,

pNP(C L) > i (C) > Op. 4.2)

For L large enough, the function NN (¢, -) is increasing on (L, +00) and

NN (¢ L) < pa(€). (4.3)

Proof. The monotonicity of L + u™"P(¢, L) is obvious: For L' > L, we extend the functions of {u €
H(0,L)|u(L) = 0} by 0 on (L, L') and use the min-max principle.
To deal with V"V (¢, L), we compute the derivative of ™'V (¢, L) with respect to L:

O™ (¢ L) = (L = ¢ = N (¢ D) ue. (L), &9

with ¢ 7, a normalized eigenvector associated with pNN(¢, L). The positivity of the first derivative is
directly deduced for L large enough. O

4.2 Finite difference scheme

Instead of looking for a normalized eigenfunction, we impose the value of ® at t = 0. Therefore, we try to
determine ((p, ) € R* x D such that:

H({)®(t) = (&), Vt>0,
L, 4.5)
®'(0) = 0.

A
—

=
~—

I



Varying parameter (o and working on a finite interval, it is natural to look for a function ¢, defined on (0, L)
and satisfying:
H(¢)pc(t) = Coc(t), Ve (0,L),
pc(0) = 1, (4.6)
¢e(0) = 0.

The system is numerically solved by a finite difference scheme. Let n be the number of discretization
points in (0, L) and h = L/n. We determine recursively an approximation g5§ of ¢ (jh) for any integer j €
{0, ..., n}. For this, ¢¢ (jh) and ¢ (0) are classically approximated respectively by (4,55 41 —2g5§+g5§_1) /h?
and (gﬁ% — 958) /h. The boundary condition at t = 0 determines completely the sequence (955) G=0,...n"

900 = 17
g = 1, 4.7
B = PR —20)85 —F 1, Vi=1,...,n— 1.

4.3 Dependence on ( of the sequence (@5) =01

The change of variables x = t—( in the eigenmonde equation leads to the second order differential equation:
u’(z) — 2*u(z) — Cu(x) = 0. (4.8)

The Sturm-Liouville equation (cf [18} 20, 31 [12]]) admits a basis of fundamental solutions uzt with ug =

O(exp(—2?/2)) and uf = O (2~ 1+ 2exp(22/2)) at infinity. By a change of variable, we deduce that
the solution ¢ of problem @ is a linear combination of an exponentially increasing function denoting by
fgr and an exponentially decreasing function fc_ . Moreover fzr — +o00 and fC_ — 0 ast — 4oo. Thus,
there exist constants a; and b; which depend continously on ¢ such that:

pe = acfo +bcf7. (4.9)

We now use this dependence on ( to determine Og. Indeed, for ¢ = (o, p¢, = P is integrable and then
be, = 0. To determine Oy, it is then enough to find the smallest ¢ such that the solution ¢ is bounded.
Furthermore, we know that the eigenvector ® associated with the first eigenvalue ©¢ and normalized with
®(0) = 1, holds strictly positive. The positivity of ® gives a criterion to select functions which constitute a
good quasi-modes. Indeed, if for some (, the sequence (@g) has positive and strictly negative coefficients,
then the coefficient b¢ in the decomposition (4.9) of the associated interpolated function ¢ is negative and
consequently ¢ > (p. At the opposite, the parameter b, is positive for ¢ < (p.

4.4 Construction of quasi-modes

Discretization li gives two behaviors for (gbg) ;j (see Figures|l|and i and we modify coefficients of (gbg) j
consequently:

¢
J
the sequence ((/3§) ; reaches its minimum and we denote L' = joh. The restriction of ¢ on (0, L")

e The sequence (;); remains positive (see Figure . We determine jo the smallest integer where

makes a better quasi-mode than the function defined enterely on (0, L) and we have 1™V (¢, L') <
a(¢, L") with i(¢, L') the energy of (cﬁg) ; computed on [0, L']. Nevertheless, as we can not compare
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Let us now be more explicit about the interpolation of the sequence (¢

1 2 3 4 5

o
o
-
IN)
w
IS
3}
=)

Figure 1: (gbg)j for ¢ = 0.76818. Figure 2: (cﬁg)j for ¢ = 0.768109.

pNN (¢, L') and Oy for any L', we modify the sequence by translation so that the minimum equals to

0 and dilation to keep the normalization @% = 1. We then define the new sequence:
~C _ =6
Y — Py . .
—= forj=1,...,50—1,
=1 -¢, 7 (4.10)
0 for j = jo,...,n.

The energy associated with a regular interpolation of (gog) ; gives a upper-bound of © according to
Lemma The initial sequence (see Figure corresponds to b¢ > 0 in the decomposition (4.9).

The sequence (cﬁg) ; has positive and negative terms (see Figure . Let jo be the smallest integer such
that <,5§0 < 0. We set

5 = @ forj=1,....50—1, @11)
J 0 forj=jog,...,n.

Lemma bounds from above ©( by the energy of the function constructed from (cpg) j. For the
initial sequence, b < 0 in the decomposition (4.9).

¢

3); to construct the quasi-mode

@¢. If we make an interpolation of (apg) j by a piecewise linear function, this function does not belong to

H?(R™") and is necessarly not in the operator domain D. So we interpolate (i

¢

2); on [0, L] by a piecewise

polynomial function ¢, of degree 2 defined by:

Vi =0,...,n—1, ¥t € [jh,(j + D], @c(t) = aj(t — jh)* +75(t — jh) + 5, (4.12)
with 79 = 0 and
_ 51— &5
Tit1 = 2 =T
h (4.13)
¢ s
, Pir1 =% T
YT TR T w

10



We notice that 7; = ¢{-(jh). We extend ¢¢ by 0 on (L, +-00). With such a construction, ¢ is continuous,
its derivative is continuous, piecewise linear and the second derivative is constant on [jh, (j + 1)h] for
j = 0,...,n — 1. Furthermore, any computations (norm, energy, ...) are explicit. With the change of
variables x = t — jh, we have:

[ A Z /0 g + 4+ G2 da
h? W ¢ Y
= hz <a + 5T+ E(Tj + 2052) + h1j; + (¢3) > . (4.14)

Let us compute the energy of ¢¢:
n—1 .p n—1 4
el Zemey = Z/O 202 + 7P dz =h) <3h2a§. + 2ha;T; + r]?> : (4.15)
j=0 §=0

To compute / (t — O)¥|c(t)|? dt, we define §; = jh — . Puta = t — jh gives:
R+

n—1 .p
L= 0tlecoPar =3 [ (w48 0ya® 4+ 5 da
=0

Consequently

4 h3
/IR+(t—C)’(p< ’ dt = hz <Oé + — '(2Tj+aj(5j)+ Z(Tj2+2ajcp§+2aj7j5j)

2

h h
+§(2Tjap§ + 20050, + 720;) + 5((9057)2 +270;05) + (<p§)25j>. (4.16)

—1
h4
1t = Qecllte@ey = Z (a +5ra(my + ay6) + (75 + ay0; )+ 205(¢5 + 756;))

7=0

h? ¢

+?(0‘38035 + (75 + a;d; )(‘Pj +7505))

h2
+§((<pj +758;)% + 2%5 (1j + ajd;)) + hgojé (5 C+1565) + (<p§)26]2> (4.17)

Expressions (4.14), (.13) and (@.17) present the main advantage to be exact. Let ji({) be the Rayleigh
quotient of ¢¢:

H‘PZ‘H%%Rﬂ + [I(t - C)‘PCH%z(Rﬂ

fi(C) =

5 4.18)
||(PCHL2(R+)

To apply Theorem , we have to estimate the residus ||r¢||%, (r+) With ¢ = (H(C) — p(C))pe. As
we extend ¢ by 0 on (L,400), we have just to compute the norms on (0, L). We notice that for any
j=0,...,n—1andt € [jh,(j + 1)h|, we get:

re(t) = —2a; + ((t = ¢)* = Q) aj(t — jh)* + 75t — jh) + ¢5).
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As in @.14), @.15) and @.17), the computation of [|r¢||z2(r+) is explicit. For j = 0,...,n — 1, we define:

rog = @58 — Q) — 205, g = 20505+ 7 (67 = Q).
25 = QOJC- + 27’j5j + aj(5j2» — ﬁ(()), 3,5 Tj + 204j5j.

A change of variables gives:

7 h6 h5
el |22y = P Z (04 +roursg (20525 + i)+ 3 (g1 +rs5ra )
A ) h3 h2 ) )
+ 3(2%‘7“0,]‘ + 2r3 1 +7135) + 3(7“347"0,3' +12,j71,5) + 3(27”24'7"04 +1i;) + hrijro; + rO,j)'
(4.19)

4.5 Algorithm and results

We described how interpolate the sequence (<p§) to construct an appropriate quasi-mode and proposed cri-
teria to estimate ©g. Let us now explain the algorithm to determine ©q accurately.

Algorithme 4.2.

1. We choose a length L for the finite interval and a step h for the discretization for finite difference
method.

2. We initialize a value for ( with n decimals.

3. We construct the sequence (gojc) by (@.7).

4. If (¢ ]) has negative coefficients, we return to the first step with a smaller value for (. Otherwise, we
modify (p ]) according to (.10).

5. While (goj) has only positive coefficients,

(a) we define the function @ by relations @.12) and @.13)),

(b) we compute the L*>-norm of o thanks to (&14) and deduce the value of p¢(0) after normaliza-
tion,

(c) we compute the energy [i(() associated with @ thanks to relations @.14), @.15), 4.17) and
(4.18)),

(d) we estimate the residus ||r¢|| 2m+y = |[(H(C) — ()¢l L2ty with relation (4.19),

(e) we raise ¢ of 10~ ("+1),

6. We go back to the first step with the last value of ¢ with the n + 1 decimals for which the sequence
(gog) has only positive terms.

Table 1| sums up the results obtained with this algorithm: we choose h = 1/26000 and L = 7. In each
part, results given at the last line correspond to a function . which takes negative values. The last colum

gives a1 = @5(0)\/2 which aims to approximate the constant a; in the asymptotics expansion (2.2)).
Of course, a dichotomy method should be faster but we aim at determining decimals step by step.
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¢ fi(¢) Irellz@+y | ming &S ©5(0) ¢ =) a1
0.761 0.611266093453 4.009e-01 1.194e-01 0.900663817274 | -3.215e-02 | 0.796379904345
0.762 0.608936310293 1.020e+00 1.098e-01 0.898608814736 | -2.829¢-02 | 0.793804656654
0.763 0.606516822831 1.017e+00 9.947e-02 0.896392499552 | -2.435e-02 | 0.791059092651
0.764 0.603984720795 6.395e-01 8.826e-02 0.893963619858 | -2.029e-02 | 0.788090937531
0.765 0.601304928182 3.144e-01 7.585e-02 0.891237476384 | -1.608e-02 | 0.784814703651
0.766 0.598417489656 5.889¢-01 6.162e-02 0.888054169479 | -1.166e-02 | 0.781071024723
0.767 0.595197681398 4.774e-01 4.408e-02 0.884029104176 | -6.909e-03 | 0.776482855100
0.768 0.591201356836 1.450e-01 1.618e-02 0.877276976649 | -1.377e-03 | 0.769255459845
0.769 0.592445239556 3.394e+03 -6.828e+04 | 0.873788252239 | -1.084e-03 | 0.766599011697
0.7681 0.590667836454 7.786e-02 1.065e-02 0.875868144705 | -6.902e-04 | 0.767846770648
0.7682 0.590132204890 1.014e+02 -1.375e+03 | 0.873060748639 | -9.649e-07 | 0.765212036038
0.76811 0.590609794273 1.296e-01 9.960e-03 0.875688760473 | -6.168e-04 | 0.767670649972
0.76812 0.590550467623 1.188e-01 9.220e-03 0.875497050852 | -5.421e-04 | 0.767483313548
0.76813 0.590489644618 7.154e-02 8.424e-03 0.875290014381 | -4.659¢e-04 | 0.767282062448
0.76814 0.590427028617 6.304¢e-02 7.555e-03 0.875063164549 | -3.880e-04 | 0.767062868811
0.76815 0.590362189929 6.035e-02 6.587¢e-03 0.874809289953 | -3.078e-04 | 0.766819273601
0.76816 0.590294414679 1.028e-01 5.472e-03 0.874515187142 | -2.246e-04 | 0.766539474233
0.76817 0.590222359089 4.568e-02 4.101e-03 0.874151227495 | -1.372e-04 | 0.766197068734
0.76818 0.590142134621 3.433e-02 2.059¢-03 0.873603510214 | -4.162e-05 | 0.765690971474
0.76819 0.590133901819 4.380e+02 -5.339e+02 | 0.873050162751 | -1.803e-05 | 0.765203307905
0.768181 0.590133151271 2.157e-02 1.743e-03 0.873518100671 | -3.110e-05 | 0.765613198575
0.768182 0.590123767394 2.354e-02 1.362e-03 0.873415004924 | -2.018e-05 | 0.765519794934
0.768183 0.590113720068 1.926e-02 8.410e-04 0.873273226533 | -8.599¢-06 | 0.765392272906
0.768184 0.590107683499 1.044e+02 -2.922e+01 | 0.873043549605 | -1.026e-06 | 0.765189012531
0.7681831 0.590112657421 1.844e-02 7.719¢e-04 0.873254392844 | -7.382e-06 | 0.765375421300
0.7681832 0.590111566559 1.475e-02 6.959¢e-04 0.873233650004 | -6.138e-06 | 0.765356887258
0.7681833 0.590110458701 9.661e-03 6.117e-04 0.873210676290 | -4.876e-06 | 0.765336392445
0.7681834 0.590109315459 9.490e-03 5.146e-04 0.873184139830 | -3.579e-06 | 0.765312763566
0.7681835 0.590108138271 9.388e-03 3.972e-04 0.873152039956 | -2.249e-06 | 0.765284247584
0.7681836 0.590106879933 3.373e-03 2.296e-04 0.873106158483 | -8.366e-07 | 0.765243626286
0.7681837 0.590106497981 5.655e+01 -3.973e+00 | 0.873043196601 | -3.010e-07 | 0.765188318823
0.76818361 0.590106749563 4.694e-03 2.067e-04 0.873099863951 | -6.909e-07 | 0.765238067107
0.76818362 0.590106611147 3.686¢e-03 1.799e-04 0.873092510715 | -5.371e-07 | 0.765231577409
0.76818363 0.590106470242 2.554e-03 1.488e-04 0.873083997748 | -3.808e-07 | 0.765224070445
0.76818364 0.590106331385 2.147e-03 1.120e-04 0.873073906942 | -2.266e-07 | 0.765215181231
0.76818365 0.590106179248 1.028e-03 5.386e-05 0.873057934293 | -5.912e-08 | 0.765201132509
0.76818366 0.590106139402 6.353e+00 -5.838e-01 0.873043147328 | -3.912e-09 | 0.765188159395
0.768183651 0.590106163301 1.082e-03 4.455e-05 0.873055377601 | -4.164e-08 | 0.765198886499
0.768183652 0.590106145104 9.452e-04 3.139¢e-05 0.873051762303 | -2.190e-08 | 0.765195711932
0.768183653 0.590106127974 4.699¢-04 1.125e-05 0.873046229081 | -3.238e-09 | 0.765190856726
0.768183654 0.590106128318 4.673e+00 -7.211e-02 | 0.873043139630 | -2.045e-09 | 0.765188149055
0.7681836531 | 0.590106125876 1.536e-04 5.953e-06 0.873044774598 | -9.864e-10 | 0.765189581249
0.7681836532 | 0.590106125048 5.487e-01 -3.761e-03 | 0.873043138584 | -4.328e-12 | 0.765188147079

Table 1: Results obtained with Algorithm 4.2
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4.6 Estimates of the second eigenvalue

To apply Theorem we need an estimate of the second eigenvalue p2((y) of H({y). For this point, we
do not need to be very accurate and so we consider the matrix A¢ defined by the discretization of H (¢) for
¢ € [0.76818,076819]. If we denote by Af ; the coefficients of the matrix AS, we have:

1
¢ _ 2 ¢ 1
11 h2+<’ 2= "2
A =g A =F4H((G-Dh—0? A =— forj=1...n-1,

Ay =7, Avn=+(n—1h—()?

AS . = elsewhere.

We compute the second eigenvalue and obtain p2((p) > 3.315. Theoretically, we can bound from above
p2(Co) by the smallest first eigenvalue of the Dirichlet realization of D? + (¢ — ¢)? on the half-line. We
obtain p2((p) > 1.

4.7 Accurate estimate for O, and ®(0)

Lemma 4.3. We have this first coarse bound:
05<Oy=C¢G<1.

Proof. The upper-bound was proved in [12] and recalled in Proposition[I.1] Let us prove the lower-bound.
For any ¢ € R, we write

1= pm(¢) < (H(Q)®,®) = (H((o)®, ®) +2(¢o — ) /R (- )@ (8)[dt + (¢o — ¢)*.

Choosing ¢ = 0 and using Proposition|1.1} we deduce the lower-bound. O

We apply Algorithmfor h such that 1/h € {100 x k,k = 10,...,40} and for L = 7,8,9, 10.
For each value, we obtain characteristic values as in Table [T]and we complete this table by computing the
lower-bound of © given by Theorem a lower-bound and a upper-bound for ®(0) given in Theorem
To make these computations, we need a lower-bound of | — (y|. We start with the coarse estimate of
Lemma [4.3] and we improve this estimate at each step of the algorithm with the new bounds of ©¢. Using
the upper-bound 12((p) > 3.315, we obtain

Proposition 4.4.
0.590106124587 < O < 0.590106124951,

0.872997 < ®(0) < 0.873090.

This proposition estimates Oy ~ 0.590106125 with an error less than 10~ and of ®(0) ~ 0.87304 at
5x 1074
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5 Finite element method

In this section, we use a finite element method to analyze the dependence of i (¢) with (. We compute
the eigenvalues of the operator D? + (¢ — ¢)? on [0, L] with Dirichlet condition on ¢ = L and Neumann
condition on ¢ = 0. The computed eigenvalues jix(¢) give a upper-bound of 1k (¢).

Figure [3|illustrates the fact that the minimum of ¢ + 1 (C) is achieved on the curve ¢ — (2. We observe
also the convergence of { — p(C) to 2k — 1 as ( — +oo. For these computations, we use a finite element
method with 10 elements of degree Q1 on [0, 10].

10

Figure 3: ;. (¢) for ¢ € [~1,5], k =1,...,4 and curve ¢ — (2 in dashed line.

Let us now use the finite element method to approximate ©¢ and ®y. With this method, we do not have
exact estimate of the error but only a upper-bound for ©. To determine accurately (j, we use a finite element
method of degree Qg or Q¢ and nbel elements. The computational domain is [0, L] and we impose Dirichlet
condition on ¢t = L. We compute the first eigenvalue /i(¢) and compare it with (2. These computations give
also an accurate value for ®(0) and a;. Let (¢ be the computed normalized positive eigenvector associated
with /2(¢). Then, we compute a; = /(¢ (0). Table 2| gives the results of these computations. In particular
we obtain approximation for O, ®(0) and a;:

6y = 0.590106125, ®(0) = 0.873043139, a1 = 0.765188147.

Notice that computed values fi(¢) in Table provide better upper-bounds for ©g than in Proposition

15



L mbel Q ¢ (<) S ¢¢(0) a1

7 70 8 | 0.768183653140 | 0.590106124950497 1.0e-12 0.873043138513904 | 0.765188146985675
7 70 8 | 0.768183653141 | 0.590106124949945 3.1e-12 0.873043138513613 | 0.765188146985918
7 70 10 | 0.768183653140 | 0.590106124952671 -1.2e-12 | 0.873043138513392 | 0.765188146985226
7 70 10 | 0.768183653141 | 0.590106124952394 6.6e-13 0.873043138513095 | 0.765188146985464
8 100 8 | 0.768183653140 | 0.590106124949903 1.6e-12 0.873043138513603 | 0.765188146985411
8 100 8 | 0.768183653141 | 0.590106124949336 3.7e-12 0.873043138513245 | 0.765188146985595
8 100 10 | 0.768183653140 | 0.590106124952819 | -1.3e-12 | 0.873043138513197 | 0.765188146985055
8 100 10 | 0.768183653141 | 0.590106124952989 6.3e-14 0.873043138512816 | 0.765188146985219
9 90 8 | 0.768183653140 | 0.590106124950496 1.0e-12 0.873043138513906 | 0.765188146985677
9 90 8 | 0.768183653141 | 0.590106124949943 3.1e-12 0.873043138513614 | 0.765188146985919
9 90 10 | 0.768183653140 | 0.590106124952671 -1.2e-12 | 0.873043138513392 | 0.765188146985226
9 90 10 | 0.768183653141 | 0.590106124952389 6.6e-13 0.873043138513095 | 0.765188146985464
10 100 8 | 0.768183653140 | 0.590106124950496 1.0e-12 0.873043138513906 | 0.765188146985677
10 100 8 | 0.768183653141 | 0.590106124949948 3.1e-12 0.873043138513614 | 0.765188146985919
10 100 10 | 0.768183653140 | 0.590106124952670 | -1.2e-12 | 0.873043138513391 | 0.765188146985225
10 100 10 | 0.768183653141 | 0.590106124952392 Te-13 0.873043138513095 | 0.765188146985464
12 110 8 | 0.768183653140 | 0.590106124948481 3.0e-12 0.873043138514059 | 0.765188146985811
12 110 8 | 0.768183653141 | 0.590106124948091 5.0e-12 0.873043138513689 | 0.765188146985984
12 110 10 | 0.768183653140 | 0.590106124949202 2.3e-12 0.873043138513313 | 0.765188146985156
12 110 10 | 0.768183653141 | 0.590106124949127 3.9e-12 0.873043138513068 | 0.765188146985440
15 200 8 | 0.768183653140 | 0.590106124951757 -2e-13 0.873043138513820 | 0.765188146985601
15 200 8 | 0.768183653141 | 0.590106124951625 1.4e-12 0.873043138513444 | 0.765188146985769
15 200 10 | 0.768183653140 | 0.590106124949226 2.3e-12 0.873043138513258 | 0.765188146985109
15 200 10 | 0.768183653141 | 0.590106124949262 3.8e-12 0.873043138512969 | 0.765188146985353

Table 2: Computation with the finite element method.
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