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ABSTRACT

In the battlefield surveillance domain, ground target tracking is used to evaluate the threat. Data used for
tracking is given by a Ground Moving Target Indicator (GMTI) sensor which only detects moving targets.
Multiple target tracking has been widely studied but most of the algorithms have weaknesses when targets are
close together, as they are in a convoy. In this work, we propose a filtering approach for convoys in the midst of
civilian traffic. Inspired by particle filtering, our specific algorithm cannot be applied to all the targets because of
its complexity. That is why well discriminated targets are tracked using an Interacting Multiple Model-Multiple
Hypothesis Tracking (IMM-MHT), whereas the convoy targets are tracked with a specific particle filter. We
make the assumption that the convoy is detected (position and number of targets). Our approach is based on an
Independent Partition Particle Filter (IPPF) incorporating constraint-regions. The originality of our approach
is to consider a velocity constraint (all the vehicles belonging to the convoy have the same velocity) and a group
constraint. Consequently, the multitarget state vector contains all the positions of the individual targets and
a single convoy velocity vector. When another target is detected crossing or overtaking the convoy, a specific
algorithm is used and the non-cooperative target is tracked down an adapted particle filter. As demonstrated
by our simulations, a high increase in convoy tracking performance is obtained with our approach.

Keywords: GMTI, convoy tracking, particle filter, IMM-MHT

1. INTRODUCTION

In the battlefield surveillance domain, ground target tracking is used to evaluate tactical situation. Data used
for tracking comes from a Ground Moving Target Indicator (GMTI) sensor which detects moving targets only
by measuring their Doppler effect. Tracking algorithms were originally elaborated for airborne targets in the
1970’s. Ground target tracking is widely inspired of these techniques1 , but they were adapted because the
ground environment is much more complex than aerial environment. For example, they have to take into
account the very high density of ground traffic which generates an important number of measurements, ground
elevation (mountain, hill,...) which create hidden zones for sensor and also sensor limitations (false alarms,
detection probability, resolution,. . . ). Moreover, measurements are noisy and ambiguous and ground targets
highly manoeuvrable.

In spite of these difficulties, very efficient algorithms for single or multitarget tracking2–4 based on Kalman
filtering exist today. However, most of these algorithms have weaknesses when targets are close together as they
are in a convoy, because of the problem of targets-GMTI measurement association. Yet the goal of tracking is to
evaluate ground situation by taking objects of interest, such as convoys, into account. Multiple target tracking
has been widely studied for many years. Conventional approaches such as the Multiple Hypothesis Tracking2–5

(MHT) or the Joint Probabilistic Data Association Filter2–5 (JPDAF) use a Gaussian mixture representation
of probability density of the state vector. Yet, in the convoy tracking case, this assumption is not verified.
Moreover, convoy measurements are very close together and, as measurements used to update MHT and JPDAF

Further author information: (Send correspondence to E.P.)
E.P.: E-mail: evangeline.pollard@onera.fr, Telephone: +33 (0)1 46 73 49 51
B.P.: E-mail: benjamin.pannetier@onera.fr, Telephone: +33 (0)1 46 73 44 36
M.R.: E-mail: Michele.Rombaut@gipsa-lab.inpg.fr, Telephone: +33 (0)4 76 57 43 68



are chosen in a given neighborhood, finding the right one is a very challenging task. That is why it is necessary
to develop local algorithms which are able to track each target belonging to a convoy.

One solution proposed by Williams6 is to use a Gaussian mixture reduction with a MHT. Therefore, a MHT
algorithm is very efficient, particularly with regards to the enormous quantity of data produced by GMTI sensor.
Another interesting alternative for non linear, non Gaussian tracking of multiple targets is the particle filtering
but it is very time consuming. Since on the battlefield, the number of convoys is limited, we propose to use the
particle filtering approach locally.

The paper is organized as follows: Section 2 describes the multi target motion model. Section 3 reviews
existing particle filters. Our specific algorithm for convoy tracking is described in Section 4 and finally Section
5 explains how the local particle filtering algorithm is integrated into a classical multitarget tracking method:
the Interacting Multiple Model-Multiple Hypothesis Tracking Algorithm (IMM-MHT). This method proves very
efficient in tracking uncorrelated targets.

2. CONSTANT VELOCITY MOTION MODEL

Target tracking is done in a local two-dimensional plane. We consider M targets moving in this plane. The state
vector for the tth target, (∀t ∈ {1, . . . , M}), is given by:

xt(k) = [xt(k), ẋt(k), yt(k), ẏt(k)]T (1)

where (xt(k), yt(k)) corresponds to the position and (ẋt(k), ẏt(k)) to the velocity of the tth target at time k in
the Cartesian model.

Assuming that the target motion is linear in the Cartesian coordinate system, the state equation of a target
can be written as:

xt(k + 1) = Fi(k).xt(k) + Γ(k).νi(k) (2)

where Fi(k) is the state transition matrix which depends on the motion model M i (∀i ∈ {1, . . . , r}). Generally,
a constant velocity model M i is used with the sampling interval T :

Fi(k) =

⎛
⎜⎜⎝

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎞
⎟⎟⎠ (3)

and νi(k) is a zero-mean, white Gaussian process with the known covariance matrix Qi which models the target
acceleration:

Qi = E[νi(k).νi(k)T ] = qiΓ(k).Γ(k)T (4)

with qi the model noise and Γ(k) as defined by Bar-Shalom7.

The sensor gets a measurement vector Z(k) = [z1(k), . . . , zmk
(k)] with mk the number of measurements at

each iteration k. Each measurement z(k) corresponds to the observed position vector and is given by:

z(k) = H.xt(k) + b(k) (5)

where b(k) is a white Gaussian noise with a known covariance matrix R(k) = E[b(k), b(k)T ]. According to the
state vector xt(k), the matrix H can be written as:

H =
(

1 0 0 0
0 0 1 0

)
(6)



3. PARTICLE FILTERING

Before detailing the proposed approach, we will briefly review standard particle filters described in the litera-
ture8–12 for single target, multitarget and convoy targets.

3.1 Single target particle filtering

Particle filtering is a method for approximately solving the state prediction and updating equations of the model
by simulation. The interest of this approach is that there is no analytic representation of the density. Samples
from the target density, written Xpart(k) = {X1(k), . . . , XNpart(k)} with Npart the number of particles and Xp(k)
the particle state, are used to represent the density and are propagated through time. To implement a single
target particle filter, the estimation state is approximated by a set of weighted samples as follows:

x̂(k|k) ≈
Npart∑
p=1

wp(k)Xp(k) (7)

P (k|k) ≈
Npart∑
p=1

wp(k).[(x̂(k + 1|k) − x̂(k|k)).(x̂(k + 1|k) − x̂(k|k))T ] (8)

where wp(∀p ∈ {1, . . . , Npart}) is the weight of each particle. This weight can be computed as the likelihood
of the position measurement z knowing the position Xp of the particle p:

wp(k) = wp(k − 1) × p(z(k)|Xp(k)) =
1√

2π|R|exp(−1
2
[z(k) − Xp(k)]T R−1[z(k) − Xp(k)]) (9)

where R(k) is the measurement noise, z(k) is the measurement associated to the target (defined by a Nearest-
Neighborhood method for example) and Xp(k) is the particle position at time k. For further information, the
reader can see13.

But in practice, the particle cloud is composed in majority of weakly weighted particles and in minority of
strongly weighted particles, which are more informative. This creates a problem, because after several iterations
the cloud spreads and the filter diverges, due to the state covariance matrix increasing. This problem is solved
by a resampling, when necessary, like the Sampling Importance Resampling (SIR) proposed and demonstrated
by Kong14.

3.2 Sampling Importance Resampling

The principle of resampling is to delete weakly weighted particles and to duplicate strongly weighted ones. Yet,
since resampling is time consuming, it is important to measure the filter degeneration in order to use a resampling
only when necessary. Kong Liu and Wong14 introduced a criterion to define the effective number of particles in
order to quantify the global information due to the particles. This criterion is based on variance, because diffuse
clouds imply weakly weighted degenerated particles. Let Neff be the effective number of particles at time k,
defined as follows:

Neff =
Npart

1 + V ar(w�
p(k))

(10)

where V ar(w�
p(k)) designs the actual weight variance which can only be approximated. Finally N̂eff is written

as:
N̂eff =

1∑Npart

p=1 wp(k)
(11)

When N̂eff is greater than a given threshold Nth (Kong proposed empirically Nth = 2N̂eff/3), Sampling Impor-
tance Resampling is operated.



3.3 Multitarget Particle Filter

The previous algorithm described for a single target, can be simply adapted to a multitarget tracking case. Let
M be the number of tracked targets. The multitarget state vector Xp is the concatenation of each single target
state vector Xp,t named partition, so the state of the pth particle at time k is composed of the concatenation of
M partitions:

Xp(k) = [Xp,1(k), . . . , Xp,M (k)]T (12)

The likelihood of a particle p becomes the product of each partition likelihood Xp,t(k):

wp(k) = wp(k − 1)
M∏
t=1

p(z(k)|Xp,t(k)) (13)

where z(k) is the closest validated measurement for partition t.

This algorithm has very good performances but it involves the use of a number of particles increasing propor-
tionally to the number of tracked targets. This is why a lot of versions of this algorithm exist like the Independent
Partition Particle Filter (IPPF).

3.4 Independent Partition Particle Filter

Orton15 proposes a new particle algorithm called Independent Partition Particle Filter (IPPF), which assumes
the targets sufficiently separated in regards to the sensor resolution. This results in an uncorrelated measurement
likelihood. The principle is to optimize the resampling step by constructing particles independently proposing
partitions for each particle. This efficiently reducts the number of particles as compared to proposing all partitions
simultaneously. Therefore, particle weight is not simply calculated as the product of partition likelihoods, indeed
a bias appears. The weight of the particle p (∀p ∈ {1, . . . , Npart}) can also be written as:

wp(k) = wp(k − 1) × p(Z(k)|Xp(k))∏M
t=1 wp,t(k)

(14)

where wp,t(k) is the partition weight for target t, at time k.

This method is very efficient when targets are well discriminated. Although if a doubt concerning the target-
measurement association exists (as in a convoy), it can lead to the partition clouds merging and consequently
only one target is tracked. This method is not directly transposable to the application addressed in this paper.

3.5 Particle Filter using a convoy model

Most multitarget tracking algorithms make the assumption that all considered targets have independent motion.
Yet we can consider that this is not the case when targets move in a convoy. The main characteristic is that
they have the same velocity. On this assumption, we can write, as Gordon8, the convoy state vector Xc(k) and
the particle state vector Xc

p(k) at time k as:

Xc(k) =

⎛
⎜⎜⎜⎝

Xc
1(k)
...

Xc
M (k)

Ẋc(k)

⎞
⎟⎟⎟⎠ (15) Xc

p(k) =

⎛
⎜⎜⎜⎝

Xc
p,1(k)

...
Xc

p,M (k)
Ẋc

p(k)

⎞
⎟⎟⎟⎠ (16)

where Xc
t(k)(∀t ∈ {1, . . . , M}) represents the position (x, y) of the target t of the convoy in Cartesian coordinates

at time k and Ẋc(k) the global convoy velocity (ẋc, ẏc). M is the number of targets in the convoy.

Target position and global convoy velocity are supposed to follow both linear and Gaussian model. This can
be written as:

p(Xc
p,t(k)|Xc

p,t(k − 1), Ẋc
p(k − 1)) = N (Xc

p,t(k − 1) + T.Ẋc
p,t(k − 1), Qt) (17)



p(Ẋc
p(k)|Ẋc

p(k − 1)) = N (Ẋc
p(k − 1), Qv) (18)

where Qv and Qt are the covariance matrices for the velocity and for the position of a target t. Combining
equations (17) and (18), we can write:

p(Xp(k)|Xp(k − 1)) = N (Fc.Xp(k − 1), Qc) (19)

where Fc is the state transition matrix for a convoy of dimension 2 × (M + 1) and Qc is the model covariance
written:

Fc =

⎛
⎜⎜⎜⎜⎜⎝

I2 0 . . . 0 T.I2

0 I2 T.I2

...
. . .

...
0 I2 T.I2

0 0 . . . 0 I2

⎞
⎟⎟⎟⎟⎟⎠

(20) Qc =

⎛
⎜⎜⎜⎜⎜⎝

Qt 0 . . . 0
0 Qt

...
. . .

...
0 Qt 0
0 0 . . . 0 Qv

⎞
⎟⎟⎟⎟⎟⎠

(21)

where Qt = Qv = q.I2 with q the model noise which represents the acceleration uncertainty and I2 is the 2
dimensional identity matrix.

4. CONVOY TRACKING

Literature on convoy tracking is not very extensive4, 16, probably because of its recent feasibility, with sensor
resolution improvement. Nevertheless, Koch17 proposes a method based on information fusion, Kyriakides18 uses
constraint regions to adapt the IPPF, and Gordon8 proposes a convoy state vector. In this section, we propose
a method inspired of all these authors.

4.1 Convoy initialization
We make the assumption that at time td, a convoy is detected and this information comes from a HUMINT
(Human Intelligence) or a IMINT (Image Intelligence). So the initial position of each target in the convoy and
the number of targets that compose the convoy may be considered to be known.

4.2 Constraint regions
Constraint regions are now introduced to limit the data association problem. Let Πl(k) = [π1,l(k), . . . , πM,l(k)] be
one combination of target-measurement association (∀l ∈ {1, . . . , L} with L the number of feasible associations).
For example, π1,l = 2 means that the target 1 is associated to the measurement 2. Πl(k) is also a vector of
length M which contains all the associated measurement indices. In the case of a non-detection, a negative
value is assigned. The set of all feasible associations is written Π(k) = [Π1(k), . . . , ΠL(k)]. The associations are
constrained to the following assumptions:

• The use of IPPF approach for the resampling step imposes that each measurement z(k) can only be
associated to one target t. This is the group constraint Cg

πt,l
(k) for one target r (∀t ∈ {1, . . . , M})

considering one target-measurement association l. This constraint is defined as Cg
πt,l

(k) =
⋂

∀t′<t

Cg
πt′,l

(k),

where Cg
πt′,l

(k) are the constraints imposed by each previous data association for target t′.

• Each partition-measurement association is limited by the validation gate. This is the self constraint
Cs

πt,l
(k).

• All convoy targets have the same velocity. This is the velocity constraint Cv
πt,l

(k).

Finally, we can define, for each combination of target-measure association, πt,l(k) the set of constraints as:

Cπt,l
(k) = Cg

πt,l
(k)

⋂
Cs

πt,l
(k)

⋂
Cv

πt,l
(k) (22)



4.3 Target-Measurement association

At each time k, the combination of associations which gives the strictest of all constraints is chosen. This is
similar to finding the combination which gives the smallest sum of distances between the predicted position
Xt(k + 1|k) of the target t (∀t ∈ {1, . . . , M}) and the considered measurement Zπt,l(k) for the lth combination:

Πl̂(k) = argmin
Πl(k)∈Π(k),∀l∈{1,...,L}

M∑
t=1

‖Xt(k|k − 1) − Zπt,l(k)‖2, ∀πt,l > 0 (23)

4.4 Resampling

Given all the constraints, we make the assumption that all targets belonging to the convoy have the same velocity.
The state vector Xc(k) and the particle state vector Xc

p(k) can be written as in equations (15) and (16). Given
the combination Πl̂(k), the resampling step can be done as in an IPPF, but only for position. Finally the velocity
is calculated as the normalized combination of velocity associated to all surviving partitions. This can be written
as:

Ẋc
p =

M∑
t=1

Ẋc
p.bp,t∑Npart

p′=1 bp′,t
(24)

where Ẋc
p represent the velocity vector associated to particle p after resampling and bp,t is the bias imposed by

the partition t of the particle p.

5. CONVOY TRACKING IN THE MIDST OF CIVILIAN TRAFFIC

One GMTI challenge is to track convoys in civilian traffic. Due to the sample generation and resampling step,
particle filtering is very time-consuming and cannot be used for all traffic targets but only as a local algorithm
when a convoy is detected. In this section, we propose to mix the IMM-MHT in order to track well discriminated
targets and the particle filter for convoy tracking. When another target is detected crossing or overtaking the
convoy, the particle filter takes it into account is then modified.

5.1 IMM-MHT Principle

Before describing the adapted particle filter, we explain briefly the multitarget tracker developped in2 and made
of the combination of an Interacting Multiple Model3 (IMM) and a Multiple Hypothesis Tracker (MHT)19.

5.1.1 IMM

The Kalman filter optimally describes the dynamics of one target motion model, but in reality a ground target is
constantly manoeuvring and only one model is not enough to describe its dynamics. That is why the Interacting
Multiple Model20, 21 (IMM) is an interesting alternative. This is a hybrid estimation method because it estimates
state system and system occurrence probability. The principle is to use a finite number r of models, describing
the target behavior globally and to integrate them in the filter. Finally, the estimated state is a combination of
the different estimations using each model.

Here we define r = 3 with:

• M0 the STOP model for tracking unmoving targets or targets moving at a very low velocity,

• M1 the constant velocity model using state matrix 3 and the covariance matrix 4 using a very low model
noise q,

• M2 for manoeuvring targets using the same model as for M1 but with a very high model noise q.



5.1.2 MHT

The Multiple Hypothesis Tracker19 (MHT) is track oriented then decomposed in the following tasks:

• Prediction of all existing tracks.

• Gating around each predicted state in order to limit the complexity. The predicted covariance of each
track forms an expectation area and only measurements inside this gate can be associated to the track.

• Track confirmation of the updated tracks. A sequential probability ratio test19 is used to set up the
track status either as deleted, tentative or confirmed. The tracks that fail the test are deleted and the
surviving tracks are kept for the next stage.

• Track extraction to consider all hypotheses for each measurement. Thereby, we consider that a mea-
surement can (a) be a false alarm, (b) belong to an existing track augmented by the gating step, (c) be
the beginning of a new track.

• Filtering or estimation of all hypotheses.

• Pruning to remove of all hypotheses with track scores less than an appropriate threshold.

• Merging hypotheses with very similar state vectors and covariances into only one hypothesis.

5.2 Particle convoy tracking in the MHT

5.2.1 Basic principle

Let XT (k) = [XT
1 (k), . . . , XT

mT (k)(k)] the set of confirmed tracks given by the MHT, with mt(k) the number of
confirmed tracks at time k. The original idea is to manage the isolated targets and the convoy targets differently.
When no convoy is detected, the complete set Z(k) of mk measurements is processed by the MHT. At time k, if
a convoy is detected, we look for the best data association combination and the measurement set is split in two
subsets. First, the subset Zc(k) of mc(k) ≤ M measurements is associated to the targets of the convoy. This
subset is managed by the particle filter as presented section 4. Second, the subset ZMHT = {Z(k)} \ {Zc(k)}
of measurements not associated to the convoy is processed by the MHT. We can summarize our approach as
follows:

• Targets that are well discriminated from the convoy correspond to targets which surely do not belong to
the convoy: processed by the MHT

• Convoy targets corresponding to targets which surely belong to the convoy: processed by the particle filter

• Targets badly discriminated from the convoy correspond to the rest of the targets: specifically processed.

This last type of target corresponds to non-cooperative targets whose dynamics are independent from the
convoy dynamics but become close to the convoy such as target crossing or overtaking a convoy. In this case,
the data association is difficult, so we propose to process these targets by the particle filter of the convoy which
must be adapted. The different steps are the following:

• Detection: see section 5.2.2

• Tracking with the adapted particle filter: see section 5.2.4

• Exit detection: see section 5.2.3



5.2.2 Non-cooperative targets detection

Before convoy and MHT filtering, we have to check if any confirmed track is not well discriminated for any
convoy targets. A gating validation is used based on track predicted state X̂T

t′ (k + 1|k) (∀t′ ∈ {1, . . . , mT } and
mT the number of confirmed tracks), convoy predicted state X̂c

t(k + 1|k) and predicted state covariance matrix
P c

t (k + 1|k) (∀t ∈ {1, . . . , M}) and M the number of targets in the convoy. Finally, the set of non-cooperative
targets badly discriminated with convoy at time k, Xnc(k) are near the convoy and verify:

Xnc(k) =
{

X̂T
t′ (k)/[X̂c

t(k + 1|k) − X̂T
t′ (k + 1|k)]T (P c

t (k + 1|k))−1[X̂c
t(k + 1|k) − X̂T

t′ (k + 1|k)] < γ
}

(25)

where γ is the threshold obtained by the χ2 test. For further information, see7. Tracks detected as close are
processed in a special way described in section 5.2.4.

5.2.3 Non-cooperative target exit

Because it is non-cooperative, there is a time when the target leaves the convoy and must be reintegrated in the
MHT process. In order to detect this time, a validation test Texit is used as follows:

Texit =
{

true if Xtest = {φ}
false if Xtest �= {φ} (26)

where Xtest is defined by:

Xtest(k) =
{

X̂nc(k)/[X̂c
t(k|k) − X̂nc(k|k)]T ((P c

t (k|k))−1 + (Pnc(k|k))−1)[X̂c
t(k|k) − X̂nc(k|k)] < γ,

∀t ∈ {1, . . . , M}
}

(27)

meaning that the target moves away from the convoy.

If a non-cooperative target has finished crossing or overtaking a convoy, its track is a posteriori updated and
returned to the MHT process.

5.2.4 Particle estimation with non-cooperative targets

When a non-cooperative target is poorly discriminated from a convoy target, it is integrated in the particle filter
as other convoy tracks. But, because its dynamics are different from the convoy’s, the particle filter must be
adapted. At first, the state vector is modified:

Xc�(k) = [Xc
1(k), . . . , Xc

M (k), Ẋc
M (k),X nc(k)]T (28)

with Xnc(k) the non-cooperative target state vector given by (25) containing position and velocity information
as in the state vector (1).

Concerning the data association, the constraint area is modified. Obviously, the velocity constraint cannot be
applied. Also, ∀t′ > M , the constraint Cπt′,l

(k) is similar than in the equation (22) without velocity constraint:

Cπt′,l
(k) = Cg

πt′,l
(k)

⋂
Cs

πt′,l
(k) (29)

In a similar way as in (19), the prediction equation for a convoy and poorly discriminated target can be
written:

p(Xc�
p (k)|Xc�

p (k − 1)) = N (F �
c .Xc�

p (k − 1), Q�
c) (30)

F �
c =

(
Fc 0
0 F

)
(31) Q�

c =
(

Qc 0
0 Q

)
(32)

where Q and F are the matrices given in (3) and (4).



Figure 1. Scenario: cumulated MTI reports
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Figure 2. Snapshot of the cumulated MTI reports

5.3 Remark

Paragraphs 5.2.2, 5.2.3 and 5.2.4 describe principles and equations for only one poorly discriminated non-
cooperative target. But all the equations can be adaptated for a finite number of non-cooperative targets
as well as for several convoys.

6. SIMULATIONS AND RESULTS

In the following, we present some simulation results that evaluate the performances of the proposed particle
filtering approach and a classical IMM-MHT. The GMTI sensor has a linear trajectory and its altitude is 4000m.
The typical measurement error is 20 meters in range and 0.008 in azimuth. The sensor scan time is 10s. The
number of particles is fixed to Npart = 500.

Scenario time is limited to 430s. Trajectories are illustrated in Figure (1):

• Target 1 is moving on the blue road (to the East) with a constant velocity of 18m.s−1 from North to South.

• Target 2 is moving on the same road with a constant velocity of 18m.s−1 but from South to North.

• Target 3 is moving on the red road (to the West) with a constant velocity of 10m.s−1 from North to South.

• Targets 4-7 form a convoy moving on the blue road with a constant velocity of 10m.s−1 from North to
South. Target 4 is the lead convoy target, Target 5-6 are the middle targets, Target 7 is the tail.

In the scenario, target 1 overtakes the convoy between times 200 and 300 and target 2 crosses the convoy
between times 170 and 190 approximately. The cumulated MTI reports are shown in Figure 2.

The performances of tracking algorithms have been compared, in Figure 3, based on the Root Mean Square
Error (RMSE) in position (top) and velocity (bottom) for 100 independent Monte Carlo runs (a-g) and also on
the track length ratio(h). The track length ratio is the ratio of the estimated track length over the actual track



length. The performances of the proposed approach (dashed) are compared to those of a classical IMM-MTH
(in black).
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Figure 3. Measures of performances

First of all, the filters converge, and the RMSE for all targets are globally lower for our proposed approach
than the RMSE for the IMM-MHT. As expected, the RMSE and track length ratio for target 3 are exactly
the same because it is tracked with the same algorithm. In fact, target 3 does not cross the convoy during the
simulation. For targets 4-7, RMSE are largely lower with our approach. For target 1 and 2, RMSE are very
similar, differences beginning just at the crossing or overtaking time and finally RMSE are a little lower with
our approach than with the MHT. Particle filtering, as a specific convoy tracking, is also more efficient than the
IMM-MHT.

The problem with convoy tracking with a MHT is very obvious by regarding track length ratio of Figure 3-h.
For convoy targets, it is from 0.85 to 0.7, although it is always 1 with particle MHT. Concerning the crossing
target, as well as the overtaking target, track length ratio is only 0.85 for MHT and 1 for particle MHT, which
allows to keep track of this type of targets.



7. CONCLUSION
In this paper, we proposed an algorithm to track convoys in the midst of civilian traffic because ground target
tracking is a very complex task in battlefield surveillance. Very efficient algorithms to track multiple ground
targets exist today, but now the next step in this field is to be able to detect objects which are interesting for
military intelligence, called objects of interest, and to develop specific algorithms to track them. The proposed
algorithm tracks convoy making the assumption that it has already been detected. Its specificity is to combine
a particle approach, as a local tracking algorithm, with an IMM-MHT, very efficient in tracking independent
targets. This meaningfully improves performances, especially when the tracked convoy is overtaken or crossed.
We also proved, in this paper, that the convoy and the civilian targets are properly trackable. The challenge is
now to be able to detect these convoys, considered as objects of interest.
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