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We report high drag reduction in Direct Numerical Simulations of controled flows past circu-

lar cylinders at Reynolds numbers of 300 and 1000. The flow is controlled by the azimuthal

component of the tangential velocity of the cylinder surface. Starting from a spanwise uniform

velocity profile that leads to high drag reduction, the optimization procedure identifies, for the

same energy input, spanwise varying velocity profiles that lead to higher drag reduction. The

three dimensional variations of the velocity field, corresponding to the modes A and B of three

dimensional wake instabilities, are largely responsible for this drag reduction. The spanwise,

wall velocity variations introduce streamwise vortex braids in the wake that are responsible for

reducing the drag induced by the primary spanwise vortices shed by the cylinder. The results

demonstrate that extending two dimensional controllers to three-dimensional flows is not opti-

mal as three dimensional control strategies can lead efficiently to higher drag reduction.

1. Introduction

What is the maximum drag reduction that can be achieved in bluff body flows for a given

energy of the controller ? Are two-dimensional control strategies sufficient for drag reduction in

three-dimensional flows ? We address these questions via Direct Numerical Simulations (DNS)

of flows past circular cylinders controlled by spatial variations of the azimuthal component of

the wall velocity.

Circular cylinders are widely considered as prototypical configurations for the study of bluff

body flows. Drag inducing mechanisms of cylinder flows involve a nonlinear interaction between

the vortical structures in the wake and the generation of vorticity on the cylinder surface. The

three dimensional instabilities of the wake (Barkley & Henderson (1996) Williamson (1996b))

are related to mechanisms of drag production, while modifications of the cylinder shape and its

velocity can be optimized in order to reduce the drag of the flow (Choi et al. (2008)).

In this work we are interested in drag reduction induced by modifications of the tangential

component of the wall velocity. A uniform, albeit unsteady, velocity on the cylinder surface

was shown to induce very high drag reduction in experiments (Tokumaru & Dimotakis (1991))

and simulations (Dennis et al. (2000), Poncet (2004)) of cylinders undergoing rotary oscilla-

tions. Additional controllers can be devised by modifying the wall velocity profile (Kim & Choi

(2005), Milano & Koumoutsakos (2002)). In Milano & Koumoutsakos (2002) two dimensional

simulations were performed for flows past a circular cylinder controlled by azimuthal variations
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of the tangential wall velocity. The optimal velocity profile was obtained using an evolution-

ary optimization procedure leading to high drag reduction. This velocity profile was then ex-

tended uniformly in the spanwise direction leading to drag reduction for three dimensional flows

(Poncet et al. (2005), Poncet (2005)). Hence one may conjecture that two-dimensional control

strategies obtained from relevant experiments and simulations would provide an efficient method

of identifying optimal wall velocity profiles that can then be extended to the control of three-

dimensional flows. Open issues include the robustness of the velocity profiles with respect to

three-dimensional perturbations as well as the extent to which the efficiency of two-dimensional

control strategies could be improved using three-dimensional wall velocity profiles. There is

mounting evidence (Lim & Lee (2004), Kim & Choi (2005), Dobre et al. (2006)) that three-

dimensional controllers may indeed lead to enhanced drag reduction that is beyond what is pos-

sible by two-dimensional controllers. This evidence complements the fact that, in uncontrolled

flows, three dimensional instabilities in the cylinder wake are associated with drag levels which

are below those of the base two-dimensional flows.

In this paper we consider a systematic development of three-dimensional control strategies

for cylinder flows by varying the distributions of azimuthal component of the velocity on the

cylinder surface. We start from an optimal, spanwise uniform profile that has been obtained for

2D cylinder wakes in Milano & Koumoutsakos (2002). We then consider, for a given control

energy, parametric modulations of this profile along the spanwise direction. We identify, using a

simple design of experiments approach (Box & Wilson (1951)), optimal parameters that result

in spanwise velocity variations leading to drag reduction that is over four times more efficient

than the initial 2D control strategy. We note that flow control using spanwise variations of the

wall velocity has been presented before in Kim & Choi (2005). The control parameters in the

present work differ from those in Kim & Choi (2005) in two respects. First, we consider tangen-

tial velocities instead of blowing-suction. Second, in Kim & Choi (2005) large wavelengths are

considered for the modulation of the cylinder. In the present work we use harmonic variations,

instead of sub-harmonics, of the cylinder span as for a given energy level this choice produces

higher levels of axial vorticity. The production of axial vorticity near the cylinder surface plays

an important role in drag reduction as it is further discussed in the next section.

The paper is structured as follows: In section 2 we outline the computational methods used in

the present study and the evaluation of drag coefficient. In section 3 we present the results of the

optimization strategy for 3D flows and we conclude in section 4 with a discussion of the flow

characteristics as they are related to drag reduction mechanisms.

2. Incompressible flows past circular cylinders

We consider the three-dimensional flow of an incompressible viscous fluid past a circular

cylinder at Reynolds numbers (Re = U∞D/ν) of 300 and 1000, where U∞, ν denote respec-

tively the free stream velocity and the viscosity of the fluid and D = 2R denotes the diameter

of the cylinder. A representative view of the cylinder wake structures as obtained in experiments

Williamson (1996b) and in DNS Poncet (2004) is depicted in Figure 2.

2.1. Governing Equations and Numerical Methods

We consider the incompressible Navier-Stokes equations in their vorticity-velocity (ω − u) for-

mulation :

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∆ω (2.1)

with ω = ∇ × u and ∇ · u = 0. These equations are complemented with the no-slip bound-

ary condition on the moving surface of the cylinder. Using a cylindrical coordinate system
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FIGURE 1. Evolution of the drag coefficient for a three-dimensional cylinder wake at Re = 300 (the dashed
lines denote the reference values 1.374 and 1.262). The drag coefficient is initially periodic corresponding
to a 2D flow, until 3D instabilities become the dominant feature, leading to an non-periodic signal and a
lower drag value.

(er, eθ, ez) these boundary conditions are expressed as

ur=R = Ur(θ, z, t)er + Uθ(θ, z, t) eθ + Uz(θ, z, t)ez (2.2)

In the present simulations the spanwise and normal wall velocity components are set to zero. The

flow is controlled by varying the steady azimuthal component of the wall velocity (Uθ(θ, z)).
Throughout this paper we consider a cylinder of radius 1. The computational box is the cylin-

drical domain 1 6 r 6 Rmax , 0 6 θ 6 2π , −L/2 6 z 6 L/2, and on the outer boundary

(r = Rmax) we prescribe the normal velocity of the corresponding potential flow and zero vor-

ticity. Time is non-dimensionalized by the factor U∞/R.

The equations are discretized using a vortex method Cottet & Koumoutsakos (2000), Ould-

Sahili et al. (2000), Cottet & Poncet (2003), Poncet (2004), Koumoutsakos (2005), summarized

as follows:

• The vorticity field is discretized on particles: ω(x, t) =
∑

p ωpδ(x − xp(t))
• The particles xp are convected with the flow velocity:

dxp/dt = u(xp, t) , dωp/dt = [∇u(xp, t)]
T

ωp

A second order Runge-Kutta scheme is used to integrate the equations of motion.

• At each time step, particles are remeshed onto a cylindrical grid. On this grid the velocity

field is evaluated using a second order, FFT-based, Poisson solver and the particle strength is

modified to account for vortex stretching and diffusion.

• The wall boundary conditions are translated into vorticity flux that is distributed to particles

in the neighbourhood of the cylinder (see for instance Poncet (2007), Koumoutsakos et al. (1994),

Cottet & Poncet (2003)).

We note that the Lagrangian treatment of the vorticity advection method allows the use of com-

paratively small computational domains and large time-steps without compromising neither the

stability nor the accuracy of the method in the presence of strong variations in the boundary con-

ditions. In the optimization runs, the cylindrical ((r, θ, z)) computational domain was extending

to Rmax = 1+4π, L = πD. For Re = 300, the resolution was set to 256×128×64 grid points.

For Re = 1000, the resolution was doubled in all directions, with a time step δt = 0.0625. In

the present simulations after the control velocity is turned on, the flow is computed for 100 time

units with the flow settling to its steady state after 60 time units. Simulations of 100 time units

require approximately 17hours of CPU time on an Itanium 2 processor. Verification simulations

were performed in a computational domain with sizes doubled in both the spanwise and radial
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FIGURE 2. Wake representations of the flow past a circular cylinder at Re = 300 as depicted by dye
visualisations in experiments Williamson (1996b) (left), and by vorticity isosurfaces in DNS Poncet (2004)
(right).

directions. These simulations were used for the flow visualization and the analysis (Figure 1) of

the optimal profiles.

2.2. Cylinder drag coefficient

The cylinder drag coefficient is computed by taking the time derivative of the linear impulse of

the vorticity field in the volume Ω surrounding the body :

CD = − 1

U2
∞

R

d

dt

∫

Ω

ω × x · ex dv (2.3)

where ex denotes the streamwise direction. The drag coefficient can be decomposed into contri-

butions from the wall shear stresses (CDF ) and the pressure gradient (CDP ) on the surface of the

body which in turn can be expressed in terms of the wall vorticity and the wall vorticity flux by :

CDF = − ν

U2
∞

RL

∫

∂Ω

ωz sin θ ds, CDP = − ν

U2
∞

RL

∫

∂Ω

r
∂ωz

∂r
sin θ ds

We note that the evolution of the drag coefficient follows closely the appearance of instabilities

in the wake. These instabilities are associated with a reduced drag of the three dimensional flow.

The drag coefficient is initially periodic corresponding to a 2D flow, until 3D instabilities become

the dominant feature, leading to an non-periodic signal and a lower drag value (Figure 1).

The vortex method, described in the previous subsection, has been validated in Poncet (2004)

in simulations of three-dimensional flows of uncontrolled cylinder wakes. The drag value of the

uncontrolled flow at Re = 300 is 1.26. This value results form the averaging of the flow over

1200 time units. We note that this drag coefficient is within the values of 1.32, 1.24, 1.26 reported

respectively in simulations Kim & Choi (2005), Kravchenko et al. (1999), Mittal & Balachandar

(1995) and the 1.22 value reported in experiments Wieselsberger (1922) for the same Reynolds

number.

3. Drag optimization

The present optimization strategy uses as a starting point the optimized azimuthal wall tan-

gential velocity component, obtained in two-dimensional simulations using a genetic algorithm

in Milano & Koumoutsakos (2002). This two-dimensional profile is uniformly extended in the
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FIGURE 3. Actuator configuration on the cylinder surface (left, from Milano & Koumoutsakos (2002)) and
velocity profile fitting the best population obtained by the CGA (right).

spanwise direction of the cylinder and the optimization procedure described below identifies

optimal , three-dimensional, spanwise variations for enhanced drag reduction.

3.1. Optimization of 2D cylinder wakes

The starting point of the present optimization are the two dimensional velocity profiles obtained

in Milano & Koumoutsakos (2002) using a Clustering Genetic Algorithm (CGA). In that work

the cylinder surface is divided into 16 panels, each with a steady tangential velocity that can

have a value in [−1, 1]. The CGA operates on these 16 parameters (see Milano & Koumoutsakos

(2002) for details) to identify the respective wall tangential velocities that minimize the drag

coefficient. The results of this study led to a drag reduction of 50%, albeit using an order of

magnitude larger energy than the one reported in the present study. In addition the algorithm

was able to identify in an automated fashion, that the drag reduction was largely attributed to

the motion of actuators 3-4 and 13-14 (Figure 3), which contain the separation point of the

uncontrolled cylinder. The velocities of the 16 actuators are in turn fitted by the following bi-

Gaussian function

f(θ) = α
∑

j=1,2

(−1)j

σ
√

2π
exp

(−(x + (−1)jm)2

2σ2

)

(3.1)

with α = 0.3342, m = 1.03 and σ = 0.21. The arrangement of the belt actuators and the

resulting fitted function are shown in Figure 3.

3.2. Optimization of spanwise distributed controllers

The 3D control velocity profiles of the present optimization study are spanwise modulations of

the 2D profile given by (3.1). The velocity profile is parameterized in terms of harmonics of the

cylinder span :

Uθ(θ, z) = U∞ f(θ)

(

c0 +
√

2

n
∑

k=1

ak sin (2πkz/L) + bk cos (2πkz/L)

)

eθ (3.2)

where L = πD is the spanwise length of the cylinder and the harmonics have a wavelength

λk = L/k. We have selected n = 4 resulting in 9 parameters for the optimization.

Our choice for the wave-number range was motivated by the findings in Poncet (2005) which

considered single mode modulations of the wall tangential velocity. In that work it is shown that,

at Re = 300, three-dimensional modulations are efficient for wavelengths of up to 4. Moreover,

k = 3 corresponds to a modulation at the closest frequency of the natural mode B instability, but

it does not lead to reduced drag (except for high energy control, cf. Poncet (2005)). On the other

hand, the wave k = 1 reinforces the mode A instability, leading to a dramatic drop of the drag
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Mode coefficients c0 or (a2

k + b2

k)1/2 CD

Span Case k = 0 k =1 k = 2 k = 3 k = 4 Re = 300 Re = 103

I 0 0 0 0 0 1.26 0.99
L = πD II 0.316 0 0 0 0 1.143 0.93

III 0.22 0.139 0.015 0.011 0.178 0.862 0.65

TABLE 1. Averaged drag : no control (Case I), 2D control (Case II), optimal 3D control (Case III).

coefficient. This happens despite the fact that the flow is at a Reynolds number above 250, for

which mode A is no longer visible. Furthermore, this range of wavenumbers is consistent with

the wavelengths obtained by shape optimization in Darekar & Sherwin (2001), in which the most

efficient perturbations are associated with modes k > π/5.6 ≃ 0.56.

In the present optimization all parametric studies are performed at a constant energy level. The

non-dimensional kinetic energy involved in the control is determined as (Poncet et al. (2005)):

E∗

c =
1

4π

(

c2

0 +
∑

k

|ak|2 + |bk|2
)

∫ π

−π

f(θ)2 dθ.

The energy level of the present control strategy was adjusted to match the levels reported in Kim

& Choi (2005). We note that the tangential profile of the blowing/suction used in this work is

not available and we assume that it had an equivalent energy content as our function f . For a

maximum blowing of 0.2 this gives an energy value of 0.1. We thus set

c2

0 +
∑

k

|ak|2 + |bk|2 = 0.1

The present optimization algorithm proceeds as follows : For each pair of wave numbers we

perform 100 function evaluations on their respective plane. The energy level E∗

c is kept constant

by adjusting accordingly the value of the constant mode amplitude c0. We examine all possi-

ble pairs of wave numbers and we identify for each plane the point yielding the smallest drag

coefficient. In a second stage, we use these minima as starting points for a local search based

on the concept of design of experiments (Box & Wilson (1951)). A finite difference stencil is

allocated around each point in all parametric directions and a local gradient descent algorithm is

performed. The algorithm is found to converge after 4 to 5 iterations.

This optimization process for the flow past a circular cylinder at Re=300, results in a drag

coefficient of CD = 0.862, corresponding to a drag reduction of about 33% (see Table 1). This

drag reduction is four times larger than that achieved by the corresponding two-dimensional

configuration. The present results compare favourably with the 23% drag reduction reported in

Kim & Choi (2005) for a maximum blowing/suction ranging between 0.1 and 0.2. In the present

optimal configuration, the maximum tangential velocity was 0.09 for the case II and 0.179 for

case III , with a mean velocity of 0.074 and as we optimize for a given energy level, it is not

possible to match a prescribed maximum velocity. We remark that in the present case the drag

reduction level scales with the energy input of the control, in contrast with the observation in

Kim & Choi (2005) that increasing the blowing/suction beyond 0.1 does not lead to further drag

reduction.
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FIGURE 5. Top views of isovorticity surfaces ‖ω‖R/U∞ = 0.3, doubled by periodicity in spanwise direc-
tion, for the uncontrolled (Case I) (top left), 2D control (Case II) (bottom left) and 3D control (case III)
(right pictures) for Re = 300.

4. Discussion

The results of the simulations for the uncontrolled wake (case I), the wake with 2D control

(case II) and the wake with optimal 3D control parameters (case III) are listed in Table 1.

Note that for Re=1000 we used the optimal parameters identified for Re=300 and no further

optimization was performed.

The drag reduction observed in the 3D controlled flow is analysed in terms of instantaneous

vorticity isosurfaces for uncontrolled and controlled wakes (Figure 5). The effect of the 2D con-
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trol is to weaken the structures of streamwise vorticity while the optimal 3D control leads to the

introduction of streamwise vorticity in the wake that further weaken the strength of the primary

spanwise vortices. Furthermore, in the 3D control, the von Kármán alleys are attached longer to

the cylinder surface thus delaying their shedding in the wake. This delayed shedding is visible

in the absence of oscillations in the drag evolution for case III on Figure 4. Zooming on the

vorticity isosurface for case III (Figure 5) we observe that strong braids of streamwise vorticity

act to attach the primary vortices to the surface of the cylinder. The normal vorticity on the cylin-

der is correlated with spanwise variations of the slip velocity on short wavelengths. This result

further justifies the choice for harmonic, rather than subharmonic control parameters, that further

enhance the natural cylinder wake instabilities.

We explored the validity of this mechanism for higher Reynolds number flows by performing

a DNS at Re = 1000. We observe that the control parameters, identified for Re=300, lead also

to drag reduction for this higher Reynolds number. This drag reduction is much more significant

than that obtained by 2D control (see Figure 4). On Figure 6 we present contours of cross section

for the vorticity magnitude averaged in the spanwise direction and the instantaneous vorticity

isosurfaces. Both 2D and 3D control clearly result in a strong reduction of the strength of the

vortices in the wake. The 3D control, although it tends to reinforce 3D instabilities, results in a

smoother organization of the near wake, with strong streamwise vortex braids that are attached

to the body. An inspection of the phase diagram of the friction and pressure drag (Figure 7),
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shows that for Re = 300, 2D and 3D control lead to a systematic drop of pressure drag and to

an asymptotic state for which both friction and pressure are decreased. For Re = 1000, the 2D

control does not change significantly these quantities, while the 3D control acts mainly on the

pressure drag.

As shown in Table 1 the optimal configuration, modes 1 and 4 have coefficients that are an

order of magnitude larger than those for modes 2 and 3. Since these modes are close to natural

instability modes A and B (respectively of wavelength λ1/D ≃ 4 and λ4/D ≃ 1) and as mode A

is associated to a natural drag reduction at low Reynolds numbers, we performed complementary

simulations at Re = 300 with a cylinder span of L = 4D, thus matching the wavelengths

of modes A and B. Using the coefficients of Run I , which are probably not optimal for this

span, we obtained a drag coefficient of 0.90. We next performed a simulation keeping the same

coefficient values for k = 0, k = 1 and k = 4 and turning off modes 2 and 3. We obtained a

similar drag value of 0.88. These results confirm the importance of exciting modes A and B for

drag reduction. The present optimization process identified in an automated fashion this physical

property of the system and allocated the proper energy distribution between these modes and the

2D optimal profile to achieve maximal drag reduction.

5. Conclusions

We have demonstrated that, for a prescribed energy level, appropriate spanwise distribution of

tangential velocities can lead to significant drag reduction. The optimal control parameters have

been systematically identified for a low Reynolds number flow, and they have been shown to be

also effective at moderate Reynolds numbers. The driving mechanism is the generation of strong

streamwise vortex braids that delay the shedding and weaken the spanwise vorticity in the wake.

The resulting optimal parameters indicate that the three dimensional disturbances, corresponding

to the modes A and B of three dimensional wake instabilities, are largely responsible for this drag

reduction.
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