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Blockwise similarity in [0,1] via triangular norms and
Sugeno integrals – Application to cluster validity

Hoel Le Capitaine, Thomas Batard, Carl Frélicot and Michel Berthier

Abstract— In many fields, e.g. decision-making, numerical
values in [0,1] are available and one is often interested in
detecting which are similar. In this paper, we propose an
operator which is able to detect whether some values can be
gathered by blocks with respect to their similarity or not. It
combines the values and a kernel function using triangular
norms and Sugeno integrals. This operator allows to estimate
this blockwise similarity at different levels. For illustration
purpose, we use it to define an index suitable for the cluster
validity problem in pattern recognition.

I. INTRODUCTION

The main topic of this paper is to define an indicator which
measures, for a given c-tuple of values in [0, 1], whether
some values can be gathered by blocks with respect to their
similarity or not. For this purpose, we propose a new oper-
ator based on triangular norms and Sugeno integrals which
combines the values and a kernel function. The resolution
parameter of the kernel allows to view the induced similarity
at different levels.
Such an operator can be used in many fields, in pattern
recognition in particular and more specifically in supervised
and unsupervised classification. Within this framework, the
values to be aggregated generally express to which extent a
pattern can either be associated to a specified class (super-
vised) or contribute to the definition of a particular cluster
(unsupervised). Therefore, given a pattern, such a similarity
operator is suitable for detecting, either ambiguities with
respect to the classes at hand or a natural grouping tendancy.
The remainder of this paper is organized as follows. In
section II, we briefly recall previous works that lead us to
consider aggregation functions of a new kind. The blockwise
similarity operator is proposed in section III. Properties and
numerical examples are given. Next, in section IV, we use it
to define an new index for cluster validity in the framework
of fuzzy clustering. Results on artificial and real data show
that the proposed index is performant thanks to the similarity
operator.

II. PREVIOUS WORK

Aggregation functions or operators aim at combining (say
c) numerical values. They are used in many fields, e.g. in
multicriteria decision making and pattern recognition where
values to be agregated are most often in [0, 1]. Then, many
families of functions have been defined that are formally
mappings Φ: [0, 1]c → [0, 1], u = {u1, u2, · · · , uc} 7→ Φ(u),
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e.g. the triangular norms (briefly t-norm) and dual t-conorms,
e.g. in subsection IV-B, refer to [10] for complete definitions
and examples. Because of applications in pattern recognition
we have in mind, we are interested in functions that qualify
the similarity between some of the ui’s. For convenience,
the ui’s are supposed to be sorted in decreasing order but of
course operators do not need this assumption.

In [11], the
k

⊥ operator has been defined as follows. Let P be
the powerset of C = {1, 2, ..., c} and Pk = {A ∈ P : |A| =
k} where |A| denotes the cardinality of subset A, then

k

⊥
i=1,c

ui = >
A∈Pk−1

(
⊥

j∈C\A
uj

)
(1)

where > is a t-norm and ⊥ is its dual t-conorm.
It must be viewed as some kind of generalization of the
notion of “kth bigger”, with k in C. In particular, with

standard triangular norms,
k

⊥ is exactly the “kth bigger”.
This operator satisfies nice mathematical properties (see [11]
for details and applications).

By combining
k

⊥, k = 1, 2, the authors built a fuzzy exclusive
OR operator that extends the crisp XOR operator to the fuzzy
context [6]:

⊥
i=1,c

ui =

 1

⊥
i=1,c

ui

>

 2

⊥
i=1,c

ui

/ 1

⊥
i=1,c

ui

 (2)

where
1

⊥ = ⊥ and (.) is the fuzzy complement of (.).
Intuitively, it can be understood as u1 being significantly
high and u2 significantly low while remaining greater than
the other ui’s.
This leads us to investigate the question of how to define
blockwise similarity and what kind of mathematical proper-
ties must be taken into account.

III. BLOCKWISE SIMILARITY

A. Definition

We define a blockwise similarity operator as a family of
functions Φj,k : [0, 1]c → [0, 1], (j, k) ∈ {1, 2, · · · , c}2, j <
k, satisfying the following four properties:

(P1) Φj,k(u) = 0 whenever uj = 1 and uk = 0
(P2) Φj,k = 1 ⇔ uj = uk

(P3) ∀ 0 ≤ ε ≤ uj−1 − uj , Φj,k(u1, · · · , uj + ε, · · · , uc) ≤
Φj,k(u1, · · · , uj , · · · , uc)



(P4) ∀ 0 ≤ ε ≤ uk−1 − uk, Φj,k(u1, · · · , uk + ε, · · · , uc) ≥
Φj,k(u1, · · · , uk, · · · , uc)

The function Φj,k measures the similarity of ui’s belong-
ing to the block bounded by j and k, and consequently Φ1,c

measures the similarity in the largest block, i.e. the total
similarity in u. In the particular case when the sum of the
ui’s is one, it follows from (P2) that Φj,k = 1 whenever
u1 = u2 = · · · = uc.
A straightforward solution to define blockwise similarity is to

define Φj,k as the quotient
k

⊥/
j

⊥. However, it can be shown
that this quotient does not satisfy the properties listed above.

B. The new operator

Since fuzzy integrals are able to model some kind of
interaction between features, let us study the Sugeno integral.
In the context described before the Sugeno integral (refer
to [13] for complete definitions and examples) takes the
following form:

Sµ(u) = max
i=1,c

[min(ui, µ{i, · · · , c})]

for a fuzzy measure µ on {1, 2, · · · c}. This definition can be
extended to any pair (>,⊥) of t-norm and t-conorm. Sµ is
then the fuzzy integral of u on subsets {i, · · · c} with respect
to the fuzzy measure µ. and thus can be used to measure the
ambiguity associated to u. Let Ai = {j, uj ≥ ui} and µk be
defined by:

µk(Ai) =
{

0 if Card(Ai) < k
1 else (3)

we set
k

⊥(u) = ⊥
i=1,··· ,c

ui>µk(Ai) (4)

(take care that these operators differ from those in II ; we
adopt the same notations for simplicity).

It is easy to show that:

k

⊥(u) =


⊥

i=k,··· ,c
ui if uk−1 > uk

⊥
i=j,··· ,c

ui j being defined by

uj−1 > uj = · · · = uk

(5)

(with the convention: u0 > u1).

It can be proved that the operator Φj,k =
k

⊥/
j

⊥ satisfies the
four properties of subsection III-A for standard and algebraic
t-norms. However, it is not fully convenient for measuring
the similarity between uj and uk since the result depends
on all the ul’s for l ≥ k + 1 while the ul’s for l < j are
not taken into account. To make the values between uj and
uk meaningful, we introduce symmetrical kernel functions

Kλ(i, l) centered at l and actually define:

Φj,k(u) =



k

⊥
i= k+j

2

ui>Kλ(i,k)

j

⊥
i= k+j

2

ui>Kλ(i,j)

if k − j is even

k

⊥
i= k+j+1

2

ui>Kλ(i,k)

j

⊥
i= k+j−1

2

ui>Kλ(i,j)

if k − j is odd

(6)

Many kernel functions can be used, all being parametrized
by a resolution parameter λ which controls its area of
influence. Let us consider the particular case of a gaussian
kernel Kλ(i, l) = Nλ(i, l) defined by (see Figure 1):

Nλ(i, l) = exp
−π(i− l)2

λ
(7)

Fig. 1. Kernel N10(i, l) and cardinal measure with u5 > u6 for l = 6

When λ tends to 0, this kernel becomes a dirac δk centered
in k, the convergence being not uniform by continuity of
K and discontinuity of δk. If the triangular norms used are
continuous, then:

lim
λ→0

Φj,k(u) =
{

1 if uj = 0
uk

uj
otherwise (8)

and

lim
λ→+∞

Φj,k(u) =



k

⊥
i= k+j

2

ui

j

⊥
i= k+j

2

ui

if k − j is even

k

⊥
i= k+j+1

2

ui

j

⊥
i= k+j−1

2

ui

if k − j is odd

1 if uj = 0

(9)

These results show how it is possible to adjust the weights
that are given to the values between uj and uk: the contri-
bution of uj+1, ..., uk−1 is small if λ is close to zero and



increases with λ. Note however that Φi−1,i = ui−1/ui does
not depend on λ in R+. This means that increasing λ will
not make two consecutive ui’s more similar but may increase
the similarity of blocks of larger size. Note also that if ui is
constant for all i ∈ {j, . . . , k}, then Φj,k(u) = 1 whatever
(j, k), as expected in subsection III-A.

C. Numerical Examples

Given u, computation of Φj,k(u) for all (i, j) ∈ C × C
result in a symmetrical table, see examples in Tables I and
II for u = {0.9, 0.8, 0.68, 0.51, 0.5, 0.48, 0.32, 0.1} obtained
with kernels N1 and N5 respectively . Entries Φj,k(u)
decrease as k increases for a fixed j (k > j). Detection
of similarities then simply consists in exploring the upper
triangular part of the table and compare the entries to a user-
specified threshold s as follows:
• for j = 1, c (row)

• for k = j + 1, c (column)
if Φj,k(u) > s, then {uj , . . . , uk} are similar.

TABLE I
Φj,k VALUES WITH (⊥,>)S AND Kλ(i, j) = N1(i, j)

Φj,k u 0.9 0.8 0.68 0.51 0.5 0.48 0.32 0.1
u j, k 1 2 3 4 5 6 7 8

0.9 1 1.00 0.89 0.76 0.57 0.56 0.53 0.36 0.11
0.8 2 0.89 1.00 0.85 0.64 0.62 0.60 0.40 0.12
0.68 3 0.76 0.85 1.00 0.75 0.74 0.71 0.47 0.15
0.51 4 0.57 0.64 0.75 1.00 0.98 0.94 0.63 0.19
0.5 5 0.56 0.62 0.74 0.98 1.00 0.96 0.64 0.20
0.48 6 0.53 0.60 0.71 0.94 0.96 1.00 0.67 0.21
0.32 7 0.36 0.40 0.47 0.63 0.64 0.67 1.00 0.31
0.1 8 0.11 0.12 0.15 0.19 0.20 0.21 0.31 1.00

To understand the behaviour of the operator with respect
to λ, let us compare the 4th row of each table, i.e. Φ4,k for
k = 4, . . . , 8 :

- at resolution λ = 1, Φ4,4, Φ4,5 and Φ4,6 are greater than
s = 0.9 and the corresponding uk’s {0.51, 0.5, 0.48}
are detected to be similar. Small value of Φ4,7 and Φ4,8

indicate that both u7 = 0.32 and u8 = 0.1 are not
similar to the previous uk’s

- at resolution λ = 5, Φ4,7 becomes greater than s
and u7 = 0.32 is considered as being similar to
{0.51, 0.5, 0.48} while u8 = 0.1 still not.

TABLE II
Φj,k VALUES WITH (⊥,>)S AND Kλ(i, j) = N5(i, j)

Φj,k u 0.9 0.8 0.68 0.51 0.5 0.48 0.32 0.1
u j, k 1 2 3 4 5 6 7 8

0.9 1 1.00 0.89 0.76 0.59 0.57 0.56 0.53 0.36
0.8 2 0.89 1.00 0.85 0.67 0.64 0.63 0.60 0.40
0.68 3 0.76 0.85 1.00 0.75 0.75 0.74 0.71 0.47
0.51 4 0.59 0.67 0.75 1.00 0.98 0.98 0.94 0.63
0.5 5 0.57 0.64 0.75 0.98 1.00 0.96 0.96 0.64
0.48 6 0.56 0.63 0.74 0.98 0.96 1.00 0.67 0.67
0.32 7 0.53 0.60 0.71 0.94 0.96 0.67 1.00 0.31
0.1 8 0.36 0.40 0.47 0.19 0.64 0.67 0.31 1.00

IV. APPLICATION TO CLUSTER VALIDITY

A straightforward application of the proposed operator
(6) to pattern recognition is supervised classification with
ambiguity rejection. Let x be a pattern in a feature space,
say Rp, to be classified with respect to a set Ω = {ω1, ..., ωc}
of c classes. Given a labelling function: x 7→ u(x) ∈ [0, 1]c

whose general term ui = ui(x) is the posterior probability
that x belongs to ωi or a membership degree to a fuzzy
set associated to ωi, a decision rule is generally based on
the aggregation of labels ui (i = 1, c). By thresholding the
values of Φj,k(u) for an incoming pattern x, a reject option
can easily be included. Table I gives a good example of
how it could be done. A threshold s = 0.9 would result
in rejecting x for ambiguity between the classes whose
membership degrees are {0.51,0.50,0.48}. However, such
reject option aims at reducing the misclassication risk, so
it often focuses on subsets of degrees that include the higher
one. Therefore, depending on the application, a particular
attention to Φ1,k(u) can be paid. This is clearly the case for
cluster analysis, another task of major importance in pattern
recognition we are interested in.

A. Cluster validity for fuzzy clustering and indexes

Clustering is an instance of unsupervised classification
which aims at finding a structure of groups in set of n
patterns X = {x1, ...,xn}. In this framework, the label
vectors uk = u(xk) are unknown and clustering algorithms
can be used to obtain them from X . For instance, the fuzzy
c-means (FCM) algorithm partitions X into c > 1 clusters
by minimizing the following objective function [2]:

Jm(U, V ) =
n∑

k=1

c∑
i=1

um
ik ||xk − vi||2 (10)

where uik is the membership degree of xk to the ith cluster
represented by its centroid vi ∈ <p. Centroids are gathered
into a (c×p) matrix V = [v1, ...,vc]. Degrees uik are subject
to

∑c
i=1 uik = 1 for all xk in X , to 0 <

∑n
k=1 uik < n

(∀i = 1, c), and are elements of the fuzzy c−partition matrix
U (c × n). The so-called fuzzyfier m > 1 is a weighting
exponent which makes the resulting partition more or less
fuzzy [12]. The higher m is, the softer the cluster boundaries
are. Minimization of (10) is obtained by iteratively updating
(U, V ) as follows:

uik = 1

/
c∑

j=1

(
||xk − vi||
||xk − vj ||

)2/(m−1)

(11)

vi =
∑n

k=1 um
ik xk∑n

k=1 um
ik

(12)

The usual euclidian norm ||.|| induces hyperspherical clus-
ters, hence FCM can only detect clusters with the same
shape and orientation. In [8], a variant called FCM-GK has
been proposed by extended FCM to cluster-dependent norms
||.||Ai

in order to detect clusters of different geometrical
shapes. This results in modifying the objective function (10)
as Jm(U, V,A) where A is a c−tuple of norm-inducing



matrices Ai taking part in the minimization process, hence
to be iteratively updated. To obtain a feasible solution, the
determinant of these matrices are constrained allowing to
optimize the clusters’ shapes while their volumes remain
constant (see [2], [8] for details).

Validating the provided clustering of X consists in assess-
ing whether the resulting partition reflects the data structure
or not. Since c is a user-defined parameter of clustering
algorithms such as FCM, most of works on cluster validity
focus on the number of clusters problem. Many validity
indexes have been proposed for fuzzy clustering (refer to [4],
[9], [14] for comparative studies). They can be classified in
two main categories. The first one is composed of indexes
that only use membership degrees (U ). Let us cite the
Partition Coefficient [2], taking values in [ 1c , 1]:

PC(c) =
1
n

n∑
k=1

c∑
i=1

u2
ik (13)

or the Partition Entropy [1], taking values in [0, log(c)]:

PE(c) = − 1
n

n∑
k=1

c∑
i=1

uik log(uik) (14)

Both PC to be maximized and PE to be minimized are
monotonic with c, as well as their bounds. Normalized
versions have been proposed to reduce this tendency, e.g.
in [5]. The second category consists of indexes that use
membership degrees but also some information about the
geometrical structure of the data (U, V,X), e.g. the Xie-Beni
index [12], [15]:

XB(c) =
Jm(U, V ) /n

mini,j=1,c;j 6=i ||vi − vj ||2
(15)

or the Fukuyama-Sugeno index [7]:

FS(c) = Jm(U, V )−
n∑

k=1

c∑
i=1

um
ik ||vi − v||2 (16)

where v is the mean of centroids. Both XB and FS combine
the FCM objective function (10) which measures how much
clusters are compact and an additional term which measures
how much they are separated. Combination indicates that
both indexes are to be minimized. The more compact and
separated the clusters are, the more optimal c is.

B. A new index

Since the blockwise operator Φj,k (6) presents a special
case (j = 1, k = c) which can reflect the overall similarity of
uk’s components, it reflects the overall ambiguity of pattern
xk with respect to the c clusters at hand. Therefore, a very
simple cluster validity index belonging to the first category
can be derived by averaging Φ1,c(uk) over the columns of
U . Given a c-partition matrix U resulting from a fuzzy
clustering algorithm (FCM, FCM-GK, ...), we define the
BwS (BlockWise Similarity) index by:

BwS(c) =
1
n

n∑
k=1

Φ1,c(uk) (17)

Fig. 2. α-separated data sets – α = 1 and 10

The least valid c-partition arises when U is totally fuzzy,
i.e. uik = 1

c for all i = 1, c. Then Φ1,c(uk) = 1 by
(P2) for all uk in X and so BwS(c) whatever c. On the
other hand, the most valid c-partition arises when U is
hard, i.e. uik ∈ {0, 1}. Then Φ1,c(uk) = 0 by (P1) and
BwS(c) = 0 whatever c. The more separated clusters
are, the less BwS, and minimizing (17) gives the optimal
number of clusters c?. In practice, BwS(c) is computed for
c varying from 2 up to cmax and c? will correspond to a knee.

Recalling that Φj,k(u) defines a family of operators be-
cause of the many choices for the pair (>,⊥) and the
kernel function Kλ, therefore BwS(c) is a family of validity
indexes. In the remaining part of the paper, we present
numerical results using the following basic norms:

• Standard: a>S b = min(a, b) and a⊥S b = max(a, b)
• Algebraic: a>A b = a b and a⊥A b = a + b− a b
• Lukasiewicz: a>L b = max(a + b− 1, 0) and

a⊥L b = min(a + b, 1)

Among the possible kernel functions, we used the gaussian
one (7). The resolution parameter λ must be set with great
care, depending on the application and the magnitude of the
ui to be agregated. For instance, since U is fuzzy, degrees uki

become as similar as c increases because of the normalization
constraint. So, for the fuzzy cluster validity application, we
recommend to chose a low λ in order to not take into
account too many degrees that are similar only because of
this constraint. In a further study, we will propose an upper
bound for λ as a function of c which will probably result in
modifying BwS.
In next subsections, we will use either the FCM algorithm
or the FCM-GK one with the settings: m = 2, a threshold
ε = 10−5 for termination criterion and a maximum of 100
iterations.

C. Artificial data sets

Experiment #1:
A series of 10 data sets was generated, each composed of
800 points drawn from a mixture of c = 4 bivariate normal



distributions. The covariance matrix of each component is
the same Σi = I (i = 1, c) and the mean vectors are:
• µ1 = (0 0)t + α (1 1)t,
• µ2 = (0 0)t + α (1 − 1)t,
• µ3 = (0 0)t + α (−1 − 1)t and
• µ4 = (0 0)t + α (−1 1)t

for increasing values of α = 1, 2, . . . , 10. This successively
moves the clusters in opposite directions, creating less over-
lap as the clusters become more and more separated. The
first and last data sets are shown in Figure 2. Each data set
was then clustered using FCM with c = 4, providing a fuzzy
partition matrix Uα. Corresponding values of BwS for the
different basic norms are plotted in Figure 3 as a function
of α. As expected, BwS decreases towards 0 as α increases
whatever the norms.

Fig. 3. BwS for α-separated data sets – α = 1 to 10

Experiment #2:
In order to compare the proposed index to the classical
ones recalled in subsection IV-A, we generated a data
set containing n = 200 points consisting of 50 points
each drawn from a mixture of c = 4 bivariate normal
distributions with various ellipsoidal shapes. FCM-GK was
used with cmax = 10 and an efficient index should find
c? = 4. Table III reports the results obtained for the tested
indexes. Optimal values are boldfaced and acceptable ones
are italicized. We can see that BwS always gives the right
number of clusters whatever λ while some classical indexes
fail. The centroids (12) resulting from clustering with c? = 4
are represented by special symbols (•) in Figure 4.

Experiment #3:
The last artificial data set is similar to the previous one except
that clusters are spherically shaped and 100 points drawn
from a uniform distribution were added, as shown in Figure
5. These additional points act as noise and can make the
FCM algorithm partitioning the data set in more than c? = 4
clusters. FCM was used with cmax = 10 and comparative
results of the tested validity indexes are given in Table IV.
None of the classical indexes was able to detect the right
number of clusters while BsW succeed whatever (>,⊥).

TABLE III
VALIDITY INDEXES ON ELLIPSOIDAL CLUSTERS

c PC PE XB FS BwS with (>,⊥)S and Nλ

×10−3 λ = 0.5 λ = 1 λ = 2
2 0.790 0.499 0.132 -2.164 0.177 0.177 0.177
3 0.816 0.511 0.067 -0.438 0.057 0.061 0.089
4 0.822 0.536 0.067 -5.058 0.027 0.033 0.044
5 0.760 0.715 0.329 -3.391 0.021 0.028 0.033
6 0.721 0.841 0.259 -1.386 0.017 0.022 0.023
7 0.681 0.915 0.195 -5.545 0.013 0.016 0.016
8 0.651 1.059 0.336 -0.609 0.010 0.013 0.013
9 0.636 1.126 0.284 -0.398 0.009 0.012 0.012

10 0.624 1.176 0.265 -1.287 0.008 0.010 0.010

Fig. 4. Optimal c? centroids for ellipsoidal clusters

Moreover, multiple runs showed us that it gives more stable
results, showing its better robustness to noisy data.

TABLE IV
VALIDITY INDEXES ON NOISY DATA

c PC PE XB FS BwS with (>,⊥) and N1

×10−3 S A L
2 0.752 0.572 0.188 -1.416 0.236 0.236 0.236
3 0.734 0.708 0.109 -4.186 0.102 0.110 0.102
4 0.731 0.782 0.129 -1.644 0.050 0.053 0.050
5 0.691 0.948 0.134 -4.409 0.040 0.040 0.038
6 0.596 1.202 0.543 -3.411 0.037 0.035 0.034
7 0.588 1.277 0.501 -2.508 0.031 0.031 0.030
8 0.565 1.386 0.432 -4.032 0.027 0.028 0.027
9 0.541 1.460 0.367 -1.795 0.022 0.023 0.022
10 0.525 1.552 0.398 -4.104 0.020 0.020 0.020

D. Real data sets [3]

Iris data:
The iris data set contains n = 150 observations from three
4-dimensional classes (iris species) of 50 points each. It is
one of the most used benchmarks in pattern recognition,
especially for cluster validity because two classes have
a substancial overlap in the feature space. Therefore, the
number of clusters to be found is debatable, e.g. in [4],
some authors claiming that the right physical number c = 3
has to be detected while others say that the geometrical
number is c = 2, so a good index should detect one of
these two values as being c?. Indexes that only use U are a
priori more prone to merge the two overlaping classes into
a single cluster because they do not combine compactness
and separation measures like the ones that use (U, V,X). As



Fig. 5. Optimal c? centroids for noisy clusters

the classes are known to have a hyperellipsoidal shape, we
used FCM-GK with cmax = 10. It can be seen in Table V
that all indexes exhibit one of the expected optimal numbers
of clusters showing their ability in assessing the structure
of the data and that the debate is not closed. However, it is
worthnoting that BsW , despite it only uses U (like PC and
PE), overcomes this limitation because small values of Φ1,c

and therefore the absence of similarity blocs (in average)
clearly indicates that the clusters are well separated.

TABLE V
VALIDITY INDEXES ON IRIS DATA

c PC PE XB FS BwS with (>,⊥)S and Nλ

×10−3 λ = 0.5 λ = 1 λ = 2
2 0.738 0.589 0.027 -4.761 0.289 0.289 0.289
3 0.727 0.671 0.192 -4.845 0.022 0.051 0.179
4 0.620 1.006 0.222 -3.030 0.015 0.054 0.140
5 0.534 1.291 0.264 -1.669 0.011 0.060 0.110
6 0.482 1.434 1.363 -2.744 0.009 0.051 0.073
7 0.458 1.583 1.172 -2.390 0.008 0.017 0.016
8 0.440 1.693 0.929 -1.357 0.007 0.011 0.012
9 0.432 1.789 0.983 -2.771 0.006 0.010 0.010
10 0.411 1.876 1.256 -1.223 0.002 0.003 0.004

Glass data:
This last set contains 214 observations of c = 6 types of
glass that one can find in the scene of the crime (building
window, vehicule window, container, headlamp, ...) described
by 9 physical and chemical attributes. As shown in Table VI,
BsW is the only index which was able to select the right
number of clusters.

V. CONCLUSION

In this paper, we have proposed a new operator which
estimates, given a c-tuple of values in [0,1], the similarity of
some components. Based on triangular norms and Sugeno
integrals, it combines the values and a kernel function. We
have demonstrate how the definition of this operator makes
it able to detect blockwise similarities at different levels of
resolution via the kernel.

TABLE VI
VALIDITY INDEXES ON GLASS DATA

c PC PE XB FS BwS with (>,⊥) and N1

×10−3 S A L
2 0.807 0.457 0.224 -9.123 0.189 0.189 0.189
3 0.666 0.853 0.489 -7.519 0.144 0.143 0.134
4 0.634 0.995 0.590 -7.157 0.082 0.078 0.075
5 0.499 1.367 2.988 -5.628 0.076 0.072 0.069
6 0.493 1.437 2.357 -5.561 0.053 0.043 0.040
7 0.467 1.592 1.973 -4.954 0.049 0.037 0.035
8 0.408 1.824 1.649 -4.603 0.047 0.035 0.033
9 0.380 1.985 2.211 -4.389 0.046 0.034 0.032
10 0.377 2.031 1.921 -4.297 0.042 0.031 0.029

Among the applications that can be considered, we have
chosen to present a solution to the cluster validity problem
in pattern recognition. For this purpose, we have proposed a
new index based on the blockwise similarity operator. Given
results show its performance when compared to classical
indexes. Further works will concern the different choices the
pratitioner must make (t-norms, kernel functions and their
resolution parameter) to use the blockwise similarity operator
as well as its application to selective ambiguity rejection in
pattern classification.
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