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A Metric Approach to nD Images Edge Detection
With Clifford Algebras

Thomas Batard · Christophe Saint-Jean · Michel Berthier

Abstract The aim of this paper is to perform edge de-

tection in color-infrared images from the point of view

of Clifford algebras. The main idea is that such an im-
age can be seen as a section of a Clifford bundle associ-

ated to the RGBT -space (Red, Green, Blue, Temper-

ature) of acquisition. Dealing with geometric calculus

and covariant derivatives of appropriate sections with
respect to well-chosen connections allows to get vari-

ous color and temperature information needed for the

segmentation. We show in particular how to recover

the first fundamental form of the image embedded in a

LSHT -space (Luminance, Saturation , Hue, Tempera-
ture) equipped with a metric tensor. We propose appli-

cations to color edge detection with respect to a given

hue interval and to edge detection in color-infrared im-

ages with constraints on temperature. Others applica-
tions related to different choices of connections, sections

and embedding spaces for nD images may be considered

from this general theorical framework.
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1 Introduction

Clifford algebras appear to be a powerful tool in a wide
range of applications to computer sciences, see [15] for

examples. In particular, Sangwine & al. approach of

color images segmentation with quaternions [12], [5] can

be considered from this viewpoint since H (the algebra
of quaternions) is the Clifford algebra R0,2 and H

1 (the

group of unit quaternions) is the spinor group Spin(3).

Sangwine’s idea is to associate a pure imaginary quater-

nion to each color of the RGB cube and then make ge-

ometric transformations on colors using the product of
H to compute some kind of gradient.

Working in the framework of Clifford algebras has
several advantages:

- If we consider a color as a vector of the algebra R3,0

we can use the richness of the structure of this latter.

In fact R3,0 is of dimension 8 over R and contains el-
ements of different degrees (scalars, vectors, bivectors

and a pseudoscalar) that carry different information.

We can also benefit from the efficiency of the calculus

based on the geometric product.

- It is possible to generalize this approach to any di-
mension working with images with values in R

n. We

will consider in the sequel the example of color-infrared

images where n = 4.

- A Clifford algebra is defined with respect to a cho-
sen metric of a vector space. It’s an asset when dealing

with metric approach of edge detection. In particular,

we can make the metric of the ambiant space vary to

detect edges of different kinds.

The metric approach we adopt in this paper was

introduced by Di Zenzo [4], who considered implicitely

a n-channels image as an embedded two-dimensionnal
surface in the euclidean space R

n+2. A measure of the

“edge strength” and the direction wherein it is highest

at each point are defined. This is done by computing
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respectively the highest eigenvalue of the first funda-

mental form of the surface and the corresponding eigen-

vector. Using this method, Cumani [3] gives an explicit

definition of an edge point, that is a point where the first

directional derivative of the highest eigenvalue in the di-
rection given by the highest eigenvector has a transver-

sal zero-crossing. However, when n > 1, the smallest

eigenvalue is no more constant; that’s why Sapiro [13]

suggests as a measure of the “edge strength” the square
root of the difference of the two eigenvalues.

The idea of embedding the surface representing an

image in a space endowed with a non-euclidean metric
is proposed in [14], and is applied for color edge detec-

tion in [10]. In this latter, the author describes colors

with hyperbolic coordinates and endows R
5 with a cor-

responding metric.

It is our purpose to start from this general definition

of a nD image and to develop a general approach of
edge detection in color-infrared images based on metric

information. Indeed, we define an image as a section

of a fiber bundle. The fiber of this bundle is a Clifford

algebra related to the acquisition space RGBT of the

color-infrared image endowed with a metric that may
vary with the base point. We show that it is possible,

staying in the acquisition space, to recover the metric

data of the image

ϕ : (x, y) 7−→ (x, y, l, s, h, t)

embedded in a LSHT -space (l, s, h, t, denotes respec-

tively the luminance, the saturation, the hue and the

temperature) equipped with a metric tensor. This is

done in both continuous and discrete cases by consid-
ering two sections of the bundle and their covariant

derivatives with respect to a well chosen connection.

This paper is organized as follows. Sect. 2 is mainly
devoted to basic notions and results on Clifford algebras

and spinor groups. We show also how to derive the tran-

sition formulas from RGBT to LSHT with geometric

calculus. In Sect. 3, we first compute the coefficients
of the first fundamental form of a color-infrared image

defined as a two-dimensionnal surface embedded in a

LSHT -space equipped with a metric tensor. Then, we

show how to interpret such an image as a section of a

Clifford algebra bundle. The rest of the section is de-
voted to the continuous and discrete computations of

the coefficients of the first fundamental form as explain

above. In Sect. 4, we propose three applications: a com-

parison with the Di Zenzo method, an edge detection
in a color image with respect to a given hue interval

and an edge detection in a color-infrared image with

constraints on temperature’s values.

2 Clifford algebras and color-infrared spaces

2.1 Clifford algebras

Let V be a vector space of finite dimension n over R

equipped with a quadratic form Q. The Clifford algebra

Cl(V,Q) is the solution of the following universal prob-

lem. We search a couple (Cl(V,Q), iQ) where Cl(V,Q)

is an R-algebra and iQ : V −→ Cl(V,Q) is R-linear
satisfying:

(iQ(v))2 = Q(v).1

for all v in V (1 denotes the unit of Cl(V,Q)) such that

for all R-algebra A and all R-linear map f : V −→ A

with

(f(v))2 = Q(v).1

for all v in V (1 denotes the unit of A), then there exists
a unique morphism

g : Cl(V,Q) −→ A

of R-algebras such that f = g ◦ iQ.

The solution is unique up to isomorphisms and is given
as the (non commutative) quotient

T (V )/(v ⊗ v −Q(v).1)

of the tensor algebra of V by the ideal generated by

v ⊗ v − Q(v).1, where v belongs to V (see [11] for a
proof). It is well known that there exists a unique anti-

automorphism t on Cl(V,Q) such that

t(iQ(v)) = iQ(v)

for all v in V . It is called reversion and usually denoted

by x 7−→ x†, x in Cl(V,Q). In the same way there exists

a unique automorphism α on Cl(V,Q) such that

α(iQ(v)) = −iQ(v)

for all v in V . In the rest of this paper we write v

for iQ(v) (according to the fact that iQ embeds V in

Cl(V,Q)).

As a vector space Cl(V,Q) is of dimension 2n on R and
a basis is given by the set

{ei1ei2 · · · eik
, i1 < i2 < . . . ik, k ∈ {1, . . . , n}}

and the unit 1. An element of degree k

∑

i1<···<ik

αi1...ik
ei1ei2 · · · eik

is called a k-vector. A 0-vector is a scalar and e1e2 · · · en

is called the pseudoscalar. We will denote <x>k the

component of degree k of an element x of Cl(V,Q).
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The inner product of xr of degree r and ys of degree s

is defined by

xr · ys =<xrys>|r−s|

if r and s are positive and by

xr · ys = 0

otherwise.

The outer product of xr of degree r and ys of degree s
is defined by

xr ∧ ys =<xrys>r+s

These products extend by linearity onCl(V,Q). Clearly,

if a and b are vectors of V , then the inner product of a

and b coincides with the scalar product defined by Q.
When it is defined (for example when x is a versor and

Q is positive) we denote

‖x‖ =
√
xx†

and say that x is a unit if xx† = ±1.

In the following, we deal in particular with the Clifford

algebra of the euclidean R
n denoted by Rn,0. R

k
n,0 is the

subspace of elements of degree k and R
∗
n,0 is the group

of elements that admit an inverse in Rn,0.

Let a be a vector in Rn,0 and B be the k-vector a1 ∧
a2∧· · ·∧ak, then the orthogonal projection of a on the
k-plane generated by the ai’s is the vector

PB(a) = (a · B)B−1

The vector

a− (a ·B)B−1 = (a ∧B)B−1

is called the rejection of a on B.

2.2 The spinor group Spin(n)

It is defined by

Spin(n) =

{

2k
∏

i=1

ai, ai ∈ R
1
n,0, ‖ai‖ = 1

}

or equivalently

Spin(n) = {x ∈ Rn,0, α(x) = x, xx† = 1,

xvx−1 ∈ R
1
n,0 ∀v ∈ R

1
n,0}

It is well known that Spin(n) is a connected compact
Lie group that universally covers SO(n) (n ≥ 3). Its

Lie algebra is R
2
n,0 with Lie bracket

A×B = AB −BA

As the exponential map from its Lie algebra to Spin(n)

is onto (see [8] for a proof), every spinor can be written

as

S =

∞
∑

i=0

1

i!
Ai

for some bivector A.

From Hestenes and Sobczyk [9], we know that every A

in R
2
n,0 can be written as

A = A1 +A2 + · · · + Am

where m ≤ n/2 and

Aj = ‖Aj‖ajbj, j ∈ {1, . . . ,m}

with

{a1, . . . , am, b1, . . . , bm}

a set of orthonormal vectors. Thus

AjAk = AkAj = Ak ∧Aj

whenever j 6= k and

A2
k = −‖Ak‖2 < 0

This means that the planes encoded by Ak and Aj are

orthogonal and implies that

eA1+A2+···+Am = eAσ(1)eAσ(2) . . . eAσ(m)

for all σ in the permutation group S(m). Actually, as
A2

k is negative we have

eAi = cos(‖Ai‖) + sin(‖Ai‖)
Ai

‖Ai‖

The corresponding rotation

Ri : x 7−→ e−AixeAi

acts in the oriented plane defined by Ai as a plane ro-

tation of angle 2‖Ai‖. The vectors orthogonal to Ai are

invariant under Ri.

It then appears that any element R of SO(n) is a com-
position of commuting simple rotations, in the sense

that they have only one invariant plane. The vectors

left invariant by R are those of the orthogonal subspace

to A. If m = n/2 this latter is trivial. The previous de-
composition is not unique if ‖Ak‖ = ‖Aj‖ for some j

and k with j 6= k. In this case infinitely many planes

are left invariant by R.
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2.3 Color-infrared spaces

As mentionned before, Sangwine’s approach of edge de-

tection in color images relies on the fact that H0 (the

set of pure imaginary quaternions) is isomorphic to R
3

equipped with an action of H
1. In the same way, a color

image can be treated as an application from R
2 to R

3

this latter being embedded in R3,0 and equipped with

an action of Spin(3). It is natural to extend this ap-

proach to nD images replacing R
3 by R

n and R3,0 by

Rn,0. We focus here on color-infrared images.
Beside RGB color space we consider HSL color space

defined as follows. We set first




Y

C1

C2



 =





1/3 1/3 1/3
1 −1/2 −1/2

0 −
√

3/2
√

3/2









r

g
b





Then the luminance l, the saturation s and the hue h

are respectively given by

l = Y

s =
√

C2
1 + C2

2

h =

{

arccos(C2/s) if C2 > 0

2π − arccos(C2/s) otherwise

As it is well known, color spaces based on luminance
(value), saturation and hue are more suitable to per-

ception [6].

Let us denote CT the Clifford algebra of (R4, Q) with

Q the positive definite quadratic form given by








β/3 0 0 0

0 β/3 0 0

0 0 β/3 0
0 0 0 δ









Thus e21 = e22 = e23 = β/3 and e24 = δ. Given a color-

infrared vector a = r(a)e1 +g(a)e2 +b(a)e3 + t(a)e4, its
color component is given by

c(a) = r(a)e1 + g(a)e2 + b(a)e3

= a · (e1e2e3)(e1e2e3)−1

Let us denote

µ =
e1 + e2 + e3√

β

the unit vector generating the achromatic axis, and v(a)

the rejection of c(a) on µ, called the chrominance vec-

tor of a. Simple computations show that the luminance

l(a), the saturation s(a) and the hue h(a) of a can be
written

l(a) = 1√
β
‖(a · µ)µ−1‖

= 1√
β

√

((a · µ)µ−1)2

s(a) = 3√
2β

‖(c(a) ∧ µ)µ−1‖

= 3√
2β

√

((c(a) ∧ µ)µ−1)2

h(a) = 2π + sign(g(a)− b(a)) arccos
( v(a)

‖v(a)‖ · ρ
)

with ρ the unit chrominance vector of the red color and

h(a) defined modulo 2π. In other words, h(a) is the ori-

ented angle from ρ to v(a).

Moreover, the dual of the achromatic axis in the vec-

tor space generated by (e1, e2, e3) is a plane, called the

chrominance plane, generated by the bivector

e1e2 − e1e3 + e2e3

and we have

v(a) = a · (e1e2 − e1e3 + e2e3) (e1e2 − e1e3 + e2e3)
−1

The chrominance vector of a is therefore the orthogonal
projection of a on the chrominance plane.

3 Edge detection in color-infrared images

3.1 First fundamental form of a surface and edge
detectors

We recall in this subsection how to define an edge de-

tector using metric information given by the first fun-

damental form. For this we consider a color-infrared

image as a Ck map, k ≥ 1,

ϕ(x, y) −→ (x, y, l(x, y), s(x, y), h(x, y), t(x, y))

from a rectangle D to R
6. In the following q denotes a

point in D with image p = ϕ(q) under the map ϕ. Note

that we consider the hue h with values in the universal

cover R of R/2πZ. For the sake of a relevant definition of

ϕ, we take h = 0 when s = 0. As we will see below, this
has no consequences on the edge detection. Following

Carron [2], let f : R −→ R be the function given by

f(t) =
1

π
(
π

2
+ arctan(0, 07(t− 50)))

We consider the domain

Ω(p) = {(x, y), ‖(x, y) − ϕ−1(p)‖∞ ≤ 1}

and set

ξ(p) = exp

(

1

4

∫

Ω(p)

ln(f ◦ s(x, y))dxdy
)
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if s(u, v) 6= 0 for all (u, v) in Ω(p) and ξ(p) = 0 other-

wise. These functions are used to take into account the

fact that the hue is irrelevant for small values of the

saturation.

Next, we endow R
6 with the following metric

(

1 0
0 1

)

⊕









λ(p) 0 0 0

0 λ(p) 0 0
0 0 κ(p)ξ(p) 0

0 0 0 η(p)









where λ, κ and η are positive functions. Strictly speak-

ing, as ξ can vanish, this metric is not riemannian. How-

ever the metric induced on the surface ϕ(D) is rieman-

nian: it is the first fundamental form of ϕ(D), usually
denoted by

I(p) =

(

E(p) F (p)
F (p) G(p)

)

The coefficients E, F and G are given by

E(p) = 1+λ(p)l2x(p)+λ(p)s2x(p)+κ(p)ξ(p)h2
x(p)+η(p)t2x(p)

F (p) = λ(p)lx(p)ly(p) + λ(p)sx(p)sy(p)

+κ(p)ξ(p)hx(p)hy(p) + η(p)tx(p)ty(p)

G(p) = 1+λ(p)l2y(p)+λ(p)s2y(p)+κ(p)ξ(p)h2
y(p)+η(p)t2y(p)

We denote θ+(p) and θ−(p), θ+(p) ≥ θ−(p), the two
eigenvalues of I(p) and Θ+(p), Θ−(p) the corresponding

eigenvectors. The edge detector is then given by

̟(p) =
√

θ+(p) − θ−(p)

More precisely, we say that q in D is an edge point if

one of the following conditions holds:

1. the function ̟ has a local maximum at ϕ(q) in
the direction given by Θ+(ϕ(q));

2. Θ+(ϕ(q)) > 1 and q is an endpoint of a curve of

points satisfying 1.

3.2 Clifford bundle and color-infrared image

We explain how to consider a color/infrared image as a
section of a Clifford bundle.

Let ‖ ‖2 be the euclidean norm on R
n. We associate to

each point q of D the Clifford algebra CT (q) of the four

dimensional vector space containing the RGBT -space
endowed with the metric Q(q)









λ(p)/3 0 0 0

0 λ(p)/3 0 0

0 0 λ(p)/3 0

0 0 0 η(p)









(compare with Sect. 2.3 : β is replaced by λ(p) and δ is

replaced by η(p)). Let CT (D) be the disjoint union of

CT (q) for q in D.

Proposition 1 CT (D) with the projection

π : CT (D) −→ D

that maps ζ ∈ CT (q) to q is a trivial fiber bundle

(CT (D), D, π) with typical fiber Cl(R4, ‖ ‖2).

Proof We have to show that there exists a diffeomor-

phism Φ from π−1(D) onto D×Cl(R4, ‖ ‖2) such that
Φ ◦ p1 = π where p1 denotes the projection on the first

factor. As CT (q) is isomorphic to Cl(R4, ‖ ‖2) by some

Φq for all q in D, we can define Φ by

Φ : (v ∈ CT (q)) 7−→ (q, Φq(v))

It is clearly a diffeomorphism. ⊓⊔
A color-infrared image I is now considered as a section

q ∈ D 7−→ r(q)e1(q) + g(q)e2(q) + b(q)e3(q) + t(q)e4(q)

of CT (D).

From the fact that (CT (D), D, π) is trivial we know

that any connection on it can be written

∇ = d+ ω

for some ω in Γ (D,T ∗D ⊗ End(CT (D)), d being the

exterior differential [7]. If

X = (X1, X2)

belongs to TD and

Y = Y01 + Y1e1 + . . .+ Y15e1e2e3e4

is a section of CT (D) then

(ω(X)Y )j =

15
∑

k=0

(Γ j
1,kX1 + Γ j

2,kX2)Yk

so that the connection is entirely determined by the

symbols Γ k
i,j , i = 1, 2 and j, k = 0, . . . 15. In the next

paragraph we deal with the following three objects:

i. the connection ∇0 defined by

Γ k
ij =

{

∂iλ
λ

if k = j ∈ {6, 7, 9}
0 otherwise

ii. the section ψ of (CT (D), D, π) given by

ψ = S†IS

with

S = exp

[

−h
2

(

e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)]

iii. the section γ of (CT (D), D, π) given by

γ =
v

‖v‖ρ

where ρ is the unit chrominance vector of the red color,
v is the chrominance vector, h is the hue (see Sect. 2.3)

and ‖ ‖ means that we take the norm of each fiber

π−1(q).
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3.3 Computing E, F , G with ∇0

The main result of this part is that the preceding coef-

ficients E, F and G can be computed using covariant

derivatives with respect to ∇0.

Proposition 2 Let

i. P1 (resp. P2) be the section of End(CT (D)) such

that P1(q) (resp. P2(q)) is the orthogonal projection
on the plane generated by the luminance and the tem-

perature (resp. on the chrominance plane) in the fiber

π−1(q);

ii. dx (resp. dy) be the canonical CT (D)-valued 1-

form dx⊗1 (resp. dy⊗1) and X (resp. Y ) be the vector
field on D of coordinates (1, 0) (resp. (0, 1));

iii. E, F , G be the coefficients of the first fundamen-

tal form of ϕ(D) (see Sect. 3.1) and χ be the CT (D)-

valued symmetric tensor of rank 2:

χ = dx⊗dx+ dy⊗dy + P1(∇0ψ)P1(∇0ψ)+

+
9

2
P2(∇0ψ)⊗P2(∇0ψ) − κξ(γ†∇0γ)⊗(γ†∇0γ)

then

E = χ(X ⊗X) F = χ(X ⊗ Y ) G = χ(Y ⊗ Y )

(see Sect. 3.1 for the definitions of κ and ξ). The sym-

bol ⊗ denotes the tensor product of CT (D)-valued 1-
forms described in the appendix and P1(∇0ψ)P1(∇0ψ)

the symmetric product of P1(∇0ψ) by itself (this ten-

sor product is an analog of the wedge product for the so

called “clifforms”).

In other words, χ may be viewed as the metric on the
surface ϕ(D).

Proof From Sect. 2.3 we know that S is a Spin(4)-

valued section whose action on I for each q ∈ D, namely

S(q)†I(q)S(q), is a rotation. We explicit this rotation.

The 4-dimensional vector subspace of CT (q) isomorphic
to R

1
4,0 by trivialisation can be decomposed into two or-

thogonal planes:

i. the plane generated by the luminance and the tem-

perature components, represented by the bivector
e1(q)e4(q) + e2(q)e4(q) + e3(q)e4(q);

ii. the chrominance plane represented by the bivector

e1(q)e2(q) − e1(q)e3(q) + e2(q)e3(q).

From this we deduce that the rotation lets the lumi-

nance and temperature parts of I(q) invariant and acts
on the chrominance plane as a rotation of angle −h(q)/2.

That is, it sends the chrominance vector v(q) on the vec-

tor ‖v(q)‖ρ(q).

Since P1 and P2 are linear maps, we have

d(P1(ψ)) = P1d(ψ)

From the definition of ∇0, it leads to

P1(∇0ψ) = ∇0P1(ψ)

Then

P1(∇0ψ) = ∇0P1(ψ)
= ∇0( l(e1 + e2 + e3) + te4)

= dl ⊗ (e1 + e2 + e3) + dt⊗ e4

hence

P1(∇0ψ)P1(∇0ψ) = dl ⊗ dl ⊗ (e1 + e2 + e3)
2

+
1

2
(dl ⊗ dt+ dt⊗ dl) ⊗ (e1 + e2 + e3)e4

+
1

2
(dt⊗ dl + dl ⊗ dt) ⊗ e4(e1 + e2 + e3)

+dt⊗ dt⊗ (e4)
2

So, we have

P1(∇0ψ)P1(∇0ψ) = dl ⊗ dl ⊗ λ+ dt⊗ dt⊗ η

Simple computations show that ρ = σ/
√
λ with

σ =
√

2e1 −
√

2

2
e2 −

√
2

2
e3

then

P2(∇0ψ) = ∇0

(

‖v‖σ√
λ

)

=
(

d‖v‖√
λ

)

⊗ σ + ‖v‖√
λ
∇0σ

=
(

d‖v‖√
λ

)

⊗ σ

Recall that ‖v‖ =
√

2
3

√
λs to obtain

P2(∇0ψ) =

√
2

3
ds⊗ σ

which leads to

P2(∇0ψ)⊗P2(∇0ψ) = 2
9ds⊗ ds⊗ σ2

= 2
9ds⊗ ds⊗ λ

The section γ can be decomposed as

γ =
v

‖v‖ · ρ+
v

‖v‖ ∧ ρ

Since
v

‖v‖ · ρ = cos(h)

and

v

‖v‖ ∧ ρ = sin(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

we have then

γ = cos(h) + sin(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)
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The expression of ∇0γ is therefore

∇0γ = −dh⊗ sin(h) + cos(h)∇01

+dh⊗ cos(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

+
√

3 sin(h)∇0

(e1e2
λ

− e1e3
λ

+
e2e3
λ

)

However by definition of ∇0

∇01 = ∇0

(e1e2
λ

)

= ∇0

(e1e3
λ

)

= ∇0

(e2e3
λ

)

= 0

and so

∇0γ = −dh⊗sin(h)+dh⊗cos(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

This implies that

γ†∇0γ =
[

cos(h) − sin(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)]

×

[

(−dh⊗ sin(h) + dh⊗ cos(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)]

and

γ†∇0γ = dh⊗
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

Consequently

(γ†∇0γ)⊗(γ†∇0γ) = −dh⊗ dh⊗ 1

Let Z1 = (Z11, Z12) and Z2 = (Z21, Z22) be two vector

fields on D, then by definition of χ:

χ(Z1 ⊗ Z2) = dx⊗dx(Z1 ⊗ Z2) + dy⊗dy(Z1 ⊗ Z2)

+P1(∇0ψ)P1(∇0ψ) (Z1 ⊗ Z2)

+
9

2
P2(∇0ψ)⊗P2(∇0ψ) (Z1 ⊗ Z2)

−κξ(γ†∇0γ)⊗(γ†∇0γ) (Z1 ⊗ Z2)

From what we have shown above, we have

χ(Z1 ⊗ Z2) = dx⊗dx(Z1 ⊗ Z2) + dy⊗dy(Z1 ⊗ Z2)

+dl ⊗ dl ⊗ λ (Z1 ⊗ Z2) + dt⊗ dt⊗ η (Z1 ⊗ Z2)

+ds⊗ ds⊗ λ (Z1 ⊗ Z2) + κξ dh⊗ dh⊗ 1 (Z1 ⊗ Z2)

Hence,

χ(Z1 ⊗ Z2) = Z11Z21 + Z12Z22 + dl(Z1)dl(Z2)λ

+dt(Z1)dt(Z2)η + ds(Z1)ds(Z2)λ+ κξdh(Z1)dh(Z2)

Taking Z1 = Z2 = X , we recover the expression of E.

Similarly, taking Z1 = Z2 = Y , we recover the expres-

sion of G, and from Z1 = X,Z2 = Y or Z1 = Y, Z2 =

X , we recover the expression of F . ⊓⊔

3.4 Discretisation and parallel transport

Let us now explain how to compute the coefficients E,

F , and G when dealing with the integer coordinates
points of D. In what follows, we use the matricial co-

ordinates system.

We denote

γ
(i,j)

(1,0) , γ
(i,j)

(0,1) , γ
(i,j)

(1,1) , γ
(i,j)

(1,−1)

the classes of curves on D form the point (i, j) that
satisfy:

γ̇
(i,j)

(1,0) (t) = (1, 0), γ̇
(i,j)

(1,0) (t) = (0, 1),

γ̇
(i,j)

(1,1) (t) = (1, 1), γ̇
(i,j)

(1,−1)(t) = (1,−1)

for all t. The corresponding parallel transports (with
respect to ∇0)

τ
(i,j)

(1,0) (t, .), τ
(i,j)

(0,1) (t, .), τ
(i,j)

(1,1) (t, .), τ
(i,j)

(1,−1)(t, .)

are linear maps from π−1(i, j) to π−1(γ
(i,j)

(1,0) (t)) resp.

π−1(γ
(i,j)

(0,1) (t)), π−1(γ
(i,j)

(1,1) (t)) and π−1(γ
(i,j)

(1,−1)(t)).

By definition of ∇0, if γ is one of the preceding classes

of curves and w is a vector of π−1(γ(0)), i.e

w = w1e1(γ(0)) + w2e2(γ(0))

+w3e3(γ(0)) + w4e4(γ(0))

then the parallel transport of w at π−1(γ(t)) is the vec-

tor

w1e1(γ(t)) + w2e2(γ(t))

+w3e3(γ(t)) + w4e4(γ(t))

Let us consider the vector

τ1(i, j) =
1

8

{

τ
(i+1,j−1)

(1,−1) (−1, ψ) + 2τ
(i+1,j)

(1,0) (−1, ψ)

+τ
(i+1,j+1)

(1,1) (−1, ψ) − τ
(i−1,j−1)

(1,1) (1, ψ)

−2τ
(i−1,j)

(1,0) (1, ψ) − τ
(i−1,j+1)

(1,−1) (1, ψ)
}

and the scalar

τ2(i, j) =
1

8
{arccos(a · b)+2 arccos(c ·d)+arccos(e · f)}

where

a =
τ

(i−1,j−1)
(1,1) (1, v)

‖τ (i−1,j−1)
(1,1) (1, v)‖

b =
τ

(i+1,j−1)
(1,−1) (−1, v)

‖τ (i+1,j−1)
(1,−1) (−1, v)‖
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c =
τ

(i−1,j)
(1,0) (1, v)

‖τ (i−1,j)
(1,0) (1, v)‖

d =
τ

(i+1,j)
(1,0) (−1, v)

‖τ (i+1,j)
(1,0) (−1, v)‖

e =
τ

(i−1,j+1)
(1,−1) (1, v)

‖τ (i−1,j+1)
(1,−1) (1, v)‖

f =
τ

(i+1,j+1)
(1,1) (−1, v)

‖τ (i+1,j+1)
(1,1) (−1, v)‖

These are elements of π−1(i, j).

The vector τ1(i, j) (resp. the scalar τ2(i, j)) is a dis-

crete approximation of ∇0ψ (resp. dh⊗ 1) in the direc-

tion given by the tangent vector of coordinates (1, 0) at

(i, j). We obtain thus a discrete version of the coefficient

G of the fundamental form I, namely

Gd = 1 + (P1(τ1))
2 +

9

2
(P2(τ1))

2 + κξτ2
2

In the same way, we get a discrete version of the coef-
ficients E and F .

4 Applications

We propose three applications: we first compare our

approach with the method developped by Di Zenzo,

then we focus on detecting edges in color images with

respect to a given hue interval, and finally we deal with
edge detection in color-infrared images with constraints

on temperature.

4.1 Comparison with the Di Zenzo gradient

Let I be a color image seen as a section I(q) = r(q)e1(q)

+ g(q)e2(q) + b(q)e3(q) of the Clifford bundle CT (D)

with λ the constant function equal to 1. Di Zenzo gra-
dient relates to the highest eigenvalue of the first fun-

damental form whose coefficients are given by:

E = 1 + (rx)2 + (gx)2 + (bx)2

F = rxry + gxgy + bxby

G = 1 + (ry)2 + (gy)
2 + (by)2

The image is then considered as a surface in the eu-

clidean ambiant space. In this context we have:

∇0I = dr ⊗ e1 + dg ⊗ e2 + db⊗ e3

and the symmetric product of ∇0 by itself (see ap-

pendix) is therefore:

∇0I∇0I = dr ⊗ dr ⊗ 1

3
+ dg ⊗ dg ⊗ 1

3
+ db ⊗ db⊗ 1

3

So considering the symmetric tensor of rank 2

χ = dx⊗ dx+ dy ⊗ dy + 3∇0I∇0I

we get

E = χ(X ⊗X) F = χ(X ⊗ Y ) G = χ(Y ⊗ Y )

(see Proposition 2 for the definition of X and Y ). Fur-

thermore we can split I into

(I · µ)µ−1 + (I ∧ µ)µ−1 = l(e1 + e2 + e3) + v

Since

∇0I = dl ⊗ (e1 + e2 + e3) + ∇0v

we see that the method of Di Zenzo deals with the

derivative ∇0v of the chrominance vector, which is by

definition of ∇0 the usual derivative of the vectorial

function v. Moreover, since (e1 + e2 + e3) and v are
orthogonal, then

∇0I∇0I = dl ⊗ dl ⊗ 1 + ∇0v∇0v

If we apply now Proposition 2, the corresponding coef-

ficients are given by

E = 1 + (lx)2 + (sx)2 + κξ(hx)2

F = lxly + sxsy + κξhxhy

G = 1 + (ly)2 + (sy)2 + κξ(hy)2

and the variation of the chrominance is measured by

both the variations of the saturation and of the hue.

If for example we consider the case when the hue is

locally constant, i.e. dh = 0, then

∇0v = d(‖v‖) ⊗ v

‖v‖

and

∇0v∇0v = d(‖v‖) ⊗ d(‖v‖) ⊗ 1 = ds⊗ ds⊗ 2

9

The coefficients for the Di Zenzo gradient are

E = 1 + (lx)2 +
2

9
s2x

F = lxly +
2

9
sxsy

G = 1 + (ly)2 +
2

9
(sy)2

while those we defined are

E = 1 + (lx)2 + (sx)2

F = lxly + sxsy

G = 1 + (ly)2 + (sy)2

We can see in this very particular case that the two

methods differ from the way the saturation is taken

into account.
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Fig. 1 Original image

4.2 Color edge detection with respect to hue intervals

Let h1 and h2 be two angles representing two hues. The

aim of this application is to detect color edges in the

hue interval that they define.

Let I(q) = r(q)e1(q) + g(q)e2(q) + b(q)e3(q) be a color

image. Here λ is taken small enough so that the lumi-
nance and the saturation have no influence in the edge

detection and high enough so that the norm of a vector

in any fiber is numerically computable. Consequently

only κ will influence the detection.
Let θ in [0, 2π]. The unit chrominance vector vθ of hue

θ is

vθ = cos(θ)ρ+ sin(θ)ρB

where B is the unit bivector coding the chrominance

plane. The angular distance δ between two hues h3

and h4 may be computed using the corresponding unit

chrominance vectors

δ(h3, h4) = arccos(vh3· vh4)

Then we define κ as follows: κ(p) = 1 if

max
x∈Ω(p)

(max(δ(h(x), h1), δ(h(x), h2))) ≤ δ(h1, h2)

and extend it into a derivable function on [0, π] that is

strictly decreasing on [δ(h1, h2), π].
In the following illustration of this application, h1 = 0

is the red hue, h2 = π/3 the yellow hue, and κ equals 0

for any value greater than π/3.

As you can see Fig. 2, we principally detect edges of

Fig. 1 inside petals. Let us explain this result. First,
due to our definition of κ, as soon as there is a pixel

in the neighborhood of a point q in D whose hue is

not in the interval red-yellow, color variations at q are

not detected. Then, one may find inside petals varia-
tions between yellow and red hues, which implies that

κ dh is maximal. Moreover, these colors have almost a

full saturation, so ξ almost equals 1. In the same way,

Fig. 2 Edge detection in the hue interval Red-Yellow

variations where colors have few saturation are not de-

tected, since ξ decreases strongly when the surrounding

saturation declines.

4.3 Color edge detection with respect to temperature

constraints

We consider a color-infrared image

I(q) = r(q)e1(q) + g(q)e2(q) + b(q)e3(q) + t(q)e4(q)

that is a section of the Clifford bundle CT (D). For the
application we have in mind, we choose η a strictly pos-

itive function and λ defined by the gaussian

λ(p) = e−
(t(p)−t0)2

σ if
1

4

∫

Ω(p)

t(q)dxdy ≤ t0

and equals 1 otherwise.
We apply Proposition 2 with ψ the section given by

ψ = S†I ′S

where I ′ = I · (e1e2e3)(e1e2e3)−1. The resulting coeffi-

cients are

E = 1 + λ(lx)2 + λ(sx)2 + κξ(hx)2

F = λlxly + λsxsy + κξhxhy

G = 1 + λ(ly)2 + λ(sy)2 + κξ(hy)2

We choose κ = 255λ/π so that the hue component has

the same weight in the detection as the two others com-

ponents.

Let us consider the following situation: a man is stand-

ing in front of a wall and is handing a hot cup of coffee

(see Fig. 3). We want to detect color variations with the
additionnal contraint that on such points, the temper-

ature is similar or higher than the human temperature.

Fig. 4 represents the result of such an edge detection.
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Fig. 3 Color and temperature information of the scene

Fig. 4 Result of the edge detection

We see that the region delimited by the man and the

cup of coffee is detected, as in the infrared image. More-

over, we detect color variations inside this domain, as
wished.

5 Conclusion

In this paper, we have proposed a new framework for

nD image processing, namely Clifford algebra bundles

where the typical fiber is the Clifford algebra associ-
ated to the euclidean space of acquisition. A nD im-

age is then considered as a section. The paper deals in

particular with the reformulation, in this fiber bundle

setting, of a well-known method for nD images edge

detection, based on the computation of the first funda-
mental form of a surface embedded in a metric space.

For this, we have introduced a connection on the fiber

bundle, and use corresponding covariant derivative and

parallel transport application on sections derived from
the section defined by the image. We have treaten the

special case of color/infrared images where the space

of acquisition is RGBT , and the metric space contain-

ing the surface is LSHT . We have recovered the first

fundamental form by computations on RGBT , never
computing explicitely derivatives of luminance, satura-

tion, hue or temperature, whereas the approach based

on surfaces does. It is therefore natural to envisage that

this can be done whatever the metric space considered,
whatever the dimension of the image. That’s why we

think, through the example developped by this paper,

that (Clifford) fiber bundles framework is a more suit-

able global framework for nD image processing than

surfaces, or manifolds, framework. This is motivated by
the fact that fiber bundles theory generalises manifolds

theory too. At last, let us remark that all the computa-

tions we have done were extremely simplified since we

have considered a Clifford algebra bundle, and not only
a vector bundle.

Appendix

We precise in this appendix how are defined the tensor
product of CT (D)-valued 1-forms and the symmetric

product used in particular in Proposition 2. As already

said this tensor product is an analog of the wedge prod-

uct of “clifforms”.
Let (CT (D), D, π) be the fiber bundle introduced in

Sect. 3.2. We denote A the ring of R-valued functions of

class Ck, k ≥ 1, defined on D and B the ring Γ (CT (D))

of sections of CT (D).

Proposition 3 The couple

(Γ1, ϕ) := (Γ (T ∗D⊗AT
∗D⊗ACT (D)), ϕ)

is a solution of the universal problem defining the tensor

product of the B-bimodule

Γ0 := Γ (T ∗D ⊗A CT (D))
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with itself, where ϕ is the application from Γ0 × Γ0 to

Γ1 defined by

((ω1 ⊗m1), (ω2 ⊗m2)) 7−→ (ω1 ⊗ ω2) ⊗ (m1m2)

Proof Let ψ the ring homomorphism from A to B that

makes B a A-algebra. Since ψ(A) is in the center of B
there exists a B-bimodule structure on Γ0

B × Γ0 −→ Γ0 Γ0 × B −→ Γ0

(b,X ⊗ c) 7−→ X ⊗ bc (X ⊗ c, b) 7−→ X ⊗ cb

We consider the following universel problem:

we search a couple

(Γ0 ⊗B Γ0, φ)

where Γ0 ⊗B Γ0 is a B-bimodule and

φ : Γ0 × Γ0 −→ Γ0 ⊗B Γ0

is left B-linear in the first variable and right B-linear in

the second variable with

φ(xf, y) = φ(x, fy)

for all x and y in Γ0 and f in B such that:

for all B-bimodule N and all map

η : Γ0 × Γ0 −→ N

which is left B-linear in the first variable and right B-

linear in the second variable and satisfies

η(xf, y) = η(x, fy)

for all x and y in Γ0 and f in B, there exists a unique
homomorphism

γ : Γ0 ⊗B Γ0 −→ N

of B-bimodule such that:

η = γ ◦ φ
The solution is unique up to isomorphisms. A construc-

tion may be found in [1].

As above we can show that Γ1 has a B-bimodule struc-

ture. It is a fact that ϕ is bilinear with respect to the

left-module structure in the first variable and the right-

module structure in the second variable and satisfies

ϕ(xf, y) = ϕ(x, fy)

for all x and y in Γ0 and f in B. So there exists a unique
B-bimodule homomorphism γ from Γ0⊗BΓ0 to Γ1 such

that

ϕ = γ ◦ φ
Now γ is defined by

γ : (ω1 ⊗m1) ⊗ (ω2 ⊗m2) 7−→ (ω1 ⊗ ω2) ⊗m1m2

The map δ from Γ1 to Γ0⊗BΓ0 that sends (ω1⊗ω2⊗m)

to (ω1 ⊗m) ⊗ (ω2 ⊗ 1) is a B-bimodule homomorphim

and is the inverse of γ.

Finally (Γ1, ϕ) is a solution to our universal problem.

⊓⊔

From the preceding proposition, Γ0 ⊗B Γ0 is isomor-

phic to the space of CT (D)-valued rank 2 tensors. If

η1 and η2 belong to Γ (T ∗D) and s1 and s2 belong to
B then (η1 ⊗ s1) ⊗ (η2 ⊗ s2) may be identified with

the CT (D)-valued rank 2 tensor that maps (X ⊗ Y ) to

η1(X)η2(Y )s1s2.

We denote

(η1 ⊗ s1)(η2 ⊗ s2) = (η1η2) ⊗ (s1s2)

the symmetric product of (η1 ⊗ s1) and (η2 ⊗ s2). We

extend it by linearity. This symmetric product can be

identified with the CT (D)-valued symmetric tensor of
rank 2 defined by

(X ⊗ Y ) 7−→ 1

2
(η1(X)η2(Y ) + η2(X)η1(Y ))s1s2

Finally we denote (η1⊗s1)⊗(η2⊗s2) the element (η1⊗
s1) ⊗ (η2 ⊗ s2) of Γ0 ⊗B Γ0 to emphasize the fact that
the tensor product is relative to B.
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Chapitres 1 à 3. Diffusion C.C.L.S Paris (1970)

2. Carron, T.: Segmentation d’images couleur dans la base
teinte-luminance-saturation: approche numérique et symbol-
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