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Abstract

A new theorem is provided to test the identifiability of discrete-time systems with polynomial nonlinearities. That extends to discrete-time
systems the local state isomorphism approach for continuous-time systems. Two examples are provided to illustrate the approach.
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1 Problem statement

Very often, the equations of a model involve unknown pa-
rameters that must be estimated from experimental data.
A fundamental problem is whether the value of these pa-
rameters can be uniquely determined from input/output
measurements. This is known as the parameter identifiabil-
ity problem.

Several approaches for testing the parameter identifiabil-
ity have been proposed in the literature for continuous
and discrete-time controlled systems. An overview for
continuous-time nonlinear systems can be found in [16][17]
including the input/output relation approach, the output
equality approach and the local state isomorphism approach.
The input/output relation approach, based on algebra, leads,
under some conditions, to a necessary and sufficient con-
dition of identifiability. In the continuous-time case [6][7],
the system is transformed, by eliminating the state vari-
ables considered as unknowns, into a system depending
only on the input, the output, their derivatives and the pa-
rameters. If, from the resulting system, the parameters can
be rewritten as a unique expression depending only on the
input, the output and their derivatives, they are identifiable.
For instance, for polynomial systems, the state elimination
can be achieved with the Gröbner bases approach [2], the
characteristic set approach [11] or the resultant approach
[19]. In the discrete-time case, the derivatives are replaced
by the iterates [1]. In general, in the input/output relation
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approach, the initial conditions on the state are not consid-
ered since they are eliminated. However, in [4][5][9], it is
shown that the input/output relation approach can fail when
the system starts at specific initial condition and, in this
particular case, another procedure is provided.
The output equality approach leads only, in general, to a
sufficient condition of identifiability. It consists in testing
whether the equality of two output trajectories from the same
initial condition, depending respectively on two parameter
values, implies the equality of both these parameter values.
If so, the parameters are identifiable. In the continuous-time
case, this is formulated as the Taylor series expansion ap-
proach [10]. In the discrete-time case, the equality of the
output trajectories is tested directly, sample by sample [8].
The local state isomorphism approach takes into account the
initial conditions on the state and leads to a necessary and
sufficient condition of identifiability for controlled systems.
This approach, only proposed for continuous-time systems
[14][15], is based on the isomorphism theorem [13]. Basi-
cally, this theorem states that if the system is locally reduced
(locally observable and controllable) and is conjugated to
another system, up to an isomorphism, the system is iden-
tifiable if this isomorphism is unique and is the identity.
In the literature, there is no attempt to extend the local state
isomorphism approach to the discrete-time case. And yet,
having several approaches at hand can be useful, because
it is difficult to determine a priori the best suited approach
for a particular case.

In this paper, the local state isomorphism approach is ex-
tended to discrete-time systems. Our study is restricted to
polynomial systems. However, this restriction is not severe
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as explained in [7].

The paper is organized as follows. In Section 2, a for-
mal definition of identifiability for discrete-time nonlinear
systems is recalled. Then, in Section 3, a new condition
for testing the identifiability of discrete-time systems with
polynomial nonlinearities is derived. Finally, in Section 4,
two examples illustrate the proposed approach.

2 Identifiability

Consider the discrete-time system of the general form:

Σθ

{

xk+1 = fθ (xk,uk)

yk = hθ (xk,uk)
(1)

where xk ∈ X ⊂ R
n is the state vector, yk ∈ Y ⊂ R

p the
measurable and so available output vector, uk ∈ U ⊂ R

m

the input vector, fθ and hθ are functions in xk and uk, both
parametrized by θ ∈ Θ ⊂ R

l , the parameter vector.

A lot of definitions of parameter identifiability are given
in the literature [8][14][15][18]. Local and global identifi-
ability can be distinguished. Local identifiability 1 ensures
a finite number of solutions for θ ∈ Θ and thus holds for
θ ∈ v(θ) ⊂ Θ, where v(θ) is a neighborhood of θ . Local
identifiability is a necessary condition for global identifiabil-
ity which ensures the uniqueness of the solution for θ ∈ Θ.
Besides, identifiability is said structural if it holds for al-
most every (a.e.) θ ∈ Θ, except possibly for a subset of zero
measure in Θ (atypical values) which leads to singularities
and where no conclusion about identifiability is possible.
The following definitions, borrowed from [8], will be con-
sidered.

Definition 1 An input sequence over a window of iterations
[0,N], denoted by {uk}

N
0 , is called an admissible input on

[0,N] if the difference equation (1) admits a unique local
solution.

For any positive N, U N denotes hereafter the space of all
sequences of admissible inputs {uk}

N
0 .

Definition 2 The system Σθ is locally x0-identifiable at θ ,
through the admissible input sequence {uk}

N
0 and for a given

initial condition x0, if there exists an open neighborhood

of θ , v(θ) ⊂ Θ, such that for any θ̂ ∈ v(θ) and for any
θ ∈ v(θ):

θ̂ 6= θ ⇒ {yk(x0,uk, θ̂)}N
0 6= {yk(x0,uk,θ)}N

0
(2)

where {yk(x0,uk,θ)}N
0 represents the input/output behavior

of the system Σθ (1), depending on the parameter vector θ ,

1 Local identifiability defined in [7] is called algebraic identifia-
bility in [6].

i.e. the output sequence, from the initial condition x0, for
the input uk, over the time interval [0,N].

Definition 2 is the direct counterpart of the definition given
in [14] for continuous-time nonlinear systems.

Definition 3 The system Σθ is structurally identifiable if
there exist N > 0, an open subset X0 ⊂ X and some dense
subsets Θ and U N

0 ⊂ U N , such that, ∀ x0 ∈ X0, a.e. θ ∈ Θ

and ∀ {uk}
N
0 ∈ U N

0 , the system Σθ is locally x0-identifiable

at θ through the admissible input sequence {uk}
N
0 .

Hereafter, the identifiability will be considered in the sense
of Def. 3. In the next section, the local state isomorphism
approach for testing the identifiability is presented.

3 Approach based on the isomorphism theorem

The proposed approach is based on the isomorphism theorem
for discrete-time polynomial systems [12], recalled in the
following. The definitions required to render this theorem
self-consistent are given in Appendix A.

3.1 Isomorphism theorem

Consider the discrete-time polynomial system Σ of the gen-
eral form:

Σ

{

xk+1 = f (xk,uk)

yk = h(xk,uk)
(3)

where xk ∈ X ⊂ R
n, uk ∈ U ⊂ R

m and yk ∈ Y ⊂ R
p.

System (3) is called a K-system (Appendix A, Def. 7) since
the functions f and h are polynomials in xk and uk. The fol-
lowing assumptions are required to state the isomorphism
theorem.

• Each state xk of Σ can be rewritten as a polynomial in
yk, uk and their iterates, i.e. Σ is algebraically observable
(Appendix A, Def. 8).

• It is possible to find an input sequence allowing, from a
given initial condition x0 ∈ X , to reach a final state x f ,
for almost every x f ∈ X , except a set of zero measure,
i.e. Σ is quasi-reachable (Appendix A, Def. 9 and 10).
Since Σ is algebraically observable and quasi-reachable,
it is canonical (Appendix A, Def. 11).

• The system Σ admits, or realizes, a response map defined
as follows.

Definition 4 The response map CΣ of Σ is the function that
maps, for a given x0, a finite sequence of non zero inputs,
{uk}

N
0 , to the output yN:

CΣ(u0, . . . ,uN) = h( f N(x0,u0),uN) = yN

with:

{

f N(x0,u0) = x0 if N = 0

f N(x0,u0) = f ( f N−1(x0,u0),uN−1) ∀N ≥ 1

(4)
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Rather than working with the input/output map (Appendix
A, Def. 12) of the system as in Def. 2, we can alternatively
consider the response map (4) because there is an one-to-
one correspondence between the input/output map and the
response map (see [12], page 55).

The following definition of a K-system isomorphism is
needed for the isomorphism theorem, given hereafter.

Definition 5 [12] A K-system isomorphism T : Σ → Σ̂ is

a map T : X → X̂ satisfying T (xk) = x̂k and, ∀xk ∈ X ,
∀uk ∈ U :

(i) x̂0 = T (x0)

(ii) f̂ (T (xk),uk) = T ( f (xk,uk))

(iii) ĥ(T (xk),uk) = h(xk,uk)

(5)

with f and f̂ the dynamic functions and h and ĥ the output
functions of the K-systems Σ and Σ̂ respectively.

Theorem 1 [12] Let C be a polynomial response map. Then
there exists a canonical K-system Σ realizing C . If Σ̂ is
another canonical K-system realizing C , there is a unique
K-system isomorphism T : Σ → Σ̂.

A condition for testing the identifiability in the discrete-time
case, according to Def. 3, is formulated in the next section.

3.2 Main result

Consider the system Σθ of the form (1) with fθ and hθ

being polynomials in xk and uk and depending on the pa-
rameter vector θ . The response map of Σθ , denoted CΣθ

, is

given by CΣθ
(u0, . . . ,uN) = hθ ( f N

θ
(x0(θ),u0),uN). The no-

tation x0(θ) means that one or several components of the
initial condition x0 can be considered as parameter.
Consider also Σ

θ̂
, the same system as Σθ , except that it de-

pends on the parameter vector θ̂ . The response map of Σ
θ̂

is CΣ
θ̂
(u0, . . . ,uN) = h

θ̂
( f N

θ̂
(x0(θ̂),u0),uN).

Theorem 2 If Σθ (1) is a canonical K-system, then it is
structurally identifiable if and only if there exist N > 0, an
open subset X0 ⊂X , some dense subsets Θ and U N

0 ⊂U N ,

such that, ∀x0 ∈ X0, ∀xk ∈ X , ∀{uk}
N
0 ∈ U N

0 , a.e. θ ∈ Θ,

a.e. θ̂ ∈ Θ, for any K-system isomorphism T : Σθ → Σ
θ̂

,

(i) x0(θ̂) = T (x0(θ))

(ii) f
θ̂
(T (xk),uk) = T ( fθ (xk,uk))

(iii) h
θ̂
(T (xk),uk) = hθ (xk,uk)

(6)

implies that θ̂ = θ .

Proof Necessity
For necessity, the following implication is shown.
The system Σθ is structurally identifiable implies that there
exist N > 0, an open subset X0 ⊂X , some dense subsets Θ

and U N
0 ⊂ U N , such that, ∀x0 ∈ X0, ∀xk ∈ X , ∀{uk}

N
0 ∈

U N
0 , a.e. θ ∈ Θ, a.e. θ̂ ∈ Θ, for any K-system isomorphism

T : Σθ → Σ
θ̂

, (6) ⇒ θ = θ̂ .
The proof is made by the contrapositive.
∀N > 0, ∀X0 ⊂ X an open subset, ∀Θ and ∀U N

0 ⊂ U N

some dense subsets, there exist x0 ∈ X0, xk ∈ X , {uk}
N
0 ∈

U N
0 , θ ∈ Θ, θ̂ ∈ Θ, a K-system isomorphism T : Σθ → Σ

θ̂

such that the relations (6) are fulfilled and θ 6= θ̂ imply that
the system Σθ is not structurally identifiable.
Assume that, ∀N > 0, ∀X0 ⊂ X an open subset, ∀Θ and
∀U N

0 ⊂ U N some dense subsets, there exist x0 ∈ X0, xk ∈

X , {uk}
N
0 ∈ U N

0 , θ ∈ Θ, θ̂ ∈ Θ, a K-system isomorphism
T : Σθ → Σ

θ̂
such that the relations (6) are fulfilled and

θ 6= θ̂ . According to Def. 4, the response map of Σθ is:

CΣθ
(u0, . . . ,uN) = hθ ( f N

θ
(x0(θ),u0)),uN) (7)

By (6(iii)), (7) can be rewritten as:

CΣθ
(u0, . . . ,uN) = h

θ̂
(T ( f N

θ
(x0(θ),u0)),uN) (8)

By compositions of (6(ii)), (8) can be rewritten as:

CΣθ
(u0, . . . ,uN) = h

θ̂
( f N

θ̂
(T (x0(θ)),u0),uN) (9)

By (6(i)), (9) can be rewritten as:

CΣθ
(u0, . . . ,uN) = h

θ̂
( f N

θ̂
(x0(θ̂),u0),uN) = CΣ

θ̂
(u0, . . . ,uN)

(10)
According to (10), the systems Σθ and Σ

θ̂
have the same re-

sponse map and thus, the same input/output behavior (there
is an one-to-one correspondence between the input/output
map and the response map), with different parameters θ and

θ̂ . By Def. 3, the system Σθ is not structurally identifiable,
which proves the contrapositive.

Sufficiency
For sufficiency, the following implication is shown.
There exist N > 0, an open subset X0 ⊂ X , some dense
subsets Θ and U N

0 ⊂ U N , such that, ∀x0 ∈ X0, ∀xk ∈ X ,

∀{uk}
N
0 ∈ U N

0 , a.e. θ ∈ Θ, a.e. θ̂ ∈ Θ, for any K-system

isomorphism T : Σθ → Σ
θ̂

, (6) ⇒ θ = θ̂ imply that the sys-
tem Σθ is structurally identifiable.
The proof is made by the contrapositive.
The system Σθ is not structurally identifiable implies that,
∀N > 0, ∀X0 ⊂ X an open subset, ∀Θ and ∀U N

0 ⊂ U N

some dense subsets, there exist x0 ∈ X0, xk ∈ X ,
{uk}

N
0 ∈ U N

0 , θ ∈ Θ, θ̂ ∈ Θ, a K-system isomorphism
T : Σθ → Σ

θ̂
such that the relations (6) are fulfilled and

θ 6= θ̂ .
Assume that the system Σθ is canonical and is not struc-
turally identifiable. It means that, ∀N > 0, ∀X0 ⊂ X an
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open subset, ∀Θ and ∀U N
0 ⊂U N some dense subsets, there

exist x0 ∈ X0, xk ∈ X , {uk}
N
0 ∈ U N

0 , θ ∈ Θ, θ̂ ∈ Θ such
that the systems Σθ and Σ

θ̂
have the same input/output be-

havior, and so the same response map CΣθ
= CΣ

θ̂
(there is

a one-to-one correspondence between the input/output map

and the response map), with different parameters θ and θ̂ .
On the other hand, if, ∀N > 0, ∀X0 ⊂ X , ∀Θ and
∀U N

0 ⊂ U N , there exist x0 ∈ X0, xk ∈ X , {uk}
N
0 ∈ U N

0 ,

θ ∈ Θ, θ̂ ∈ Θ such that CΣθ
= CΣ

θ̂
, according to Theorem

1 with Σ̂ = Σ
θ̂

, f̂ = f
θ̂

and ĥ = h
θ̂

, there exists a unique
K-system isomorphism T : Σθ → Σ

θ̂
fulfilling (6). This

completes the proof.

Remark 1 When Σθ is structurally identifiable, according

to Theorem 2, the only value θ̂ that satisfies (6) is θ̂ = θ .
From (6), T (xk) = xk, i.e. the identity map on R

n, is an
obvious solution. Since the isomorphism T is unique, the

identity map is the unique solution. Conversely, if θ̂ 6= θ

then T (xk) 6= xk.

3.3 Testing the identifiability

The proposed approach for testing the identifiability of the
system Σθ of the form (1) with fθ and hθ being polynomials
in xk and uk is summed up by the steps below.

(1) Check whether Σθ is algebraically observable.
(2) Check whether Σθ is quasi-reachable. If Σθ is alge-

braically observable and quasi-reachable, it is canoni-
cal.

(3) Solve the three equations (6) in the variables (θ̂ ,T ). If

the only solution is (θ̂ ,T ) = (θ ,1n), where 1n is the
identity map on R

n (n is the dimension of the system),
Σθ is structurally identifiable.

The steps (1) and (2) consist in checking whether Σθ is
canonical, a necessary property required to apply Theorem
2. Only step (3) represents actually the test of identifiability.

It is worth noting that, for the computation, one can resort to
computer algebra system, for instance the software Maxima,
available for free at http://maxima.sourceforge.net.
In the next section, two examples illustrate the proposed
approach.

4 Examples

4.1 Example 1

Consider the following system:















x
(1)
k+1 = (1+θ

(1))x
(1)
k + x

(2)
k (a)

x
(2)
k+1 = (1−θ

(2))x
(1)
k +(x

(2)
k )2 +uk (b)

yk = x
(1)
k (c)

(11)

where xk = [x
(1)
k x

(2)
k ]T ∈ X ⊂ R

2. The initial condi-

tion, x0 = [x
(1)
0 x

(2)
0 ]T , is independent of the parame-

ters. The structural identifiability of the parameter vector

θ = [θ (1)
θ

(2)]T is tested with the proposed approach.

4.1.1 Algebraic observability

By using (11c) and (11a) successively, it can be shown that
the two states can be rewritten as polynomials of the observ-
able quantities:

x
(1)
k = yk

x
(2)
k = yk+1 − (1+θ

(1))yk

(12)

Consequently, the system (11) is algebraically observable.

For the implementation, the aim is to express x
(1)
k and x

(2)
k in

function of yk and its iterates. To this end, (11) is iterated up
to its observability indice in order to get as much equations as

unknowns, the unknowns being the iterates of x
(1)
k and x

(2)
k .

The elimination of the unknowns can be achieved with the
function eliminate in Maxima. It results a set of equations

in x
(1)
k and x

(2)
k to be solved (function solve).

4.1.2 Quasi-reachability

Consider x f = [x
(1)
f x

(2)
f ]T ∈ X , an arbitrary final state to

be reached from a given initial condition x0 ∈ X . By two
compositions of (11a) and (11b) successively, it is possible
to find an input sequence that allows reaching x f , for all
x f ∈ X :















u0 = x
(1)
f −A1(x

(1)
0 ,x

(2)
0 )

u1 = x
(2)
f −A2(x

(1)
0 ,x

(2)
0 )− (A3(x

(1)
0 ,x

(2)
0 )

+ x
(1)
f −A1(x

(1)
0 ,x

(2)
0 ))2

(13)

with

A1(x
(1)
0 ,x

(2)
0 ) = (1+θ

(1))((1+θ
(1))x

(1)
0 + x

(2)
0 )

+(1−θ
(2))x

(1)
0 +(x

(2)
0 )2

A2(x
(1)
0 ,x

(2)
0 ) = (1−θ

(2))((1+θ
(1))x

(1)
0 + x

(2)
0 )

A3(x
(1)
0 ,x

(2)
0 ) = (1−θ

(2))x
(1)
0 +(x

(2)
0 )2

(14)

As a result, x f , ∀x f ∈ X , can be reached with input se-
quence of length two {u0,u1}. Thus, the set of reachable
states XR is X . Hence, the system (11) is reachable and
consequently, quasi-reachable. Since the system (11) is al-
gebraically observable and quasi-reachable, it is canonical.
For the implementation purposes, the aim is to express u0

and u1 as a function of the final states x
(1)
f and x

(2)
f and the

initial conditions x
(1)
0 and x

(2)
0 . Thus, x

(1)
k , x

(2)
k and their it-

erates must be eliminated in (11) (function eliminate). It

4



results a set of equations to solve in u0 and u1 (function
solve).

4.1.3 Solving (6) in (θ̂ ,T )

Let define the map T : X → X :

T (xk) =

[

T1(x
(1)
k ,x

(2)
k )

T2(x
(1)
k ,x

(2)
k )

]

(15)

with T1 and T2 two maps. Condition (6)(iii) implies:

T1(x
(1)
k ,x

(2)
k ) = x

(1)
k (16)

Condition (6)(ii) implies, for the equation (11a):

(θ̂ (1) −θ
(1))x

(1)
k +T2(x

(1)
k ,x

(2)
k )− x

(2)
k = 0 (17)

This leads to θ̂
(1) = θ

(1), ∀x
(1)
k 6= 0, and T2(x

(1)
k ,x

(2)
k ) = x

(2)
k ,

∀x
(2)
k . Consequently, T is reduced to the identity map on R

2.
Condition (6)(ii) implies, for the equation (11b):

(θ̂ (2) −θ
(2))x

(1)
k = 0 (18)

and then, (18) implies θ̂
(2) = θ

(2), ∀x
(1)
k 6= 0, ∀x

(2)
k . Hence,

Theorem 2 is fulfilled. Thus, the system (11) is structurally
identifiable. For the implementation, it leads to solve (16),

(17) and (18) in θ̂
(1), θ̂

(2), T1(x
(1)
k ,x

(2)
k ) and T2(x

(1)
k ,x

(2)
k )

(function solve in Maxima).

4.2 Example 2

Consider the following system:















x
(1)
k+1 = θ

(1)(x
(1)
k )2 +θ

(2)x
(2)
k +uk (a)

x
(2)
k+1 = θ

(3)x
(1)
k (b)

yk = x
(1)
k (c)

(19)

where xk = [x
(1)
k x

(2)
k ]T ∈ X ⊂ R

2. The initial condi-

tion, x0 = [x
(1)
0 x

(2)
0 ]T , is independent of the parame-

ters. The structural identifiability of the parameter vector

θ = [θ (1)
θ

(2)
θ

(3)]T is tested with the proposed ap-
proach.

4.2.1 Algebraic observability

By using (19c) and (19a) successively, it can be shown that
the two states can be rewritten as polynomials of the observ-
able quantities:

x
(1)
k = yk

x
(2)
k =

yk+1 −θ
(1)y2

k −uk

θ (2)

(20)

assuming that θ
(2) 6= 0. Consequently, the system (19) is

algebraically observable.

4.2.2 Quasi-reachability

Consider x f = [x
(1)
f x

(2)
f ]T ∈ X , an arbitrary final state to

be reached from a given initial condition x0 ∈ X . By two
compositions of (19a) and (19b), it is possible to find an
input sequence that allows reaching x f , for all x f ∈ X :































u0 =
x
(2)
f −θ

(1)
θ

(3)(x
(1)
0 )2 −θ

(2)
θ

(3)x
(2)
0

θ (3)

u1 = x
(1)
f −θ

(2)
θ

(3)x
(1)
0 −θ

(1)
(

θ
(1)(x

(1)
0 )2 +θ

(2)x
(2)
0

+
x
(2)
f −θ

(1)
θ

(3)(x
(1)
0 )2 −θ

(2)
θ

(3)x
(2)
0

θ (3)

)2

(21)
assuming that θ

(3) 6= 0. As previously, it is shown that x f ,
∀x f ∈ X , can be reached with input sequence of length
two. Thus, the set of reachable states XR is X . Hence, the
system (19) is reachable and consequently, quasi-reachable.
Since the system (19) is algebraically observable and quasi-
reachable, it is canonical.

4.2.3 Solving (6) in (θ̂ ,T )

Let define the map T : X → X :

T (xk) =

[

T1(x
(1)
k ,x

(2)
k )

T2(x
(1)
k ,x

(2)
k )

]

(22)

with T1 and T2 two maps. Condition (6)(iii) implies:

T1(x
(1)
k ,x

(2)
k ) = x

(1)
k (23)

Condition (6)(ii) implies, for the equation (19a):

(θ̂ (1) −θ
(1))(x

(1)
k )2 + θ̂

(2)T2(x
(1)
k ,x

(2)
k )−θ

(2)x
(2)
k = 0 (24)

This leads to θ̂
(1) = θ

(1), ∀x
(1)
k 6= 0, and T2(x

(1)
k ,x

(2)
k ) =

θ
(2)x

(2)
k

θ̂ (2)
, ∀x

(2)
k . Condition (6)(ii) implies, for the equation

(19b):

(θ̂ (3) −
θ

(2)
θ

(3)

θ̂ (2)
)x

(1)
k = 0 (25)

The equation (25) implies θ̂
(2)

θ̂
(3) = θ

(2)
θ

(3), ∀x
(1)
k 6= 0,

∀x
(2)
k . Consequently, T (xk) becomes:







x
(1)
k

θ
(2)

θ̂ (2)
x
(2)
k






(26)

Theorem 2 is not fulfilled. Thus, the system (19) is not
structurally identifiable.
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5 Conclusion

In this paper, a new condition for testing the identifiability
of discrete-time polynomial systems has been established.
This condition has extended to discrete-time systems the
local state isomorphism approach for continuous-time sys-
tems and constitutes an alternative to the other approaches.
Extending the result to other types of nonlinearity is a chal-
lenging problem.
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A Appendix

Consider the system Σ (3).

Definition 6 A K-space is a topological space X together
with an algebra of polynomial functions on X.

Definition 7 The system Σ is a K-system if and only if the
state space X is a K-space and the dynamic map f and the
output map h are polynomial maps.

Definition 8 The system Σ is algebraically observable if and
only if each state is polynomial in the observable quantities
(input uk and output yk).

Definition 9 The set of reachable states XR from the initial
condition x0 is the set of states which can be reached through
a finite non zero input sequence {uk}

N
0 , where N represents

a finite positive integer.

Definition 10 The system Σ is reachable if and only if XR =
X . The system Σ is quasi-reachable if the closure of XR is
X .

Definition 11 The system Σ is canonical if and only if it is
algebraically observable and quasi-reachable.

Definition 12 The input/output map of Σ is a function that
maps, for a given initial condition x0, a finite sequence of
non zero input, {uk}

N
0 , to a finite sequence of output, denoted

{yk(x0,uk)}
N
0 .

Definition 13 Given a response map C , the system realizes
C if and only if C = CΣ.
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