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A new theorem is provided to test the identifiability of discrete-time systems with polynomial nonlinearities. That extends to discrete-time systems the local state isomorphism approach for continuous-time systems. Two examples are provided to illustrate the approach.

Several approaches for testing the parameter identifiability have been proposed in the literature for continuous and discrete-time controlled systems. An overview for continuous-time nonlinear systems can be found in [START_REF] Walter | Nonlinear Systems[END_REF] [START_REF] Walter | On the identifiability and distinguishability of nonlinear parametric models[END_REF] including the input/output relation approach, the output equality approach and the local state isomorphism approach. The input/output relation approach, based on algebra, leads, under some conditions, to a necessary and sufficient condition of identifiability. In the continuous-time case [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF][7], the system is transformed, by eliminating the state variables considered as unknowns, into a system depending only on the input, the output, their derivatives and the parameters. If, from the resulting system, the parameters can be rewritten as a unique expression depending only on the input, the output and their derivatives, they are identifiable. For instance, for polynomial systems, the state elimination can be achieved with the Gröbner bases approach [START_REF] Buchberger | An algorithm for finding a basis for the residue class ring of zero-dimensional polynomial ideal[END_REF], the characteristic set approach [START_REF] Ritt | Differential algebra[END_REF] or the resultant approach [START_REF] Wang | Elimination theory, methods and practice[END_REF]. In the discrete-time case, the derivatives are replaced by the iterates [START_REF] Anstett | Chaotic cryptosystems: cryptanalysis and identifiability[END_REF]. In general, in the input/output relation ⋆ Corresponding author F. Anstett. approach, the initial conditions on the state are not considered since they are eliminated. However, in [START_REF] Denis-Vidal | Some effective approaches to check the identifiability of uncontrolled nonlinear systems[END_REF][5] [START_REF] Saccomani | Parameter identifiability of nonlinear systems: the role of initial conditions[END_REF], it is shown that the input/output relation approach can fail when the system starts at specific initial condition and, in this particular case, another procedure is provided. The output equality approach leads only, in general, to a sufficient condition of identifiability. It consists in testing whether the equality of two output trajectories from the same initial condition, depending respectively on two parameter values, implies the equality of both these parameter values. If so, the parameters are identifiable. In the continuous-time case, this is formulated as the Taylor series expansion approach [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF]. In the discrete-time case, the equality of the output trajectories is tested directly, sample by sample [START_REF] Nõmm | Identifiability of discrete-time nonlinear systems[END_REF]. The local state isomorphism approach takes into account the initial conditions on the state and leads to a necessary and sufficient condition of identifiability for controlled systems. This approach, only proposed for continuous-time systems [START_REF] Tunali | New results for identifiability of nonlinear systems[END_REF] [START_REF] Vajda | State isomorphism approach to global identifiability of nonlinear systems[END_REF], is based on the isomorphism theorem [START_REF] Sussmann | Existence and uniqueness of minimal realizations of nonlinear systems[END_REF]. Basically, this theorem states that if the system is locally reduced (locally observable and controllable) and is conjugated to another system, up to an isomorphism, the system is identifiable if this isomorphism is unique and is the identity. In the literature, there is no attempt to extend the local state isomorphism approach to the discrete-time case. And yet, having several approaches at hand can be useful, because it is difficult to determine a priori the best suited approach for a particular case.

In this paper, the local state isomorphism approach is extended to discrete-time systems. Our study is restricted to polynomial systems. However, this restriction is not severe Preprint submitted to Automatica 25 March 2008 as explained in [START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF].

The paper is organized as follows. In Section 2, a formal definition of identifiability for discrete-time nonlinear systems is recalled. Then, in Section 3, a new condition for testing the identifiability of discrete-time systems with polynomial nonlinearities is derived. Finally, in Section 4, two examples illustrate the proposed approach.

Identifiability

Consider the discrete-time system of the general form:

Σ θ x k+1 = f θ (x k , u k ) y k = h θ (x k , u k ) (1) 
where The following definitions, borrowed from [START_REF] Nõmm | Identifiability of discrete-time nonlinear systems[END_REF], will be considered.

x k ∈ X ⊂ R n is
Definition 1 An input sequence over a window of iterations [0, N], denoted by {u k } N 0 , is called an admissible input on [0, N] if the difference equation ( 1) admits a unique local solution.

For any positive N, U N denotes hereafter the space of all sequences of admissible inputs {u k } N 0 .

Definition 2

The system Σ θ is locally x 0 -identifiable at θ , through the admissible input sequence {u k } N 0 and for a given initial condition x 0 , if there exists an open neighborhood of θ , v(θ ) ⊂ Θ, such that for any θ ∈ v(θ ) and for any θ ∈ v(θ ):

θ = θ ⇒ {y k (x 0 , u k , θ )} N 0 = {y k (x 0 , u k , θ )} N 0 ( 2 
)
where {y k (x 0 , u k , θ )} N 0 represents the input/output behavior of the system Σ θ (1), depending on the parameter vector θ , 1 Local identifiability defined in [START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF] is called algebraic identifiability in [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF].

i.e. the output sequence, from the initial condition x 0 , for the input u k , over the time interval [0, N].

Definition 2 is the direct counterpart of the definition given in [START_REF] Tunali | New results for identifiability of nonlinear systems[END_REF] for continuous-time nonlinear systems.

Definition 3

The system Σ θ is structurally identifiable if there exist N > 0, an open subset X 0 ⊂ X and some dense subsets Θ and

U N 0 ⊂ U N , such that, ∀ x 0 ∈ X 0 , a.e. θ ∈ Θ and ∀ {u k } N 0 ∈ U N 0 , the system Σ θ is locally x 0 -identifiable at θ through the admissible input sequence {u k } N 0 .
Hereafter, the identifiability will be considered in the sense of Def. 3. In the next section, the local state isomorphism approach for testing the identifiability is presented.

Approach based on the isomorphism theorem

The proposed approach is based on the isomorphism theorem for discrete-time polynomial systems [START_REF] Sontag | Polynomial response maps[END_REF], recalled in the following. The definitions required to render this theorem self-consistent are given in Appendix A.

Isomorphism theorem

Consider the discrete-time polynomial system Σ of the general form:

Σ x k+1 = f (x k , u k ) y k = h(x k , u k ) (3) 
where

x k ∈ X ⊂ R n , u k ∈ U ⊂ R m and y k ∈ Y ⊂ R p .
System (3) is called a K-system (Appendix A, Def. 7) since the functions f and h are polynomials in x k and u k . The following assumptions are required to state the isomorphism theorem.

• Each state x k of Σ can be rewritten as a polynomial in y k , u k and their iterates, i.e. Σ is algebraically observable (Appendix A, Def. 8). • It is possible to find an input sequence allowing, from a given initial condition x 0 ∈ X , to reach a final state x f , for almost every x f ∈ X , except a set of zero measure, i.e. Σ is quasi-reachable (Appendix A, Def. 9 and 10). Since Σ is algebraically observable and quasi-reachable, it is canonical (Appendix A, Def. 11). • The system Σ admits, or realizes, a response map defined as follows.

Definition 4

The response map C Σ of Σ is the function that maps, for a given x 0 , a finite sequence of non zero inputs, {u k } N 0 , to the output y N :

C Σ (u 0 , . . . , u N ) = h( f N (x 0 , u 0 ), u N ) = y N with: f N (x 0 , u 0 ) = x 0 if N = 0 f N (x 0 , u 0 ) = f ( f N-1 (x 0 , u 0 ), u N-1 ) ∀N ≥ 1 (4) 
Rather than working with the input/output map (Appendix A, Def. 12) of the system as in Def. 2, we can alternatively consider the response map (4) because there is an one-toone correspondence between the input/output map and the response map (see [START_REF] Sontag | Polynomial response maps[END_REF], page 55).

The following definition of a K-system isomorphism is needed for the isomorphism theorem, given hereafter.

Definition 5 [12] A K-system isomorphism T : Σ → Σ is a map T : X → X satisfying T (x k ) = xk and, ∀x k ∈ X , ∀u k ∈ U : (i) x0 = T (x 0 ) (ii) f (T (x k ), u k ) = T ( f (x k , u k )) (iii) ĥ(T (x k ), u k ) = h(x k , u k ) (5)
with f and f the dynamic functions and h and ĥ the output functions of the K-systems Σ and Σ respectively.

Theorem 1 [START_REF] Sontag | Polynomial response maps[END_REF] Let C be a polynomial response map. Then there exists a canonical K-system Σ realizing C . If Σ is another canonical K-system realizing C , there is a unique K-system isomorphism T : Σ → Σ.

A condition for testing the identifiability in the discrete-time case, according to Def. 3, is formulated in the next section.

Main result

Consider the system Σ θ of the form (1) with f θ and h θ being polynomials in x k and u k and depending on the parameter vector θ . The response map of Σ θ , denoted C Σ θ , is given by C Σ θ (u 0 , . . . , u N ) = h θ ( f N θ (x 0 (θ ), u 0 ), u N ). The notation x 0 (θ ) means that one or several components of the initial condition x 0 can be considered as parameter. Consider also Σ θ , the same system as Σ θ , except that it depends on the parameter vector θ . The response map of

Σ θ is C Σ θ (u 0 , . . . , u N ) = h θ ( f N θ (x 0 ( θ ), u 0 ), u N ).
Theorem 2 If Σ θ (1) is a canonical K-system, then it is structurally identifiable if and only if there exist N > 0, an open subset X 0 ⊂ X , some dense subsets Θ and

U N 0 ⊂ U N , such that, ∀x 0 ∈ X 0 , ∀x k ∈ X , ∀{u k } N 0 ∈ U N 0 , a.e. θ ∈ Θ, a.e. θ ∈ Θ, for any K-system isomorphism T : Σ θ → Σ θ , (i) x 0 ( θ ) = T (x 0 (θ )) (ii) f θ (T (x k ), u k ) = T ( f θ (x k , u k )) (iii) h θ (T (x k ), u k ) = h θ (x k , u k ) (6)
implies that θ = θ .

Proof Necessity

For necessity, the following implication is shown. The system Σ θ is structurally identifiable implies that there exist N > 0, an open subset X 0 ⊂ X , some dense subsets Θ and

U N 0 ⊂ U N , such that, ∀x 0 ∈ X 0 , ∀x k ∈ X , ∀{u k } N 0 ∈ U N 0 , a.e. θ ∈ Θ, a.e. θ ∈ Θ, for any K-system isomorphism T : Σ θ → Σ θ , (6) ⇒ θ = θ .
The proof is made by the contrapositive. ∀N > 0, ∀X 0 ⊂ X an open subset, ∀Θ and ∀U N 0 ⊂ U N some dense subsets, there exist [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF] are fulfilled and θ = θ imply that the system Σ θ is not structurally identifiable. Assume that, ∀N > 0, ∀X 0 ⊂ X an open subset, ∀Θ and ∀U N 0 ⊂ U N some dense subsets, there exist

x 0 ∈ X 0 , x k ∈ X , {u k } N 0 ∈ U N 0 , θ ∈ Θ, θ ∈ Θ, a K-system isomorphism T : Σ θ → Σ θ such that the relations
x 0 ∈ X 0 , x k ∈ X , {u k } N 0 ∈ U N 0 , θ ∈ Θ, θ ∈ Θ, a K-system isomorphism T : Σ θ → Σ θ
such that the relations ( 6) are fulfilled and θ = θ . According to Def. 4, the response map of Σ θ is:

C Σ θ (u 0 , . . . , u N ) = h θ ( f N θ (x 0 (θ ), u 0 )), u N ) (7) 
By (6(iii)), ( 7) can be rewritten as:

C Σ θ (u 0 , . . . , u N ) = h θ (T ( f N θ (x 0 (θ ), u 0 )), u N ) (8) 
By compositions of (6(ii)), ( 8) can be rewritten as:

C Σ θ (u 0 , . . . , u N ) = h θ ( f N θ (T (x 0 (θ )), u 0 ), u N ) (9) 
By (6(i)), ( 9) can be rewritten as:

C Σ θ (u 0 , . . . , u N ) = h θ ( f N θ (x 0 ( θ ), u 0 ), u N ) = C Σ θ (u 0 , . . . , u N ) (10 
) According to [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF], the systems Σ θ and Σ θ have the same response map and thus, the same input/output behavior (there is an one-to-one correspondence between the input/output map and the response map), with different parameters θ and θ . By Def. 3, the system Σ θ is not structurally identifiable, which proves the contrapositive.

Sufficiency

For sufficiency, the following implication is shown. There exist N > 0, an open subset X 0 ⊂ X , some dense subsets Θ and 6) ⇒ θ = θ imply that the system Σ θ is structurally identifiable. The proof is made by the contrapositive. The system Σ θ is not structurally identifiable implies that, ∀N > 0, ∀X 0 ⊂ X an open subset, ∀Θ and ∀U N 0 ⊂ U N some dense subsets, there exist x 0 ∈ X [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF] are fulfilled and θ = θ . Assume that the system Σ θ is canonical and is not structurally identifiable. It means that, ∀N > 0, ∀X 0 ⊂ X an open subset, ∀Θ and ∀U N 0 ⊂ U N some dense subsets, there exist x 0 ∈ X 0 , x k ∈ X , {u k } N 0 ∈ U N 0 , θ ∈ Θ, θ ∈ Θ such that the systems Σ θ and Σ θ have the same input/output behavior, and so the same response map C Σ θ = C Σ θ (there is a one-to-one correspondence between the input/output map and the response map), with different parameters θ and θ . On the other hand, if, ∀N > 0, ∀X 0 ⊂ X , ∀Θ and

U N 0 ⊂ U N , such that, ∀x 0 ∈ X 0 , ∀x k ∈ X , ∀{u k } N 0 ∈ U N 0 , a.e. θ ∈ Θ, a.e. θ ∈ Θ, for any K-system isomorphism T : Σ θ → Σ θ , (
0 , x k ∈ X , {u k } N 0 ∈ U N 0 , θ ∈ Θ, θ ∈ Θ, a K-system isomorphism T : Σ θ → Σ θ such that the relations
∀U N 0 ⊂ U N , there exist x 0 ∈ X 0 , x k ∈ X , {u k } N 0 ∈ U N 0 , θ ∈ Θ, θ ∈ Θ such that C Σ θ = C Σ θ ,
according to Theorem 1 with Σ = Σ θ , f = f θ and ĥ = h θ , there exists a unique K-system isomorphism T : Σ θ → Σ θ fulfilling [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF]. This completes the proof.

Remark 1 When Σ θ is structurally identifiable, according to Theorem 2, the only value θ that satisfies ( 6) is θ = θ . From [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF], T (x k ) = x k , i.e. the identity map on R n , is an obvious solution. Since the isomorphism T is unique, the identity map is the unique solution. Conversely, if θ = θ then T (x k ) = x k .

Testing the identifiability

The proposed approach for testing the identifiability of the system Σ θ of the form (1) with f θ and h θ being polynomials in x k and u k is summed up by the steps below.

(1) Check whether Σ θ is algebraically observable.

(2) Check whether Σ θ is quasi-reachable. If Σ θ is algebraically observable and quasi-reachable, it is canonical.

(3) Solve the three equations [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF] in the variables ( θ , T ). If the only solution is ( θ , T ) = (θ , 1 n ), where 1 n is the identity map on R n (n is the dimension of the system), Σ θ is structurally identifiable.

The steps (1) and ( 2) consist in checking whether Σ θ is canonical, a necessary property required to apply Theorem 2. Only step (3) represents actually the test of identifiability.

It is worth noting that, for the computation, one can resort to computer algebra system, for instance the software Maxima, available for free at http://maxima.sourceforge.net.

In the next section, two examples illustrate the proposed approach.

Examples

Example 1

Consider the following system:

       x (1) k+1 = (1 + θ (1) )x (1) k + x (2) k (a) x (2) k+1 = (1 -θ (2) )x (1) k + (x (2) k ) 2 + u k (b) y k = x (1) k (c) (11) 
where

x k = [x (1) k x (2) k ] T ∈ X ⊂ R 2 . The initial condi- tion, x 0 = [x (1) 0 x (2)
0 ] T , is independent of the parameters. The structural identifiability of the parameter vector θ = [θ (1) θ (2) ] T is tested with the proposed approach.

Algebraic observability

By using (11c) and (11a) successively, it can be shown that the two states can be rewritten as polynomials of the observable quantities:

x (1) k = y k x (2) k = y k+1 -(1 + θ (1) )y k (12)
Consequently, the system ( 11) is algebraically observable. For the implementation, the aim is to express

x (1) k and x (2)
k in function of y k and its iterates. To this end, [START_REF] Ritt | Differential algebra[END_REF] is iterated up to its observability indice in order to get as much equations as unknowns, the unknowns being the iterates of x k to be solved (function solve).

Quasi-reachability

Consider x f = [x (1) f x (2)
f ] T ∈ X , an arbitrary final state to be reached from a given initial condition x 0 ∈ X . By two compositions of (11a) and (11b) successively, it is possible to find an input sequence that allows reaching x f , for all x f ∈ X :

       u 0 = x (1) f -A 1 (x (1) 0 , x (2) 0 ) u 1 = x (2) f -A 2 (x (1) 0 , x (2) 0 ) -(A 3 (x (1) 0 , x (2) 0 ) + x (1) f -A 1 (x (1) 0 , x (2) 0 )) 2 (13) with A 1 (x (1) 0 , x (2) 0 ) = (1 + θ (1) )((1 + θ (1) )x (1) 0 + x (2) 0 ) + (1 -θ (2) )x (1) 0 + (x (2) 0 ) 2 A 2 (x (1) 0 , x (2) 0 ) = (1 -θ (2) )((1 + θ (1) )x (1) 0 + x (2) 0 ) A 3 (x (1) 0 , x (2) 0 ) = (1 -θ (2) )x (1) 0 + (x (2) 0 ) 2 (14)
As a result, x f , ∀x f ∈ X , can be reached with input sequence of length two {u 0 , u 1 }. Thus, the set of reachable states X R is X . Hence, the system (11) is reachable and consequently, quasi-reachable. Since the system (11) is algebraically observable and quasi-reachable, it is canonical. For the implementation purposes, the aim is to express u 0 and u 1 as a function of the final states x k and their iterates must be eliminated in [START_REF] Ritt | Differential algebra[END_REF] (function eliminate). It results a set of equations to solve in u 0 and u 1 (function solve).

Solving (6) in ( θ , T )

Let define the map T : X → X :

T (x k ) = T 1 (x (1) k , x (2) k ) T 2 (x (1) k , x (2) k ) (15) 
with T 1 and T 2 two maps. Condition (6)(iii) implies:

T 1 (x (1) k , x (2) k ) = x (1) k (16)
Condition (6)(ii) implies, for the equation (11a):

( θ (1) -θ (1) )x (1) k + T 2 (x (1) k , x (2) k ) -x (2) k = 0 ( 17 
)
This leads to θ (1) = θ (1) , ∀x

k = 0, and

T 2 (x (1) k , x (2) k ) = x (2) k , ∀x (2) 
k . Consequently, T is reduced to the identity map on R 2 . Condition (6)(ii) implies, for the equation (11b):

( θ (2) -θ (2) )x (1) k = 0 ( 18 
)
and then, (18) implies θ

(2) = θ (2) , ∀x (1) 
k = 0, ∀x (2) 
k . Hence, Theorem 2 is fulfilled. Thus, the system ( 11) is structurally identifiable. For the implementation, it leads to solve ( 16), ( 17) and [START_REF] Walter | Identification of parametric models from experimental data[END_REF] 

in θ (1) , θ (2) , T 1 (x (1) k , x (2) k ) and T 2 (x (1) k , x (2) k ) (function solve in Maxima).

Example 2

Consider the following system:

       x (1) k+1 = θ (1) (x (1) k ) 2 + θ (2) x (2) k + u k (a) x (2) k+1 = θ (3) x (1) k (b) y k = x (1) k (c) (19) 
where

x k = [x (1) k x (2) k ] T ∈ X ⊂ R 2 . The initial condi- tion, x 0 = [x (1) 0 x (2)
0 ] T , is independent of the parameters. The structural identifiability of the parameter vector θ = [θ (1) θ (2) θ (3) ] T is tested with the proposed ap- proach.

Algebraic observability

By using (19c) and (19a) successively, it can be shown that the two states can be rewritten as polynomials of the observable quantities:

x (1) k = y k x (2) k = y k+1 -θ (1) y 2 k -u k θ (2) (20)
assuming that θ (2) = 0. Consequently, the system ( 19) is algebraically observable.

Quasi-reachability

Consider x f = [x (1) f x (2)
f ] T ∈ X , an arbitrary final state to be reached from a given initial condition x 0 ∈ X . By two compositions of (19a) and (19b), it is possible to find an input sequence that allows reaching x f , for all x f ∈ X :

               u 0 = x (2) f -θ (1) θ (3) (x (1) 0 ) 2 -θ (2) θ (3) x (2) 0 θ (3) u 1 = x (1) f -θ (2) θ (3) x (1) 0 -θ (1) θ (1) (x (1) 0 ) 2 + θ (2) x (2) 0 + x (2) f -θ (1) θ (3) (x (1) 0 ) 2 -θ (2) θ (3) x (2) 0 θ (3) 2 
(21) assuming that θ (3) = 0. As previously, it is shown that x f , ∀x f ∈ X , can be reached with input sequence of length two. Thus, the set of reachable states X R is X . Hence, the system ( 19) is reachable and consequently, quasi-reachable. Since the system ( 19) is algebraically observable and quasireachable, it is canonical.

Solving (6) in ( θ , T )

Let define the map T : X → X :

T (x k ) = T 1 (x (1) k , x (2) 
k ) T 2 (x (1) k , x (2) k ) (22) 
with T 1 and T 2 two maps. Condition (6)(iii) implies: 

T 1 (x (1) k , x (2) k ) = x
k , x (2) k ) = θ (2) x (2) k θ (2)
, ∀x

k . Condition (6)(ii) implies, for the equation (19b):

( θ (3) - θ (2) θ (3) θ (2) )x (1) k = 0 ( 25 
)
The equation (25) implies θ (2) θ (3) = θ (2) θ (3) , ∀x

k = 0, ∀x (1) 
k . Consequently, T (x k ) becomes:

   x (1) k θ (2) θ (2) x (2) k    ( 26 
)
Theorem 2 is not fulfilled. Thus, the system (19) is not structurally identifiable.

Conclusion

In this paper, a new condition for testing the identifiability of discrete-time polynomial systems has been established. This condition has extended to discrete-time systems the local state isomorphism approach for continuous-time systems and constitutes an alternative to the other approaches.

Extending the result to other types of nonlinearity is a challenging problem.
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	in the literature [8][14][15][18]. Local and global identifi-
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	a finite number of solutions for θ ∈ Θ and thus holds for
	θ ∈ v(θ ) ⊂ Θ, where v(θ ) is a neighborhood of θ . Local
	identifiability is a necessary condition for global identifiabil-
	ity which ensures the uniqueness of the solution for θ ∈ Θ.
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A Appendix

Consider the system Σ (3). Definition 6 A K-space is a topological space X together with an algebra of polynomial functions on X.

Definition 7

The system Σ is a K-system if and only if the state space X is a K-space and the dynamic map f and the output map h are polynomial maps.

Definition 8 The system Σ is algebraically observable if and only if each state is polynomial in the observable quantities (input u k and output y k ).

Definition 9 The set of reachable states X R from the initial condition x 0 is the set of states which can be reached through a finite non zero input sequence {u k } N 0 , where N represents a finite positive integer.

Definition 10

The system Σ is reachable if and only if X R = X . The system Σ is quasi-reachable if the closure of X R is X .

Definition 11

The system Σ is canonical if and only if it is algebraically observable and quasi-reachable.

Definition 12

The input/output map of Σ is a function that maps, for a given initial condition x 0 , a finite sequence of non zero input, {u k } N 0 , to a finite sequence of output, denoted {y k (x 0 , u k )} N 0 .

Definition 13 Given a response map C , the system realizes C if and only if C = C Σ .