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Abstract. We prove a functional central limit theorem for the empirical pro-
cess of a stationary process Xt = Yt + Vt, where Yt is a long memory mov-
ing average in i.i.d. r.v.’s ζs, s ≤ t, and Vt = V (ζt, ζt−1, . . .) is a weakly de-
pendent nonlinear Bernoulli shift. Conditions of weak dependence of Vt are
written in terms of L2−norms of shift-cut differences V (ζt, . . . , ζt−n, 0, . . . , ) −
V (ζt, . . . , ζt−n+1, 0, . . .). Examples of Bernoulli shifts are discussed. The limit
empirical process is a degenerated process of the form f(x)Z, where f is the
marginal p.d.f. of X0 and Z is a standard normal r.v. The proof is based on a
uniform reduction principle for the empirical process.

1 Introduction

Time series analysis has important statistical applications in various fields. For example,

nonlinear times series are used to model crashes in financial markets.

The main object of times series analysis is the study of short-range dependent random se-

quences for which the usual Donsker and the Empirical Functional Limit Theorems (EFLT)

hold with appropriate modifications. Rosenblatt (1961), in his seminal work, and after-

wards, Taqqu (1975), Dobrushin and Major (1979) and other authors found that alternative
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limit behaviors may happen, in particular, non-
√
N rates and non-central limits were exhib-

ited. Most of these authors studied Gaussian subordinated case, or partial sums of nonlinear

functions of a stationary Gaussian process with long-range dependence. The EFLT (with

normalization � N1/2) for such Gaussian subordinated processes was proved in Dehling

and Taqqu (1989). An important feature of their EFLT is the fact that the limiting empiri-

cal process is degenerated, i.e. it has the form g(x)Z, with some deterministic function g(x)

and a random variable Z. Similar results for linear processes with long-range dependence

were obtained in Giraitis, Koul and Surgailis (1996), Ho and Hsing (1996), Giraitis and

Surgailis (1999) and other papers.

It is clear that Gaussian subordination or linearity are very restrictive structural assump-

tions which might be hard to justify in practice. In this paper we discuss the EFLT for a

class of long-range dependent processes which are neither linear nor Gaussian subordinated.

These are strictly stationary processes with discrete time t ∈ Z := {0,±1,±2, . . .} which

can be represented as the sum

Xt = Yt + Vt (1.1)

of a linear long memory process Yt and (nonlinear) short memory process Vt of a rather

general form. More precisely, we assume that

Yt :=
∞∑
i=0

biζt−i (1.2)

is a moving average process in i.i.d. random variables ζi, i ∈ Z with zero mean and unit

variance, with hyperbolically decaying coefficients

bi ∼ c0i
d−1 (∃ 0 < d < 1/2, c0 6= 0). (1.3)

The short memory process Vt in (1.1) is the so-called Bernoulli shift:

Vt := V (ζt, ζt−1, . . .), (1.4)

where V (z0, z1, . . .) is a Borel function on RZ+ ,Z+ = {0, 1, . . .}. The short memory prop-

erty of Vt roughly means that the dependence of the function V (z0, z1, . . .) on coordinates

zn is negligible with n → ∞. Rigorous definition of the short memory property of Vt in-

volves L2−norms of the shift-cut differences V (ζ0, . . . , ζ−n, 0, . . .)− V (ζ0, . . . , ζ−n+1, 0, . . .),

see Section 2, which must decrease sufficiently fast (e.g. subexponentially or hyperbolically)

with n.
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Section 2 contains the main result of the paper (the EFLT for the empirical process of

Xt in (1.1)-(1.4)). Concrete examples of Bernoulli shifts Vt in (1.4) are presented in Section

3. The remaining Sections 4-7 are given to the proof of the EFLT. It uses martingale

techniques introduced in Ho and Hsing (1996) which were later applied by several authors.

Acknowledgement. The authors are grateful to the anonymous referee for careful reading

and many useful comments.

2 Main result

Let X1, . . . , XN be the observed sample from the stationary process Xt of (1.1). The

empirical c.d.f. (empirical process)

F̂N (x) := N−1
N∑

t=1

I(Xt ≤ x), x ∈ R, (2.1)

is a consistent estimator of the marginal c.d.f. F (x) = P [X0 ≤ x]. In fact, from ergodicity of

the Bernoulli shift and the Glivenko-Cantelli theorem it follows that F̂N (x) → F (x) (N →

∞) uniformly in x ∈ R a.s. Write f(x) := F ′(x) for the marginal p.d.f. of Xt, provided it

exists. In addition to (1.3), we shall assume the following conditions on the innovations:

|Eeiuζ0 | ≤ C(1 + u2)−δ (∃C, 0 < δ ≤ 1/4, ∀u ∈ R) (2.2)

and

E|ζ0|3 <∞. (2.3)

We do not consider the ”best” (i.e. the larger) δ available here. If the inequality in (2.2)

is satisfied for δ > 1/4 it is also satisfied for δ = 1/4. Note that condition (2.2) is very

general because it does not imply that the density of ζ exists. But it excludes discrete

distributions. If the inequality in (2.2) is satisfied with δ > 1/4, then the density exists in

L2, and if δ > 1/2 the density is bounded.

Put ȲN := N−1
∑N

t=1 Yt. Write =⇒D(R̄) for weak convergence of random processes in

the Skorohod space D(R̄), R̄ := [−∞,∞] with the sup-norm topology, and =⇒ for weak

convergence of finite dimensional distributions. Let

γn := E1/2(V n
0 − V n−1

0 )2, (2.4)
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where

V n
t := V (ζt, . . . , ζt−n, 0, 0, . . .) (2.5)

is the truncated Bernoulli shift (1.4) which is (n+ 1)−dependent stationary process.

Theorem 1 Assume conditions (1.2), (1.3), (2.2), (2.3). Moreover, let

γn ≤ Cn−ρ, (2.6)

where

ρ > max
{

24− 22d, 13− 11d+
3(1− 2d)

4d

}
. (2.7)

Then

sup
x∈R

N (1/2)−d
∣∣∣F̂N (x)− F (x) + f(x)ȲN

∣∣∣ = op(1). (2.8)

Note that the maximum in the condition (2.7) is 24 − 22d > 13 on most of the interval

d ∈ (0, 1/2), with a change occurring very close to 0 at d ≈ 0.06.

Theorem 1 is the uniform reduction principle for the empirical process (2.1) which extends

the reduction principle of Dehling and Taqqu (1989) to Bernoulli shifts of the form (1.1)-

(1.4). It is well-known (Davydov (1970)) that the sample mean ȲN in (2.8) is asymptotically

normal: N (1/2)−dȲN =⇒ c̃Z, where Z ∼ N(0, 1) and c̃ := (c20B(d, 2 − 2d)/d(1 + 2d))1/2,

where B(·, ·) is the beta function. From this and the above theorem, it easily follows the

EFLT below.

Corollary 2 Under conditions of Theorem 1,

N (1/2)−d(F̂N (x)− F (x)) =⇒D(R̄) c̃f(x)Z, (2.9)

where Z ∼ N(0, 1).

The fact that the functional dependence of the limiting empirical process in (2.9) reduces

to marginal p.d.f. of observable time series Xt and does not involve probability densities

or any other characteristics of unobservable components Yt and Vt, is rather surprising. It

appears that many results in statistical inference of long memory processes which rely on

the empirical process can be extended from linear or Gaussian models to the much more

general class (1.1)-(1.4), and that ”short memory perturbation” Vt has no effect on large
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sample behavior of inferential procedures. It also seems that Theorem 1 can be extented to

the asymptotic expansion of the empirical process similar to that given by Ho and Hsing

(1996) in the case of linear process. This problem is closely related to the study of partial

sums processes of nonlinear functions of Xt in (1.1) and the characterization of their limiting

behavior. In the case of Gaussian innovations ζt and finitely dependent Vt, this problem

was studied in Surgailis (2000). Further possibilities involve nonadditive generalizations of

(1.1) of the form Xt = H(Yt; ζt, ζt−1, . . .) and will be studied in another paper.

3 Examples of weakly dependent Bernoulli shifts

1. Volterra processes. A Volterra process is a stationary process defined through a conver-

gent Volterra expansion Vt =
∑∞

k=1 Vk;t, where

Vk;t :=
∑

0≤i1<...<ik

ak;i1,...,ikζt−i1 . . . ζt−ik

converges in L2 provided the weights are square summable:
∑

0≤i1<...<ik
a2

k;i1,...,ik
< ∞. It

is easy to see that in this case γn =
{∑n

k=1

∑
0≤i1<...<ik−1<n a

2
k;i1,...,ik−1,n

}1/2
.

2. ARCH(∞) processes. A particular case of (non-Markovian) Bernoulli shifts is the

ARCH(∞) process (see Robinson (1991), Giraitis, Kokoszka and Leipus (2000), Giraitis

and Surgailis (2002)). It is subject to the recursion equation

Vt =
(
a0 +

∞∑
j=1

ajVt−j

)
ζ2
t , (3.1)

where ζt, t ∈ Z are zero mean i.i.d. r.v.’s, as in (1.2), and aj ≥ 0, j = 0, 1, . . . are nonnegative

coefficients. Put µi := Eζ2i
0 , i ≥ 1. Under the simple condition

µ
1/2
2

∞∑
i=1

ai < 1, (3.2)

equation (3.1) is known to have a unique stationary solution with finite variance and given

by a convergent (although nonorthogonal) Volterra expansion

Vt = a0ζ
2
t

(
1 +

∞∑
`=1

∑
sl<...<s1<t

at−s1 · · · as`−1−s`
ζ2
s1
· · · ζ2

s`

)
. (3.3)

Below we assume (3.2) satisfied. Put

gn :=
n∑

`=1

∑
j1+...+j`=n

αj1 . . . αj`
, (3.4)
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where αn := µ
1/2
2 an and where the second sum is taken over all integers j1, . . . , j` ≥ 1 such

that j1 + . . .+ j` = n.

Proposition 1 For the ARCH(∞) process of (3.3),

γn = E1/2(V n
0 − V n−1

0 )2 ≤ |a0|µ2gn. (3.5)

Proof. We shall assume a0 = 1 for simplicity. From (3.3) we obtain

V n
0 = ζ2

0

(
1 +

n∑
`=1

∑
−n≤s`<...<s1<0

a−s1 . . . as`−1−s`
ζ2
s1
. . . ζ2

s`

)
and therefore

V n
0 − V n−1

0 = ζ2
0ζ

2
−n

n∑
`=1

∑
−n<s`−1<...<s1<0

a−s1 . . . as`−1+nζ
2
s1
. . . ζ2

s`−1
.

Therefore by Minkowski inequality,

γn = µ2E
1/2
{ n∑

`=1

∑
−n<s`−1<...<s1<0

a−s1 . . . as`−1+nζ
2
s1
. . . ζ2

s`−1

}2

≤ µ2

n∑
`=1

∑
−n<s`−1<...<s1<0

a−s1 . . . as`−1+nE
1/2ζ4

s1
. . . E1/2ζ4

s`−1

= µ2

n∑
`=1

∑
0<s1<...<s`−1<n

αs1 . . . αn−s`−1
= µ2gn. �

Inequality (3.5) allows to compare decay rates of γn to those of an, or αn. Note the

following relation between the generating series G(z) :=
∑∞

n=1 gnz
n, A(z) :=

∑∞
n=1 αnz

n:

G(z) =
A(z)

1−A(z)
. (3.6)

Proposition 2

(i) Let an = O(pn
0 ) for some 0 < p0 < 1. Then there exists 0 < p < 1 such that γn = O(pn).

(ii) Let an = O(n−λ) with some λ > 1. Then γn = O(n−λ).

Proof. (i) Note an = O(pn
0 ) implies that A(z) is analytic on {z ∈ C : |z| < p−1

0 }. Moreover,

|A(z)| ≤
∑∞

n=1 αn|z|n ≤
∑∞

n=1 αn < 1 for |z| ≤ 1 and therefore 1−A(z) 6= 0 for |z| < c and

some c > 1. Therefore G(z) is analytic on a disc of the complex plane of radius > 1, which

implies γn = O(gn) = O(pn) for some p < 1.
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(ii) Let gn,` :=
∑

j1+...+j`=n αj1 . . . αj`
so that gn =

∑n
`=1 gn,`. Let 0 ≤ αj ≤ Kj−λ (j ≥

1),
∑∞

j=1 αj =: ᾱ. We shall prove that these assumptions imply

gn,` ≤ D(λ)`3+λᾱ`n−λ, 1 ≤ ` ≤ n, n ≥ 1, (3.7)

with some D(λ) ≥ K independent of n, `.

As ᾱ < 1, so (3.7) implies (ii). Note that it suffices to prove (3.7) for ᾱ =
∑∞

j=1 αj = 1,

in which case
∑∞

n=1 gn,` = 1 for any ` ≥ 1.

We shall prove (3.7) by induction on ` ≥ 1. Note that for any `0 ≥ 1 there exists D̃(`0)

such that

gn,` ≤ D̃(`0)n−λ, 1 ≤ ` ≤ `0, n ≥ 1. (3.8)

Relation (3.8) can be verified directly by definition of gn,` and the fact that λ > 1. In view

of (3.8), it suffices to show (3.7) for sufficiently large ` ≥ `0 = `0(λ) only.

From the the recurrent equation

gn,` =
n−1∑
j=1

αn−jgj,`−1

we obtain

gn,` =
∑

n−(2n/(2`−1))≤j<n

αn−jgj,`−1 +
∑

2n/(2`−1)<j<n

αjgn−j,`−1 =: g′n,` + g′′n,`.

Here,

g′′n,` ≤ K(2n/(2`− 1))−λ
∞∑

j=1

gj,`−1 = K(2n/(2`− 1))−λ = K(2`− 1)λ2−λn−λ.

On the other hand, by the inductive assumption,

g′n,` ≤ D(λ)(`− 1)3+λ(n(2`− 3)/(2`− 1))−λ
∞∑

j=1

αj

= D(λ)(`− 1)3+λ(2`− 1)λ(2`− 3)−λn−λ.

Therefore it suffices to check that for any ` > `0 and some `0 = `0(λ) > 0 large enough,

D(λ)(`− 1)3+λ(2`− 1)λ(2`− 3)−λ +K(2`− 1)λ2−λ ≤ D(λ)`λ+3.

As D(λ) ≥ K, the above inequality reduces to(
1− 1

`

)3+λ(
1 +

2
2`− 3

)λ
+ `−3

(
1− 1

2`

)λ
≤ 1.

7



By taking Taylor expansion in 1/`→ 0, this gives

−λ+ 3
`

+
2λ

2`− 3
+O(`−2) ≤ 0,

which is certainly true for ` > `0(λ) large enough. This proves (3.7) and the proposition. 2

3. Stable Markov chains. It is well-known that a large class of Markov chains Vt may be

represented as a solution of recurrence equation

Vt = M(Vt−1, ζt) (3.9)

where M(u, z) is a (measurable) kernel and {ζt} is an i.i.d. sequence (Kallenberg (1997)).

Consider a more general situation when Vt and ζt take values in Euclidean spaces Rd and

RD, respectively, d,D ≥ 1. Following Duflo (1990), we call (3.9) a Lipschitz Markov model

if the kernel M(u, z) satisfies

E‖M(u, ζ0)−M(v, ζ0)‖2 ≤ a‖u− v‖2 (3.10)

for all u, v ∈ Rd and some a < 1, where ‖ · ‖ is a norm on Rd. If in addition M(u, 0) admits

a fixed point u0, one can show that a stationary and ergodic solution to (3.9) exists, which

can written as a Bernoulli shift Vt = V (ζt, ζt−1, . . .); moreover, in this case (3.9), (3.10)

imply

γn ≤ an/2γ0 = an/2E1/2 ‖M(u0, ζ0)− u0‖2 ,

so that γn decay exponentially, due to a < 1. Particular cases of (3.9) are ARCH-type

processes (corresponding to kernels of the form M(u, z) = A(u) +B(u)z), nonlinear AR(p)

models, and many other processes. See Diaconis and Friedmann (1999), Doukhan (1994,

2002) for further examples and/or details.

4 Plan of the proof of Theorem 1

We first note that this theorem is known in the linear case Xt = Yt, for Vt = 0; see e.g. Ho

and Hsing (1996) and Giraitis and Surgailis (1999). However, the proofs in our paper are

essentially self-contained. Put Xn
t := Yt + V n

t ,

F̂n
N (x) := N−1

N∑
t=1

I(Xn
t ≤ x), Fn(x) := EF̂n

N (x) = P [Xn
0 ≤ x].
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Let

n(N) := Nλ, λ ∈ (0, 1),

where λ ∈ (0, 1) will be specified below. The uniform reduction principle of (2.8) clearly

follows from Lemmas 1 and 2 below. Everywhere below we suppose that the conditions of

Theorem 1 are satisfied.

Lemma 1 If λ < 2d, then

sup
x∈R

N (1/2)−d
∣∣∣F̂n(N)

N (x)− Fn(N)(x) + f(x)ȲN

∣∣∣ = op(1). (4.1)

Lemma 2 If λ > (3/2)(1− 2d)/(ρ+ 11d− 13), then

sup
x∈R

N (1/2)−d
(∣∣∣F̂n(N)

N (x)− F̂N (x)
∣∣∣+ ∣∣∣Fn(N)(x)− F (x)

∣∣∣) = op(1). (4.2)

Remark 1 Note that condition (2.7) of Theorem 1 ensures that there exists λ satisfying

conditions of Lemmas 1 and 2.

The proofs of the above lemmas require some bounds of marginal densities and their

derivatives of the stationary processes Yt and Xt and their approximations. These bounds

are discussed in Section 5. Note that the short memory process Vt need not have a density

and its marginal distribution can be discrete. On the other hand, the long memory compo-

nent Yt is known to have a smooth density under the hypotheses of Theorem 1. As Vt and

Yt are dependent, the fact that the marginal density f(x) of the sum Xt = Vt +Yt exists, is

not trivial.

Notation. Put, for any 0 ≤ n < m <∞,

Y n,m
t :=

m∑
i=n

biζt−i, Gn,m(x) := P [Y n,m
0 ≤ x],

Y n,∞
t :=

∞∑
i=n

biζt−i, Gn,∞(x) := P [Y n,∞
0 ≤ x].

Let G(x) := P [Y0 ≤ x]. Note Yt = Y 0,n
t +Y n+1,∞

t , where Y 0,n
t and Y n+1,∞

t are independent

for each t, n. Also, for 0 < n ≤ m <∞, put

Xn
t := Yt + V n

t , Fn(x) := P [Xn
0 ≤ x],

Xn,m
t := Y 0,m

t + V n
t , Fn,m(x) := P [Xn,m

0 ≤ x].
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We also write g(x) := G′(x), gn,m(x) := (Gn,m(x))′, gn,∞(x) := (Gn,∞(x))′, fn(x) :=

(Fn(x))′, fn,m(x) := (Fn,m(x))′ for the corresponding probability densities, provided they

exist, and

ĝ(u) := EeiuY0 , ĝn,m(u) := EeiuY n,m
0 , ĝn,∞(u) := EeiuY n,∞

0 ,

f̂(u) := EeiuX0 , f̂n,m(u) := EeiuXn,m
0 , f̂n(u) := EeiuXn

0

for the characteristic functions. We also use the notation ψ̂(u) =
∫

R e
iuxψ(x)dx, u ∈ R for

the Fourier transform of an integrable function ψ = ψ(x), x ∈ R. Put

Φ(x) := P [ζ0 ≤ x], φ̂(u) := Eeiuζ0 .

In the sequel, C stands for generic constant which may change from line to line.

5 Bounds of marginal densities

Put

Bn,j :=
n+j∏
i=n

b2i .

Note that, by (1.3), for each j = 0, 1, . . .

Bn,j ∼ c
2(1+j)
0 n2(d−1)(1+j), n→∞.

In particular, for any fixed j ≥ 0 there exists a constant C > 0 such that for all sufficiently

large n,

B−1
n,j ≤ Cn2(1−d)(1+j). (5.1)

Lemma 3 For any p = 0, 1, . . . there exist an integer j0 = j0(p) ≥ 1 and a constant

C = C(p) <∞ such that for all 0 ≤ n < m, m− n ≥ j0 and any k = 0, 1, 2,

|(upĝn,m(u))(k)|+ |(upĝn,∞(u))(k)| ≤ Cnθ(1 + u2)−3, (5.2)

where (·)(k) denotes the kth derivative. Moreover,

|(up(ĝn,m(u)− ĝn,m−1(u))(k)| ≤ Cb2mn
θ(1 + u2)−2, (5.3)

where θ := (1− d)(9 + p).
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Proof. Let us prove (5.2) for k = 0. Without loss of generality, assume |bi| ≤ 1∀i. By (2.2),

|ĝn,m(u)| ≤
n+j0∏
i=n

|φ̂(ubi)| ≤ C
(n+j0∏

i=n

(1 + u2b2i )
−1
)δ

≤ C
(n+j0∏

i=n

b−2
i (1 + u2)−1

)δ
= CB−δ

n,j0
(1 + u2)−(j0+1)δ.

Hence

|upĝn,m(u)| ≤ CB−δ
n,j0

(1 + u2)p/2−(j0+1)δ.

Taking j0 = [(6 + p)/2δ] leads to p/2− (j0 + 1)δ ≤ −3 and, by (5.1),

B−δ
n,j0

≤ Cn(1−d)(6+p+2δ),

thereby proving (5.2) for k = 0.

In a similar way, let us prove (5.2) for k = 1 and k = 2. By (2.3), the characteristic function

φ̂(·) is three times continuously differentiable, and we can write

(ĝn,m(u))′ =
m∑

j=n

ibjφ̂
′(ubj)

m∏
i=n,i6=j

φ̂(ubi),

(ĝn,m(u))′′ = −
m∑

j=n

b2j φ̂
′′(ubj)

m∏
i=n,i6=j

φ̂(ubi)

−
m∑

j1,j2=n,j1 6=j2

bj1bj2 φ̂
′(ubj1)φ̂

′(ubj2)
m∏

i=n,i6=j1,j2

φ̂(ubi).

Hence, using |φ̂(u)| ≤ 1, |φ̂′(u)| ≤ |u|, |φ̂′′(u)| ≤ 1, as well as (1.3) and (2.2) we obtain

|(ĝn,m(u))′| ≤
∞∑

j=n

b2j |u|
n+j0∏

i=n,i6=j

|φ̂(ubi)| ≤ CB−δ
n,j0−1|u|(1 + u2)−j0δ.

By taking j0 = [(7 + p)/2δ] + 1 and noting that B−δ
n,j0−1 ≤ Cn(1−d)(7+p+2δ), we obtain

|up(ĝn,m(u))′| ≤ CB−δ
n,j0−1(1 + u2)(p+1)/2−j0δ ≤ Cnθ(1 + u2)−3.

The last inequality together with |(upĝn,m(u))′| ≤ C|up−1ĝn,m(u)| + |up(ĝn,m(u))′| and re-

lation (5.2) for k = 0 prove (5.2) for k = 1. Similarly,

|(ĝn,m(u))′′| ≤
∞∑

j=n

b2j

n+j0∏
i=n,i6=j

|φ̂(ubi)|+
∞∑

j1,j2=n,j1 6=j2

u2b2j1b
2
j2

n+j0∏
i=n,i6=j1,j2

|φ̂(ubi)|

≤ C
(
B−δ

n,j0−1(1 + u2)−j0δ +B−δ
n,j0−2u

2(1 + u2)−(j0−1)δ
)

≤ CB−δ
n,j0−1(1 + u2)1−(j0−1)δ.

11



Taking j0 = [(8 + p)/2δ] + 2 and noting that B−δ
n,j0−1 ≤ Cn2(1−d)δj0 ≤ Cn(1−d)(8+p+4δ), we

obtain (5.2) for k = 2.

It remains to prove (5.3). Let k = 0. Since

up
(
ĝn,m(u)− ĝn,m−1(u)

)
=
(
upĝn,m−1(u)

) (
φ̂(bmu)− 1

)
,

inequality (5.3) follows from (5.2) and the bound |φ̂(bmu) − 1| ≤ b2mu
2. Cases k =

1, 2 follow similarly. For instance, among the three terms appearing in the case k = 2,(
upĝn,m−1(u)

)′′ (
φ̂(bmu)− 1

)
leads to the value of θ given in the lemma. Indeed, using

(5.2), ∣∣∣(upĝn,m−1(u)
)′′ (

φ̂(bmu)− 1
)∣∣∣ ≤ u2b2m|

(
upĝn,m−1(u)

)′′ | ≤ Cb2mn
θ(1 + u2)−2.

The lemma is proved. �

Lemma 4 For any p = 0, 1, . . . there exist an integer j0 ≥ 1 and a constant C = Cp < ∞

such that for all 0 ≤ n < m, m− n ≥ j0, x ∈ R,

|(gn,m(x))(p)|+ |(gn,∞(x))(p)| ≤ Cnθ(1 + x2)−1 (5.4)

and

|(gn,m(x)− gn,m−1(x))(p)| ≤ Cb2mn
θ(1 + x2)−1, (5.5)

where θ is the same as in the previous lemma.

Proof. Relation (5.4) follows from (5.2) and from

(gn,m(x))(p) = C

∫
e−iuxupĝn,m(u)du, x2(gn,m(x))(p) = C

∫
e−iux(upĝn,m(u))′′du.

Similarly, (5.5) follows from (5.3). �

Next we consider bounds for p.d.f. f(x), fn(x), fn,m(x) of Xt, X
n
t = V n

t + Yt, X
n,m
t =

V n
t + Y 0,m

t , respectively. To that end, we need elementary Lemma 5 below which is similar

to Doukhan, Lang and Surgailis (2002, Lemmas 4.1, 4.2). Let

ϕr(x) := (1 + |x|)−r, µr(x, y) :=
∫ y

x
ϕr(z)dz, x < y, r > 1, x, y ∈ R.

Note µr is a finite measure on R.
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Lemma 5 Let h(x), x ∈ R be a real valued function such that

|h(x)| ≤ Cϕr(x), |h(x)− h(y)| ≤ C|x− y|ϕr(x), (5.6)

hold for any x, y ∈ R, |x− y| ≤ 1 and some C <∞, 1 < r ≤ 2. Then there exists a constant

Cr depending only on r and C in (5.6), such that for any x, y, v, z ∈ R

|h(x+ y)| ≤ Cϕr(x)(1 ∨ |y|r), (5.7)∣∣∣ ∫ y

0
h(x+ w)dw

∣∣∣ ≤ Crϕr(x)(|y| ∨ |y|r), (5.8)∣∣∣ ∫ y

x
(h(ξ + v)− h(ξ))dξ

∣∣∣ ≤ Crµr(x, y)(|v| ∨ |v|r), (5.9)∣∣∣ ∫ v

0
dw

∫ y

x
(h(ξ + w − z)− h(ξ − z))dξ

∣∣∣ ≤ Crµr(x, y)|v|r(1 ∨ |z|r). (5.10)

Lemma 6 Let p0 be a nonnegative integer and θ = (1− d)(9 + p0). If

∞∑
n=1

nθγ1/2
n <∞, (5.11)

then for any p ∈ {0, . . . , p0} and any 1 < r < 3/2, there exist j0 ≥ 1 and a constant

C = Cp,r <∞ such that for all 0 ≤ n < m,m− n ≥ j0, x ∈ R

|(f(x))(p)|+ |(fn(x))(p)|+ |(fn,m(x))(p)| ≤ C(1 + |x|)−r (5.12)

and, moreover,

|(f(x))(p) − (fn(x))(p)| ≤ Cαn(1 + |x|)−r (5.13)

and

|(fn(x))(p) − (fn,m(x))(p)| ≤ Cβ1/2
m (1 + |x|)−r, (5.14)

where αn :=
∑∞

j=n j
θγ

1/2
j , βn :=

∑∞
j=n b

2
j .

Proof. We shall prove (5.12) for fn(x) and p = 0 only, as the remaining inequalities can be

proved analogously. Let

ψn(x) := fn(x)− fn−1(x),

n ≥ 0, f−1(x) := g(x). Clearly (5.12) (for fn(x) and p = 0) follows from

(1 + |x|)r|ψn(x)| ≤ Cnθ
+γ

1/2
n , (5.15)

13



where n+ := n ∨ 1, γ0 := 1. To show (5.15), consider the Fourier transform

|ψ̂n(u)| = |EeiuY n+1,∞
0 (Eeiu(Y 0,n

0 +V n
0 ) − Eeiu(Y 0,n

0 +V n−1
0 ))|

= |ĝn+1,∞(u)||Eeiu(Y 0,n
0 +V n−1

0 )(eiu(V n
0 −V n−1

0 ) − 1)|

≤ |ĝn+1,∞(u)| E|eiu(V n
0 −V n−1

0 ) − 1|

≤ |ĝn+1,∞(u)||u|E1/2(V n
0 − V n−1

0 )2

≤ Cnθγn(1 + u2)−2, n ≥ 1,

where in the last line we used (5.2) with p = 1, k = 0. Also, |ψ̂0(u)| = |f̂0(u) − f̂−1(u)| =

|EeiuY 1,∞
0 | |Eeiuζ0(eiuV 0

0 − 1)| ≤ 2|ĝ1,∞(u)| ≤ C(1 + u2)−3 according to (5.2). This proves

|ψn(x)| ≤ Cnθ
+γn, n ≥ 0. To show (5.15), it remains to prove that there exist constants

C, c > 0 such that

|x|r|ψn(x)| ≤ Cnθ
+γ

1/2
n , |x| ≥ c. (5.16)

The proof of (5.16) is more complicated as r is not an integer; c.f. Doukhan, Lang and

Surgailis (2002). To that end, we will show that there exists a (complex-valued) function

q(x) satisfying

|q(x)| ≥ c1|x|r−1, |x| ≥ c, (5.17)

where c, c1 > 0 are some constants, and such that

|q(x)xψn(x)| ≤ Cnθ
+γ

1/2
n , x ∈ R, n ≥ 0. (5.18)

Similarly as in the above mentioned paper, take

q(x) :=
∫ ∞

0
(1− e−ixz)z−rdz −

∫ ∞

1
(1− e−ixz)z−rdz

= |x|r−1eisgn(x)π(r−1)/2 − q̃(x),

where q̃(x) :=
∫∞
1 (1 − e−ixz)z−rdz is a bounded function on the real line. Therefore q(x)

satisfies (5.17). To show (5.18), note that by Parseval’s identity,

q(x)φ(x) = C

∫
R
e−iuxdu

∫ 1

0
(φ̂(u)− φ̂(u− ξ))ξ−rdξ,

for any smooth and integrable test function φ. Consequently,

q(x)(ix)ψn(x) = C

∫
R
e−iuxdu

∫ 1

0
((ψ̂n)′(u)− (ψ̂n)′(u− ξ))ξ−rdξ.
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Here,

ψ̂n(u) = ĝn+1,∞(u)E
(
eiuXn−1,n

0 (eiu(V n
0 −V n−1

0 ) − 1)
)
≡ h(u)a(u),

where

h(u) := ĝn+1,∞(u), a(u) := EeiuX(eiu∆V − 1), X := Xn−1,n
0 , ∆V := V n

0 − V n−1
0 .

Next,

(ψ̂n)′(u)− (ψ̂n)′(u− ξ) = h′(u)a(u) + h(u)a′(u)− h′(u− ξ)a(u− ξ)− h(u− ξ)a′(u− ξ)

= (h′(u)− h′(u− ξ))a(u) + (h(u)− h(u− ξ))a′(u)

+ h′(u− ξ)(a(u)− a(u− ξ)) + h(u− ξ)(a′(u)− a′(u− ξ)).

From Lemma 3, (5.2) and Lemma 5, (5.7), it easily follows that

|h(u− ξ)| ≤ Cnθ(1 + u2)−3,

|h′(u− ξ)| ≤ Cnθ(1 + u2)−3,

|h(u)− h(u− ξ)| ≤ Cnθ|ξ|(1 + u2)−3,

|h′(u)− h′(u− ξ)| ≤ Cnθ|ξ|(1 + u2)−3,

where the constant C does not depend on n, u ∈ R, ξ ∈ (0, 1).Next, consider a(u), a′(u), a(u)−

a(u− ξ), a′(u)− a′(u− ξ). We have

|a(u)| = |EeiuX(eiu∆V − 1)| ≤ |u|E|∆V | ≤ |u|γn.

Similarly,

|a′(u)| ≤ |EeiuXX(eiu∆V − 1)|+ |EeiuXeiu∆V ∆V | ≤ |u|E|X∆V |+ E|∆V | ≤ C(1 + |u|)γn,

where we used Cauchy-Schwarz inequality and the fact that

EX2 ≡ E
(
Xn−1,n

0

)2
≤ C.

Next,

|a(u)− a(u− ξ)| = |EeiuX{(eiu∆V − 1)(1− e−iξ(X+∆V )) + e−iξX(1− e−iξ∆V )}|

≤ |uξ|E|∆V |(|X|+ |∆V |) + |ξ|E|∆V | ≤ C|ξ|(1 + |u|)γn,
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where we used γ2
n ≤ Cγn. Finally, consider the most delicate term

|a′(u)− a′(u− ξ)| = |EeiuX(iX){(eiu∆V − 1)(1− e−iξ(X+∆V )) + e−iξX(1− e−iξ∆V )}

− Eeiu(X+∆V )(i∆V )(e−iξ(X+∆V ) − 1)|

≤ E|X|(2 ∧ |u∆V |)(2 ∧ |ξ(X + ∆V )|) + |ξ|E|X||∆V |

+ |ξ|E|∆V |(|X|+ |∆V |).

To evaluate the first expectation on the r.h.s., use the inequality 2 ∧ x ≤ (2x)1/2, then by

Cauchy-Schwartz inequality,

E|X|(2 ∧ |u∆V |)(2 ∧ |ξX|) ≤ 2|uξ|1/2E(|X|3/2|∆V |1/2)

≤ 2|uξ|1/2(E|X|2)3/4(E|∆V |2)1/4

≤ C|uξ|1/2γ1/2
n .

Similarly, E|X|(2 ∧ |u∆V |)(2 ∧ |ξ∆V |) ≤ 2|uξ|1/2E|X||∆V | ≤ C|uξ|1/2γn and we obtain

|a′(u)− a′(u− ξ)| ≤ C|ξ|1/2(1 + |u|)γ1/2
n .

Combining the above bounds (recall that |ξ| < 1) results in

|(ψ̂n)′(u)− (ψ̂n)′(u− ξ)| ≤ C|ξ|1/2nθγ1/2
n (1 + u2)−2,

yielding

|q(x)(ix)ψn(x)| ≤ Cnθγ1/2
n

∫
R
(1 + u2)−2du

∫ 1

0
ξ1/2−rdξ ≤ Cnθγ1/2

n ,

for any 1 < r < 3/2. This proves (5.16) and (5.15), hence also (5.12) for fn(x) and p = 0,

with any 1 < r < 3/2. Clearly, (5.15) implies (5.13) as well.

It remains to prove (5.14), where we again restrict ourselves to the case p = 0, as the case

p ≥ 1 is analogous. We have

fn(x)− fn,m(x) =
∫

R
(fn,m(x− y)− fn,m(x))gm+1,∞(y)dy.

By (5.12),∫
|y|≤1

|fn,m(x− y)− fn,m(x)|gm+1,∞(y)dy ≤ C(1 + |x|)−r

∫
|y|≤1

|y|gm+1,∞(y)dy

= C(1 + |x|)−rE|Y m+1,∞
0 | ≤ C(1 + |x|)−rE1/2|Y m+1,∞

0 |2 = C(1 + |x|)−rβ
1/2
m+1.
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Similarly, by (5.12) and Lemma 5 (5.7),∫
|y|>1

fn,m(x− y)gm+1,∞(y)dy ≤ C(1 + |x|)−r

∫
|y|>1

|y|rgm+1,∞(y)dy

≤ C(1 + |x|)−rE|Y m+1,∞
0 |r ≤ C(1 + |x|)−r(E|Y m+1,∞

0 |2)r/2

= C(1 + |x|)−rβ
r/2
m+1.

A similar estimate holds for the integral
∫
|y|>1 f

n,m(x)gm+1,∞(y)dy. As βr/2
m+1 ≤ Cβ

1/2
m+1 for

r > 1, this proves the bound (5.14) for p = 0. �

Remark 2 In the sequel, we use Lemma 6 with p0 = 2 and θ = 11(1− d) only.

6 Proof of Lemma 1

Lemma 1 follows from Lemma 7 below combined with a standard chaining argument as in

Dehling and Taqqu (1989) or Giraitis, Koul and Surgailis (1996, proof of Th. 1). For any

function ψ(x), and any x < y, put ψ(x, y) := ψ(y)− ψ(x).

Lemma 7 Assume condition (2.6), where

ρ > 24− 22d. (6.1)

Let n(N) := Nλ, 0 < λ < 2d. Define

κ := min{2d− λ, 1− 2d, λ(ρ+ 22d− 24)}.

There exists a finite measure µ = µr (1 < r < 3/2) and a constant C <∞ such that for all

N ≥ 1, x < y

E
∣∣∣F̂n(N)

N (x, y)− Fn(N)(x, y) + f(x, y)ȲN

∣∣∣2 ≤ Cµ(x, y)N2d−1−κ, (6.2)

Proof. Put

Sn
N (x) := N

(
F̂n

N (x)− Fn(x) + f(x)ȲN

)
=

N∑
t=1

Rn
t (x),

where Rn
t (x) := I(Xn

t ≤ x) − Fn(x) + f(x)Yt. By the telescoping identity due to Ho and

Hsing (1996), for any m0 > 0,

Rn
t (x) =

∑
m≥m0

Un,m
t (x),
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where

Un,m0
t (x) := I(Xn

t ≤ x)− P [Xn
t ≤ x|Bt−m0−1] + f(x)Y 0,m0

t ,

Un,m
t (x) := P [Xn

t ≤ x|Bt−m]− P [Xn
t ≤ x|Bt−m−1] + f(x)bmζt−m, m > m0,

where Bs := σ{ζu, u ≤ s} is the history σ−field. Clearly, E(Sn
N (x, y))2 ≤ 2(E(Sn

N0(x, y))
2 +

E(Sn
N1(x, y))

2), where

Sn
N0(x, y) :=

N∑
t=1

Un,m0
t (x, y), Sn

N1(x, y) :=
N∑

t=1

∑
m>m0

Un,m
t (x, y).

We claim that there exists 1 < r < 3/2, j0 ≥ 1 and a constant C < ∞ such that for any

0 ≤ n < m0,m0 − n ≥ j0, and any x < y

E(Sn
N0(x, y))

2 ≤ Cµr(x, y)Nm0, (6.3)

E(Sn
N1(x, y))

2 ≤ Cµr(x, y)(Θ(N) +N1+2dα2
n), (6.4)

where αn is defined in Lemma 6 and

Θ(N) :=


N, if d < 1/4,
N(logN)2, if d = 1/4,
N4d, if d > 1/4.

(6.5)

The claim (6.3), (6.4) is proved below. To conclude the statement of the lemma, note

α2
n = O(n24−22d−ρ) as θ = 11(1− d), see Remark 2. Hence α2

n(N) = O(N−λ(ρ+22d−24)) and

m0(N) = O(n(N)) = O(Nλ), implying E(Sn(N)
N (x, y))2 ≤ Cµr(x, y)N1+2d−κ, or (6.2), with

κ given in Lemma 7.

To prove (6.3) and (6.4), note by the orthogonality property of conditional expectations,

for any x, y

E[Un,m0
t (x)Un,m0

t′ (y)] = 0, |t− t′| > m0,

E[Un,m
t (x)Un,m′

t′ (y)] = 0, t−m 6= t′ −m′, m,m′ > m0.

Then

E(Sn
N0(x, y))

2 =
∑

1≤t,t′≤N,|t′−t|≤m0

EUn,m0
t (x, y)Un,m0

t′ (x, y),

E(Sn
N1(x, y))

2 =
N∑

t,t′=1

∑
m>m0,t′−t+m>m0

EUn,m
t (x, y)Un,t′−t+m

t′ (x, y)

≤
N∑

t,t′=1

∑
m>m0,t′−t+m>m0

E1/2(Un,m
t (x, y))2E1/2(Un,t′−t+m

t′ (x, y))2.
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Clearly, by stationarity,

E(Sn
N0(x, y))

2 ≤
∑

1≤t,t′≤N,|t′−t|≤m0

E1/2(Un,m0
t (x, y))2E1/2(Un,m0

t′ (x, y))2

≤ CNm0E(Un,m0
0 (x, y))2,

where the constant C does not depend on n,m0, N . Using definition of Un,m0
t (x, y) together

with Lemma 6 (5.12), we obtain

E(Un,m0
0 (x, y))2 ≤ 3(2P [x < Xn

0 ≤ y] + |f(x, y)|2E(Y 0,m0
0 )2)

≤ C

∫ y

x
(fn(u) + |f ′(u)|)du ≤ Cµr(x, y)

and therefore

E(Sn
N0(x, y))

2 ≤ CNm0 µr(x, y),

where the constant C does not depend on N,m0, n. This proves (6.3).

To prove (6.4), we need a convenient representation of Un,m
t (x, y). Note, for any m > n,

P [Xn
t ≤ x|Bt−m] = P [Y 0,m−1

t + V (ζt, . . . , ζt−n, 0, . . .) + Y m,∞
t ≤ x|ζt−m, ζt−m−1, . . .]

= Fn,m−1(x− Y m,∞
t ),

where (recall notation) Fn,m(x) := P [Xn,m
t ≤ x], Xn,m

t := Y 0,m
t + V n

t =
∑m

i=0 biζt−i +

V (ζt, . . . , ζt−n, 0, . . .). Then Un,m
t (x, y) = Un,m

t,1 (x, y) + Un,m
t,2 (x, y), where

Un,m
t,1 (x, y) :=

∫ y

x

∫
R
{fn,m−1(u− bmζt−m − Y m+1,∞

t )− fn,m−1(u− bmz̃ − Y m+1,∞
t )

+bm(ζt−m − z̃)(fn,m−1)′(u− Y m+1,∞
t )}dΦ(z̃)du,

Un,m
t,2 (x, y) := bmζt−m

∫ y

x
{f ′(u)− (fn,m−1)′(u− Y m+1,∞

t )}du,

where we used Eζ0 =
∫

R z̃dΦ(z̃) = 0. The term Un,m
t,1 (x, y) can be further rewritten as

Un,m
t,1 (x, y) =

∫
R

[ ∫ y

x
du

∫ bmζt−m

bmz̃
dv
{

(fn,m−1)′(u− Y m+1,∞
t )

−(fn,m−1)′(u− v − Y m+1,∞
t )

}]
dΦ(z̃).

By Lemma 6 (5.12), the function h(x) = (fn,m−1)′(x) satisfies conditions (5.6). Therefore

by Lemma 5 (5.10),∣∣∣∣∫ y

x
du

∫ bmζt−m

bmz̃
dv
{

(fn,m−1)′
(
u− Y m+1,∞

t

)
− (fn,m−1)′

(
u− v − Y m+1,∞

t

)}∣∣∣∣
≤ Cµr(x, y)(|bmζt−m|r + |bmz̃|r)(1 ∨

∣∣∣Y m+1,∞
t

∣∣∣r), a.s.,

19



implying ∣∣∣Un,m
t,1 (x, y)

∣∣∣ ≤ Cµr(x, y)|bm|r (1 + |ζt−m|r)
(
1 +

∣∣∣Y m+1,∞
t

∣∣∣r) , a.s..

By independence of ζt−m and Y m+1,∞
t , and using E|Y m,∞

t |3 ≤ C <∞, see (6.7) below, for

any r < 3/2 and any 0 ≤ n < m,m− n ≥ j0 we obtain that

E(Un,m
t,1 (x, y))2 ≤ Cµr(x, y)|bm|2r, (6.6)

where C is independent of n,m.

Next, consider

Un,m
t,2 (x, y) = bmζt−m

∫ y

x
{f ′(u)− f ′(u− Y m+1,∞

t )}du

+ bmζt−m

∫ y

x
{f ′(u− Y m+1,∞

t )− (fn,m−1)′(u− Y m+1,∞
t )}du

=:
2∑

i=1

Wn,m
t,i (x, y).

By Lemma 6, f ′ satisfies (5.6), hence by Lemma 5 (5.9),∣∣∣Wn,m
t,1 (x, y)

∣∣∣ ≤ Cµr(x, y)|bmζt−m|
(∣∣∣Y m+1,∞

t

∣∣∣+ ∣∣∣Y m+1,∞
t

∣∣∣r) , a.s.

By (2.3) and Rosenthal inequality, for any 1 ≤ r ≤ 3 we have

E|Y m+1,∞
t |2r ≤ C

(
βr

m+1 +
∞∑

i=m+1

|bi|2r

)
≤ Cβr

m+1 ≤ Cβm+1. (6.7)

Therefore, for any 1 < r < 3/2, we obtain

E
(
Wn,m

t,1 (x, y)
)2
≤ Cµr(x, y)b2mβm. (6.8)

Finally, to estimate Wn,m
t,2 (x, y), use Lemma 6 (5.13)-(5.14) together with Lemma 5 (5.7).

This yields∣∣∣Wn,m
t,2 (x, y)

∣∣∣ ≤ Cµr(x, y) |bmζt−m| (αn + β1/2
m )

(
1 +

∣∣∣Y m+1,∞
t

∣∣∣r) , a.s.

Consequently,

E(Wn,m
t,2 (x, y))2 ≤ Cµr(x, y)b2m(α2

n + βm). (6.9)

Note |bm|2r = o(b2mβm) for r < 3/2 sufficiently close to 3/2. Hence and from (6.6), (6.8),

(6.9) we obtain

E(Un,m
t (x, y))2 ≤ Cµr(x, y)b2m(βm + α2

n),

20



implying

E(Sn
N1(x, y))

2 ≤ Cµr(x, y)
∑

1≤t≤t′≤N

∞∑
m=1

|bm||bt′−t+m|(β1/2
m + αn)(β1/2

t′−t+m + αn). (6.10)

Here,∑
1≤t≤t′≤N

∞∑
m=1

|bm||bt′−t+m|β1/2
m β

1/2
t′−t+m ≤

∑
1≤t≤t′≤N

∞∑
m=1

m(4d−3)/2(t′ − t+m)(4d−3)/2

≤ CΘ(N),

where Θ(N) is defined in (6.5). The remaining sums on the r.h.s. of (6.10) can be similarly

estimated. This proves the claim (6.4) and Lemma 7, too. �

7 Proof of Lemma 2

We shall use a chaining argument together with the following bound: for any N ≥ 1, x1 < x2

E
(
F̂N (x1, x2)− F̂

n(N)
N (x1, x2)

)2
≤ CN−(ρ+11d−13)λ. (7.1)

Clearly, it suffices to show (7.1) for x1 = −∞, x2 = x. Note E(F̂N (x) − F̂n
N (x))2 ≤

E (I(X0 ≤ x)− I(Xn
0 ≤ x))2 =: q(x) by Cauchy-Schwarz inequality. Put X := X0, X

n :=

Xn
0 . By Minkowski inequality,

q(x) = E

( ∞∑
k=n+1

(I(Xk ≤ x)− I(Xk−1 ≤ x))

)2

≤
( ∞∑

k=n+1

q
1/2
k (x)

)2
,

where

qk(x) := E
(
I(Xk ≤ x)− I(Xk−1 ≤ x)

)2
.

Recall Xk = Y 0,k+V k+Y k+1,∞, where Y k+1,∞ =
∑∞

i=k+1 biζ−i is independent of Y 0,k+V k.

Then

qk(x) = E

∫
R

(I(−∞,x−V k](y)− I(−∞,x−V k−1](y))
2gk+1,∞(y − Y 0,k)dy.

Note for any x, a < b ∫
R

(I(−∞,x−a](y)− I(−∞,x−b](y))
2dy = |a− b|.

Therefore by supx g
k+1,∞(x) ≤ Ckθ, see Lemma 4, we obtain

|qk(x1, x2)| ≤ CkθE
∣∣∣V k − V k−1

∣∣∣ ≤ Ckθγk ≤ Ckθ−ρ.
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Thus, q(x1, x2) ≤ C(n1+(θ−ρ)/2)2 = Cn2+θ−ρ, where θ = 11(1− d). This proves (7.1).

Next we describe chaining. For any integer k ≥ 1 define the partition

−∞ =: π0,k < π1,k < · · · < π2k−1,k < π2k,k =: +∞,

such that

µr(πj,k, πj+1,k) = µr(R)2−k, j = 0, 1, . . . , 2k − 1.

Here, µr(x, y) =
∫ y
x (1 + |u|)−rdu is the same measure as in the formulation of Lemma 7;

µr(R) =
∫

R(1 + |u|)−rdu. Let K = K(N) = O(logN) be an integer which will be specified

below. For any x ∈ R and any k = 0, 1, . . . ,K, define jx
k by

πjx
k ,k ≤ x < πjx

k+1,k.

Put VN (x) := N (1/2)−d
(
F̂N (x)− F̂

n(N)
N (x)

)
. Then

VN (x) = VN (πjx
K ,K) + VN (πjx

K ,K , x). (7.2)

By definition of VN , for any y < w < z,

VN (y, w) ≤ N (1/2)−dF̂N (y, z)−N (1/2)−dF̂
n(N)
N (y, w)

= N (1/2)−d(F̂N (y, z)− F̂
n(N)
N (y, z)) +N (1/2)−dF̂

n(N)
N (w, z)

≤ |VN (y, z)|+ 2 sup
x∈R

N (1/2)−d
∣∣∣F̂n(N)

N (x)− Fn(N)(x) + f(x)ȲN

∣∣∣
+ sup

y<w<z
N (1/2)−d(Fn(N)(w, z) + f(w, z)|ȲN |).

In a similar way,

VN (y, w) ≥ −N (1/2)−dF̂
n(N)
N (y, z)

≥ −2 sup
x∈R

N (1/2)−d
∣∣∣F̂n(N)

N (x)− Fn(N)(x) + f(x)ȲN

∣∣∣
− sup

y<w<z
N (1/2)−d(Fn(N)(w, z) + f(w, z)|ȲN |).

The above bounds combine to

sup
y<w<z

|VN (y, w)| ≤ |VN (y, z)|+ 2RN +WN (y, z),

where

RN := sup
x∈R

N (1/2)−d
∣∣∣F̂n(N)

N (x)− Fn(N)(x) + f(x)ȲN

∣∣∣ ,
WN (y, z) := N (1/2)−d

(
Fn(N)(y, z) + |ȲN |

∫ z

y
|f ′(u)|du

)
.
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Thus,

sup
x

∣∣VN (πjx
K ,K , x)

∣∣ ≤ max
1≤j≤2K

|VN (πj−1,K , πj,K)|+ 2RN + max
1≤j≤2K

WN (πj−1,K , πj,K).

Then from (7.2) we obtain

sup
x
|VN (x)| ≤ 2RN + max

0≤j≤2K−1
|VN (πj,K)|+ max

1≤j≤2K
|VN (πj−1,K , πj,K)|

+ max
1≤j≤2K

WN (πj−1,K , πj,K). (7.3)

Here, RN = op(1) by Lemma 7. Next, by (7.1),

P

(
max

0≤j≤2K−1
|VN (πj,K)| > δ

)
≤

2K−1∑
j=0

P (|VN (πj,K)| > δ)

≤ δ−2
2K−1∑
j=0

E|VN (πj,K)|2

≤ Cδ−2(2K + 1)N1−2d−(ρ+11d−13)λ. (7.4)

Choose K = [log2N
(1/2)−d+ε], where ε > 0 is small enough. Then the r.h.s. of (7.4) tends

to 0 in view of the inequality on λ in the formulation of Lemma 2. Therefore the second

term on the r.h.s. of (7.3) is op(1). The third term is treated exactly the same way.

Consider the last term on the r.h.s. of (7.3). By Lemma 6,WN (x, y) ≤ Cµr(x, y)N (1/2)−d(1+

|ȲN |), implying

E max
1≤j≤2K

WN (πj−1,K , πj,K) ≤ C2−KN (1/2)−dE(1 + |ȲN |) ≤ C2−KN (1/2)−d = o(1), (7.5)

with the above choice of K. This proves supx∈R |VN (x)| = op(1).

Finally,

|F (x)− Fn(x)| = |E(I(X0 ≤ x)− I(Xn
0 ≤ x))|

≤ E1/2(I(X0 ≤ x)− I(Xn
0 ≤ x))2

= (q(x))1/2 ≤ Cn1+(θ−ρ)/2 = Cn−(ρ+11d−13)/2

as above, uniformly in x ∈ R. Clearly, if λ is chosen as in Lemma 2, this implies

N (1/2)−d supx∈R |Fn(N)(x)− F (x)| = o(1). This completes the proof of Lemma 2. �
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