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École polytechnique de l’Université de Nantes La Chantrerie Rue Christian Pauc, BP

50609, F-44306 Nantes cedex 3 {firstname.lastname}polytech.univ-nantes.fr

Abstract. In this paper the Mojette transforms class is described. After
recalling the birth of the Mojette transform, the Dirac Mojette transform
is recalled with its basic properties. Generalizations to spline transform
and to nD Mojette transform are also recalled. Applications of the Mo-
jette transform demonstrate the power of frame description instead of
basis in order to match different goals ranging from image coding, wa-
termarking, discrete tomography, transmission and distributed storage.
Finally, new insights for the future trends of the Mojette transform are
sketched.

1 Introduction

1.1 The Word ”Mojette”

”Mojette” is a well known word in Poitiers; in old french, it describes the class
of white beans. Until recently, these white beans were the standard tool for
a child to start computing additions and subtractions. They were also used for
computing the number of victories for card games like ”Aluette” still played with
middle age spanish cards. Mojette is the name of our transform to remember
first that when only adds are invoked, the computations can be easily made,
second that by sharing the information pot each player will get a part of it.

1.2 The First Papers

The first paper on the Mojette transform has been published in 1995 after one
year of hard work. At the moment, we were looking for something that we still
did not find: a discrete mathematical tool that can split the Fourier plane into
radial and angular sectors. The initial application was the psychovisual image
encoding that mimics the human channelized vision. Hopefully, what we found
was so much practical that many applications did appeared later on. The first
talk on the Mojette transform (denoted MT in the following) was published in
SPIE Visual Communications and Image Processing [8]. The fact that a novel
transform was welcomed by the community was of prime importance to continue
this kind of research. Even if all the theory was not yet there, the structure of
the transform was already explained by its first inverse version using a recursive
implementation. The first laboratory talk was given on June 22d 1995.



1.3 Related Works

The first two precursors of the Mojette transform were Myron Katz and Gabor
Herman. They were both looking at discrete geometric tools to properly inverse
the Radon transform at the beginning of the X-ray scan. The concept of discrete
angles that we used later on in the MT was taken from Myron Katz’ work [12].
Gabor Herman presented iterative algorithms to solve the equation f = Rp
where f is the image, R is a discrete Radon projection operator and p is the set
of projections obtained with a constant bin width [11]. In this regard, mixing
both works gives the Mojette transform.

The mood for a discrete Radon transform use only came back in the nineties;
except for pioneer works as Attila Kuba who was starting to see the generality
of the problem using discrete geometry in 1984 [13]. Guédon [9, 7] starts with a
spline version of the Radon transform in order to fill the gap between discrete
and continuous points of view. L. Dorst added a major point by linking the
Radon (or slope) transform to mathematical morphology [3] as independently
we did obtained our first reconstruction theorem by this link to the two pixel
structuring element. Notice that a big step has been made in 1999 when Jean-
Marc Chassery did organize a workshop on discrete tomography that was using
discrete geometry for mixing the kind of solutions for a given polyominos problem
[2] with the complexity of others very close problems [5, 6]. However, it must be
clear here that the Mojette transform does not exactly belongs to the ”discrete
tomography” community in the sense the word was defined by Larry Shepp in
1994, i.e. reconstructing an object from two to four projections.

A novel situation arises now, when many and very interesting papers are
published to express different properties of transforms very close to the MT as
[22] and unread papers come back to the community as [14].

1.4 Paper Organization

The paper is split into theoretical results and applications. The second section of
the paper reviews the properties of the Mojette transform. The simple definition
of the direct Mojette transform (that will be described by Dirac-Mojette after-
wards) is first presented and its fast inversion (same order of complexity than
the direct operator) follows. The strong relationships with mathematical mor-
phology are then presented because they constitute both the core of the proofs
of the reconstruction theorems we obtained and the geometric way to cope with
the transform. The generalization to spline Mojette transform and other kernels
are then presented to show the power of the relationships between continuous
and discrete words. In other words, this link allows for translating various prob-
lems such as tomography into the discrete geometry world. Finally, extensions
to higher dimensions demonstrate two notions : the order of complexity of the
transform is still linear in the number of pixels, voxels, ixels (information ele-
ments) and linear into the number of hyperplanes. The third section present the
variety of applications already found for the Mojette transform. The key point
that is used here is the frame description notion (instead of the classical vectorial



basis). Its first obvious success (because of its direct implementation) was to use
the Mojette transform as a tool for multiple description which has evolved to a
kind of new standard for communications [17]. A step further in this area was
to add the hierarchical (or multiresolution) data description with the concept
of multi-layer buffering. Another completely different application was to mas-
ter the noise properties into the Mojette domain in order to allows the Mojette
transform for tomographic reconstruction. Even if this sounds obvious from the
Radon inheritance, this works is the last one we were able to perform. Back to
the image domain, the Mojette transform has been successfully implemented to
solve for new techniques as watermarking as well as texture analysis for image
and video as presented in this section. The final part of the paper gives some
insights for the next ten years.

2 Basic Mojette Transform Properties

2.1 Direct and Inverse Dirac-Mojette Transform

The mojette transform is derived from the Radon transform [20]. The 2-D trans-
formed domain consists in projections (in the Radon sense) where each calcu-
lated element called a bin is the sum of ixel values. However, from an original
block f(k, l) of information elements (denoted ixel for information element), the
Mojette transform gives a linear set of projections projθ(m) only for specific
angles of the form θ = atan(q/p) where p ∈ Z, q ∈ Z+ and are relatively prime
(GCD(p, q) = 1). The Mojette transform set is defined by Mf(k, l) as a set of
I projections Mp,qf(k, l), where (k, l) belongs to the ixels block and ∆(m) = 1
if m = 0, 0 otherwise, as follows:

Mf = {Mpi,qif, i = 1, . . . , I} = {projpi,qi , i = 1, . . . , I} (1)
Mp,qf(k, l) = projp,q(m) = projθ(m) = f(k, l)∆(m + qk − pl), (2)

A bin value is then simply the summation of every ixel intersecting the line
m = −qk + pl. As described in Fig. 1, the major difference with the Radon
transform is that the bin spacing on a projection depends on the projection
angle.

The well-posed nature of this linear transform and its explicit discrete nature
were the reason of the new name not to confuse with the numerous regularized
versions of the Radon transform (ill-posed inverse operator). A direct conse-
quence of this sampling is that the number of bins of the projection indexed
by (p, q) depends both of the projection angle and of the block dimensions. For
instance, a P ×Q rectangular block has its (p, q) projection composed of B bins
with B = (Q − 1)|p| + (P − 1)|q| + 1. The order of complexity of the direct
transform is obviously O(IN) i.e. linear in the number of (p)ixels N and linear
in the number of projections I.

The inverse transform can be implemented with the same order of complexity.
This is an important characteristic of the Mojette transform which comes from
the underlying mathematical morphology properties as described in the next



Fig. 1. Mojette Transform of a 3× 3 f(k,l) lattice

paragraph. To get such a result, the reader has to pay attention to the projection
of the ”corners” of the shape: they exhibit some one to one ixel-bin relationships.
Thus, these specific bins can be exactly backprojected in the image as soon as we
keep for each bin the number of contributed ixels during the inverse transform.
The tool for the proof of this algorithm (given in [15]) is now presented.

2.2 Mathematical Morphology

Reconstruction conditions were demonstrated for any convex image [15] by as-
sociating a projection angle (p,q) with a 2 pixels structuring element (2PSE) as
a point couple {O, (p, q)} giving the same direction axis. The set of ixels that
are projected in one bin m is the intersection of the image with the (p, q)− line
defined by: −qk + pl = m. If the image is convex, this set is connected relative
to the (p, q)-neighborhood (all ixels are reachable from the others using (p, q)
displacements). Thus, an opening (an erosion followed by a dilation) with the
2PSE {O, (p, q)} will empty the set if it is composed of exactly one ixel but will
leave it unchanged in all other cases. The back projection in direction (p, q),
by removing all ixels in a one to one correspondence with a bin, results in the
opening of the image with the 2PSE:

I ′ = I ◦ {O, (p, q)} .

An ixel disappears from I only if it has no (p, q)-neighbor.
The final reconstruction result is not affected by the order bins are back

projected. So the overall reconstruction can be viewed as an iterative series of
openings with the 2PSEs:

Ik+1 = Ik ◦ {O, (p1, q1)} ◦ . . . ◦ {O, (pI , qI)} .

The reconstruction stops if no ixels can be removed by any projection (Ik+1 =
Ik or Ik+1 = ∅). This occurs when every ixel in the image has at least one



(p, q)-neighbor in every (p, q) direction. The smallest non-null image with that
property is built by the series of dilations with the 2PSEs.

The reconstructibility criteria of Katz finds here another expression only
using dilations. A convex image is not reconstructible if and only if the dila-
tion result by 2PSE is not included in the image support (even if one pixel
is concerned). This general result is expressed in the following theorem by the
equivalence of two statements.

Theorem 1. Both propositions are equivalent

– f(k, l) defined on the convex G is reconstructible by {projpi,qi , i = 1, . . . , I};
– R constructed by I dilations set {{O, (pi, qi)}, i = 1, . . . , I} is not included

in G.

Corollary 1. Both propositions are equivalent

– G is reconstructible by {projpi,qi , i = 1, . . . , I};
– the erosion of G by R is null.
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Fig. 2. Reconstructibility of a convex image

This inversion criterion is an extension of Katz’ criterion for rectangular
images. In that particular case, R can be included in the image if its width
(1 +

∑
i |pi|) and height (1 +

∑
i |qi|) are respectively smaller than the width P

and height Q of the image. Thus, for a P ×Q image, a complete reconstruction
is achievable if [12]:

P ≤
∑

i

|pi| orQ ≤
∑

i

|qi| (3)

2.3 Spline Mojette Transform

The previous Mojette transform is denoted Dirac-Mojette transform because the
underlying 2D ixel representation is a Dirac field:

f(x, y) =
∑

k

∑

l

f(k, l)δ(x− k)δ(y − l) . (4)



However, very similar angles like (p, q) = (1, 1) and (p, q) = (30, 29) will do not
have similar bin values: a direct inter-correlation computation between the two
projections will be poor because the number of bins and the number of pixels
contributing to each bin will be very different. However, Philippé and Guédon
[19] have shown that the autocorrelation of the Mojette projection corresponds
to the projection of the autocorrelation of the image.

Summing ixel intensities weighted by the relative length of the ray inside
each ixel, defines the spline0-Mojette transform. The corresponding continuous
image is given by:

f(x, y) =
∑

k

∑

l

f(k, l)β0(x− k)β0(y − l) , (5)

where β0(x) = 1 when |x| < 1
2 , β0( 1

2 ) = 1
2 and 0 elsewhere.

It can be simply shown that the spline0-Mojette transform corresponds to
the filtering of the Dirac-Mojette transform with a finite impulse response (FIR)
filter. The FIR filter definition wp,q(m) corresponds to a trapezoidal shape, i.e.
the projection of the shape of the ixel (a square in 2D) as described in [10].

M0f = [MDf ] ∗ wp,q , (6)

Where the kernel w can always be decomposed with small filters composed of
unitary values. In other words only additions can be used for implementation
of this convolution and the recursive filter that implements the inverse operator
(going from spline0 to Dirac Mojette data) will only use subtractions.

The generalization to higher spline order Mojette transform follows the same
pattern. From a βn spline definition of the original function given as:

f(x, y) =
∑

k

∑

l

f(k, l)βn(x− k)βn(y − l) , (7)

with βn(x) = βn−1(x) ∗ β0(x), the splinen-Mojette transform is defined as:

Mnf(k, l) = [Mn−1f ] ∗ wp,q(b) . (8)

The main originating reason to use spline functions instead of Dirac fields is to
complied with the generalization of the well-known Shannon-Wittaker sampling
theorem obtained by Unser and AlDroubi [1, 23–25]. This theorem allows to
combine the projection decomposition with other image needs like wavelet or
geometric (e.g. rotation) operators.

The main use of spline Mojette transform is to introduce a controlled re-
dundancy inside each projection via the kernel w. Direct applications to error
correcting codes have already been obtained [21] in the presence of noise in-
side the projection data. This intra-redundancy can be managed at the same
time that the inter projections redundancy to answer consistency of distributed
information projections as shown in the applications.



2.4 nD Mojette Transform

Going from 2D results to 3D then nD is an indefectible temptation to generalize
the obtained results. This was done by still considering the Mojette transform as
giving (n− 1)D hyperplanes from the nD discrete hypervolume. It can be easily
shown that from N ixels distributed inside a convex set of dimension n and a
choice of I hyperplanes, the direct and inverse Mojette transform still exhibit a
complexity order of O(IN). This is quite obvious for the direct transform. The
way of having this very low cost algorithm for the inverse transform is to use the
same mapping than previously used in 2D between ixels and bins. As a matter
of fact, this mapping is dimension independent.

Another result that can be seen as independent of the dimension is the dis-
crete central slice theorem (CST). The continuous version of the CST has been
extensively used for Radon inversion as well as for image processing. It says that
the 1D Fourier transform of a projection of angle θ equals the slice of the 2D
Fourier transform of the image at angle θ+π/2. The discrete version of this the-
orem was established in 2D by Dudgeon and Mersereau using the Z transform
[4]. It has been checked with the 2D Mojette transform and extended to higher
dimensions in a straightforward manner [26].

2.5 Mojette Transform and Redundancy

The Mojette transform matrix M is only filled by 1 and 0 values. Only addi-
tions and subtractions are required for M and M∗. It is also the case for M−1

with the inverse Transform algorithm for exact values [15]. The matrix M∗M is
Toeplitz-block-Toeplitz. Since only the additive group structure is needed for its
definition, replacing the natural addition by modulus addition will not change
any property of the transform. This can be done as soon as the initial values of
the ixels are quantized onto an interval [0, 2b[ where b represents the number of
bits of an ixel. In this case, a bin will belong to the same interval (by modulus
addition), so do the reconstructed ixel. This represents an important matter for
not having an overbinary representation in the Mojette domain as well as to use
the same type of elements in both domains.

The computation of a redundancy factor as Red = #Bins/#Ixels− 1, gives
the true weight for managing a frame. However, this Red indicator does not
explain at all the stability of the transform under inconsistency (e.g. noise)
considerations. In such a case, the number of projections as well as the dif-
ference between the initial shape and the dilations of two ixel structuring el-
ements (2ISE) will better explain the power of recovering inconsistency. For
instance, for a 5 × 5 convex, the sets S0 = {(5, 3)}, S1 = {(3, 2), (2, 1)} and
S2 = {(1, 0), (−1, 1), (1, 1), (2, 1)} all fulfill the reconstruction conditions and give
Red= 8/25. The corresponding reconstructed shapes are illustrated in Fig. 3.

The importance of splitting the initial information into (projection) pieces
can be pictured as in the previous figure or computed as the conditioning factor
of the matrix M ∗M . In this example, when the first degenerated information
set gets a false bin value it will not been detected at the reconstruction step, the
second set will detect the error but not correct it as the third set does.
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Figure 2 : Redundancy of three sets of projections under a 5x5 f(k,l) lattice
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Fig. 3. Redundancy of three sets of projections under a 5× 5 f(k, l) lattice

3 Applications

The power of the Mojette transform lies in it abilities to manage inconsistency.
The first way to have inconsistent data is to have not enough data whereas it
exists some intrinsic correlation inside the data as shown in the last paragraph
of section two. In this case, only some partial exact descriptions of the infor-
mation are available: this corresponds to the multiple description problem. This
information can also already be sorted in an hierarchical manner and treated
with the same formalism through the use of the Mojette transform. The second
case is the shape description problem through some of its projections, where the
Mojette transform becomes a geometric tool when allied with the mathematical
morphology. The third case of inconsistent data arises when metadata is added
inside the data as for the watermarking techniques. Then the two coexisting
kinds of data must have different behaviors (one must be shown while the other
should lie under the expressed data until a specific algorithm can reveal it. The
fourth case is when enough projections are available but are corrupted by noise
such that only an approximation can be computed as for tomography.

3.1 The Use of Redundancy: the Multiple Description Tool

The multiple description problem arises in the seventies and was studied by
Ozarow and others as an information theory problem for telephony over two
channels [16]. It has been developed for a decade for Internet transmission and
now for distributed storage. The paradigm is as follows: given an initial infor-
mation set, computes I different descriptions such that for a lower number of
descriptions there is still always an approximation that can be computed and
used usually for real-time considerations.

Many kind of solutions have been employed ranging from Turbo-codes, Solo-
mon codes, Tornado codes and of course Mojette projections. The major prop-
erty of these codes is generally to be Minimum Description Separable (denoted
MDS), that is without redundancy as for Solomon or Tornado codes or (1 + ε)-
MDS as for the Mojette codes demonstrated by Parrein [17]. The price of the
redundancy can be easily paid to gain much more flexibility in the design of the
code (which means to choose a pair of shape and set of projections) whereas
Solomon codes must be only determined from Galois field GF (2n).



For the basic Mojette solution, a rectangular shape P ×Q with (P ( Q) is
employed in conjunction with a set of I projections:

SQ = {(p1, 1), (p2, 1), . . . , (pQ, 1)} .

With these particular directions (∀i, qi = 1) the image is reconstructible with
as least Q projections among I according to Katz’ criterion Eq. 3 (the height of
the smallest non-invertible image equals the number of received projections plus
one). The value P × Q gives the amount of data that can be transferred at a
time (available bandwidth), I −Q is number of extra projections (descriptions)
sent over the channel to protect against data losses.

Fig. 4. An image support of height Q = 2 with directions (0, 1), (−1, 1) and (1, 1). Any
combination of two projections is sufficient to reconstruct the image

With this simple image support, protection against losses is equal for all data.
More precise control of the redundancy can be achieved with a concatenation
of image supports of different heights, allowing to fit the protection level to
the importance of the data: the less important the data, the higher the image
support [18].

Finally, when the initial data exhibits some intra correlation, phantoms can
be used to produce an approximated reconstruction from an iterated algorithm
[19].

Distributed storage organization and management can follow the same path.
Initial data are taken and dispatched after the Mojette operation giving A pro-
jections. When a small fixed number B(B * A) of different projections issued
from the A set are stored on each of the S servers then the Mojette organization
is made and gives the following management properties:
– if a server is attacked and destroyed by hackers, its content can be restored

by any set of other servers as soon as it meets the Mojette reconstruction
requirement,

– if a server content is stolen, its content can not be useful by itself (several
servers have to be attacked at the same time),

– from the user side, the ask data will arrive from different sources and routes,
which will decrease the network congestion and increase the trust in the
data.



3.2 Discrete Tomography Tool

The continuous Radon transform described by :

proj(t, θ) = R(t, θ)[f(x, y)] =
∫

f(x, y)δ(t− xcosθ + ysinθ)dxdy , (9)

represents the continuous function f(x, y) by an infinite set of projections. The
functional projection of f(x, y) onto a spline space {φ(x− k), k ∈ Z} leads to an
interpolation equation:

fφ(x, y) =
∑

k

∑

l

f(k, l).φ(x− k).φ(y − l) . (10)

When the discrete pixel grid is considered in the tomographic problem, the func-
tion f(x, y) in Eq. 9 is replaced by fφ(x, y) of Eq. 10. This leads (after inverting
discrete and continuous sum signs) to a definition of the continuous projection
from a discrete image and the spline interpolating function.

For tomographic purposes, φ is not taken as φ(x) = δ(x) but rather as a spline
function to express the ”quality of the physical length” that can be recorded at
the detector.

This Mojette sampling has been used both for direct spline FBP algorithm
and for iterative conjugate gradient algorithm in the presence of noise with good
results. The only remaining problem consists in the rebinning of the initial data
recorded from the tomographic device.

3.3 Image Watermarking

Watermarking represents the way of transferring invisible data inside data. It
can be text in text as in the private correspondence of George Sand with Alfred
de Musset or more generally marks informations inside images or videos in order
to carry the rights of the author and all the business steps allowing to sell
information bytes. The invisibility notion is taken in the human sense, thus the
locations to put this information into the carrier information must be given by
psychovisual studies. The employed tool that implements the mixture of both
information must be flexible enough both to use the given locations and be robust
to image attacks as low-pass filtering, small rotation, and image compression for
instance.

The Mojette transform in this context has produced different kinds of tools.
The first one consists to watermark the projections instead of the image. This
technique has also been lately develop by Macq and others in the Radon do-
main. The clue is to obtain an inconsistent set of informations from the marked
projections in order to resist to rotation attacks.

The second tool is related to Normand’s inversion algorithm that use pixel-
bin correspondences at each step. By adding a controlled quantity of noise in
the projections (in the proportion of the redundancy Red factor) the recon-
struction becomes impossible because of the ill-posed properties of the Radon



transform. However, if for each reconstructed pixel the choice can be made (at
the coder step) to avoid corrupted bins then a unique reconstructing path can
be determined and encoded as the clue to decode the image. In other words, a
cryptographic scheme is obtained.

The first unsolved question lies in the possibility to decode the crypto-
tattooed image thanks to the linearity of the transform even if the modulus
addition is employed. As a matter of fact, this problem has to be solve thanks
to both the Red factor and the possible decodable errors inside Mojette data :
discrete group theory allied with geometry seems the right way to cope with this
problem.

Another interesting question arises from the psychovisual locations able to
hide a message. A soon as these locations are computed (with a respective
strength for each pixel), the best set of projections can only be calculated by
testing all the resulting phantoms (very large set) that can match the greater
number of positions to assess the robustness of the watermarking. Going from
this NP complete problem to a polynomial solution seems feasible using discrete
shape descriptions and superimpositions.

We are confident that such a tool will be usefully employed in many other
applications because of its intrinsic redundancy properties. However, it should
be stressed again that the strong link between projections and discrete directions
thus shape is today the only way to get mathematical tools to solve for problems.
As soon as this projection structure disapear and is replaced by a simple set of
bins, the tools complexity become NP complete instead of linear. This has been
the case both for watermarking and for obtaining compression scheme from the
right set of bins when each of them reconstructs an entire line of ixels.

4 Conclusion

This paper has matched the timing for the ten years of a new transform coming
from the word of discrete geometry. It allows for reviewing both what has been
done in the theory and to demonstrate that discrete geometry can be an im-
portant tool for network optimization or distributed storage. These trends must
and will be continued and amplified for the next ten years.
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promote the Mojette transform and Éric Andres and the DGCI board for their
kind invitation to write this paper.

References

1. Akram Aldroubi and Murray Unser. Families of wavelet transforms in connection
with Shannon’s sampling theory and the Gabor transform. In C. K. Chui, editor,



Wavelets: A Tutorial in Theory and Applications, pages 509–528. Academic Press,
1992.

2. Alberto Del Lungo, Maurice Nivat, and Renzo Pinzani. The number of convex
polyominoes reconstructible from their orthogonal projections. Discrete Math.,
157(1-3):65–78, 1996.

3. Leo Dorst and Rein van den Boomgaard. Morphological signal processing and the
slope transform. invited paper for Signal Processing, 38:79–98, 1994.

4. Dan E. Dudgeon and Russell M. Mersereau. Multidimensional Digital Signal Pro-
cessing. Prentice-Hall, 1984.

5. Richard Gardner. Geometric Tomography. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1995.

6. Peter Gritzmann and Maurice Nivat, editors. Discrete Tomography: Algorithms
and Complexity, number 97042, Germany, jan 1997. Dagstuhl.
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