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CANONICAL TORSION-FREE CONNECTIONS ON THE
TOTAL SPACE OF THE TANGENT AND THE

COTANGENT BUNDLE

LIONEL BÉRARD BERGERY AND TOM KRANTZ

Abstract. In this paper we define a class of torsion-free connections on
the total space of the (co-)tangent bundle over a base-manifold with a
connection and for which tangent spaces to the fibers are parallel. Each
tangent space to a fiber is flat for these connections and the canonical
projection from the (co-)tangent bundle to the base manifold is totally
geodesic. In particular cases the connection is metric with signature
(n,n) or symplectic and admits a single parallel totally isotropic tangent
n-plane.

1. Introduction

The classification of holonomy is far from being complete by today. In
the semi-riemannian case and neutral signature there is little known beside
the results of the paper [BBI]. In this paper in particular the candidates for
indecomposable torsion-free holonomy of signature (2, 2) are listed. Metrics
are constructed for the case where the holonomy admits two totally isotropic
and complementary invariant spaces but there was no construction yet for
metrics for the holonomy groups admitting a single totally isotropic invariant
space. T. Leistner and A. Galaev constructed for all but one of these missing
cases metrics. The construction in this paper gives a general answer for all
the missing cases in signature (2, 2). The construction works not only for
signature (n, n) giving holomies admitting a single totally isotropic invariant
n-plane. In the general context of torsion-free connections, the construction
gives a lot of examples of manifolds with a torsion-free connection such
that the holonomy admits a single invariant subspace with given dimension
and fixed holonomy representation sub- and dual quotient representation.
The construction can be generalized to other vector bundles. We recall
the general results but omit the proofs of these which will be accessible in
another paper concerning the general construction.

2. Definitions

2.1. Fibered spaces.

Notations. Let B be a (finite-dimensional) manifold equipped with a
torsion-free connection ∇̌ on the bundle TB. Let Ř be its curvature ten-
sor defined by Ř(X̌, Y̌ ) := ∇̌[X̌,Y̌ ] − [∇̌X̌ , ∇̌Y̌ ] for X̌ and Y̌ sections of TB.
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Let (M,π,B) be a (finite-dimensional) vector bundle over B with projec-
tion π : M → B and fiber F . For b ∈ B let Fb be the fiber π−1(b). Let ∇̂ be
a connection on the vector bundle M . Let R̂ be the curvature tensor of ∇̂.

Examples. • The first example we will consider is the case M = TB
equipped with the connection ∇̂ = ∇̌.
• We will consider also the case M = T ∗B (equipped with the dual

connection ∇̂ = ∇̌∗ of ∇̌).
Recall that for a section ξ of T ∗B and sections X̌, Y̌ , Ž of TB

we have:

(∇̌∗
X̌
ξ)(Y̌ ) = X̌ · ξ(Y̌ )− ξ(∇̌X̌ Y̌ ),

and
(R̂(X̌, Y̌ )ξ)(Ž) = −ξ(Ř(X̌, Y̌ )Ž).

A section X of TM is said to be π-related to a section X̌ of TB if ∀x ∈
M,Txπ(Xx) = X̌π(x).

For X (resp. Y ) sections of TM , π-related to X̌ (resp. Y̌ ), [X,Y ] is π-
related to [X̌, Y̌ ]. For a proof of the latter statement see [S] or [Be] chapter
9.

Let V be the ”vertical” distribution: Vx = {v ∈ TxM | (Tπ)x(v) = 0}.
A section V of TM is said to be vertical if ∀x ∈M , Vx ∈ Vx.
A section of TM is clearly vertical if and only if it is π-related to the null

section of TB.
Note that from the preceding follows:
• [V,W ] is vertical if V and W are vertical.
• [X,V ] is vertical if V is vertical and the section X of TM π-related

to some section X̌ of TB.
To the connection ∇̂ corresponds a unique ”horizontal” distribution H

with the following properties:
i) ∀x ∈M,TxM = Vx ⊕Hx
ii) Let γ : [0, 1]→M be a C∞ curve. We have: σ = π◦γ is a curve of B. γ

can be seen as a section of the fiber bundle (M,π,B) over the curve σ.
The connection ∇̂ allows to derive sections over a curve and to define
parallel transport τσ along the curve σ by: τσ(t, ξ) (for t ∈ [0, 1] and
ξ ∈ Fσ(0)) is equal to Xt ∈ Fσ(t) where X verifies (∇σ̇X)t = 0, ∀t ∈ [0, 1]
and X0 = ξ. The property H has to verify is: For every smooth curve
γ we have ∀t ∈]0, 1[, γt = τσ(t, γ0) if and only if ∀t ∈]0, 1[, γ̇t ∈ Hγt .

If, as in our case ∇̂ is a linear connection, then H has to be ”linear”
in the following sense: τσ(t, αξ + βξ′) = ατσ(t, ξ) + βτσ(t, ξ′) for all
t ∈ [0, 1], α and β reals, ξ and ξ′ two vectors of Fσ(0).

A section X of TM is said to be horizontal if ∀x ∈M,Xx ∈ Hx.
A section X of TM is said to be basic if it is horizontal and π-related to

a section of TB.
Note that H[X,Y ] is basic if X and Y are basic. We will see later that

V[X,Y ] is ”tensorial” for X and Y basic i.e. it only depends on the value
of X and Y on the corresponding point.
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For any section X̌ of TB there is a unique basic section X of TM π-
related to X̌. For any section Y of TM Y is π-related to X̌, if and only if
there is a vertical section V of TM such that Y = X + V

2.2. Special vector fields on M .

2.2.1. Vertical vector fields constant along the fibers. For b ∈ B and x ∈ Fb,
define the translation tx : Fb → Fb by tx(y) = x+ y and note Ob the origin
of the vector space Fb.

We can identify TxFb with Vx through the inclusion Fb ⊂M .

Definition 1. A vertical section V of TM is said to be constant along the
fibers(or simply constant) if for all b ∈ B and x ∈ Fb, V (x) = tx(V (Ob)).

A simple fact is the following:

Proposition 1. For each section V̂ of the fibered space (M,π,B) there is a
unique vertical section V of TM which is constant along the fibers and such
that V̂ (b) = V (Ob) (with the identification Fb ' TObFb ' VOb). We say that
V is associated to V̂ .

2.2.2. Linear vertical vector fields. We will note EndB(M) the endomor-
phism fiber bundle of M over B. Let Â be a section of EndB(M) i.e. for
all b ∈ B, Âb ∈ End(Fb) and Âb depending C∞ of b.

For b ∈ B and x ∈ Fb, we can identify Fb with TxFb by the mapping Idx
defined to be the composition of the canonical isomorphism Fb ' TObFb and
the isomorphism TObtx : TObFb → TxFb.

Definition 2. Let Â be a a section of EndB(M). A vertical section A of
TM is said to be linear along the fibers associated to Â(or simply linear) if
Ax = Idx(Â(x)).

Lemma 2. A vertical section A of TM is linear if and only if [A, V ] is
constant for all V constant, and for all b ∈ B, A(Ob) = 0.

Proof. Can be checked in a local trivialization of the bundle M . �

2.2.3. Affine vertical vector fields. An affine vertical vector field is the sum
of a constant vertical vector field with a linear vertical vector field.

Notations. In the following X,Y, Z, ... will denote basic vector fields, and
X̌, Y̌ , Ž, ... the sections of TB π-related to the preceding. Constant verti-
cal vector fields will be noted U, V,W and Û , V̂ , Ŵ their associated sections
of M . Linear vertical vector fields will be noted A,B,C and Â, B̂, Ĉ the
associated sections of EndB(M).

2.3. Basic properties.

Proposition 3. For V , W vertical constant along the fibers corresponding
to the sections of M , V̂ , Ŵ , for A, B vertical linear associated to the sections
of EndB(M), Â, B̂, for X, Y basic π-related to X̌, Y̌ , we have:

(i) [V,W ] = 0;
(ii) [A, V ] is vertical and constant associated to −Â(V̂ );

(iii) [A,B] is vertical and linear associated to −[Â, B̂];
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(iv) [X,V ] is vertical and constant associated to ∇̂X̌ V̂ ;
(v) [X,A] is vertical and linear associated to ∇̂X̌Â;

(vi) The horizontal component H[X,Y ] of [X,Y ] is basic π-related to
[X̌, Y̌ ];

(vii) The vertical component V[X,Y ] of [X,Y ] is linear associated to
R̂(X̌, Y̌ ).

3. A family of connections on the manifold M

3.1. Definition. We define a torsion-free connection D on the bundle TM
by the following equalities:

Fix a section Φ̂ of S2(T ∗B)⊗ EndB(M).
For X,Y basic sections of TM and V,W constant vertical sections of TM :

DVW = 0
DVX = 0
DXV = [X,V ]
DXY = HDXY + VDXY,

with HDXY basic π-related to ∇̌X̌ Y̌ and VDXY linear associated to
1
2R̂(X̌, Y̌ ) + Φ̂(X̌, Y̌ ).

Examples. • M is the vector bundle TB equipped with the connection
∇̂ equal to ∇̌ and Φ̂ is chosen to be zero.
• M is the vector bundle T ∗B equipped with the dual connection ∇̂ of
∇̌. Different choices are possible for Φ̂. We will have a closer look
at some possibility in the next paragraph.

Define Γ(X̌, Y̌ )(Ž) := 1
2(Ř(X̌, Ž)Y̌ + Ř(Y̌ , Ž)X̌). Γ verifies the Bianchi-

identity and is symmetric in the first two arguments. Note that one can
recover Ř from Γ: Ř(X̌, Y̌ )Ž = 2

3(Γ(X̌, Y̌ )Ž − Γ(X̌, Ž)Y̌ ).

Remark 1. Note that more generally every 3-tensor can canonically be
decomposed in a totally antisymmetric, a totally symmetric, and a tensor
verifying the Bianchi identity. Furthermore the vector space of 3-tensors
verifying the Bianchi identity is the direct sum of any two spaces from the
set {BA12,BA13,BA23,BS12,BS13,BS23}, where BAij (resp. BSij) is the
vector space of 3-tensors verifying the Bianchi identity and antisymmetric
(resp. symmetric) in the positions i and j.

3.2. Structures on T ∗B. For M = T ∗B and t ∈ R, let Γ∗(X̌, Y̌ )(V̂ )(Ž) :=
−V̂ (Γ(X̌, Y̌ )(Ž)) and Φ̂t := tΓ∗.

3.2.1. An example: a canonical pseudo-Riemannian structure on T ∗B. We
can endow M = T ∗B with a pseudo-Riemannian structure 〈·, ·〉 in the fol-
lowing way: For V,W vertical sections of TM associated to V̂ , Ŵ and
X,Y basic sections of TM π-related to X̌, Y̌ fix: 〈V,W 〉 = 0, 〈X,Y 〉 = 0,
〈X,V 〉x = V̂ (X̌)π(x).

The Levi-Civita-connection D corresponding to this pseudo-Riemannian
structure has the following properties:
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Proposition 4.
DVW = 0
DVX = 0
DXV = [X,V ]
DXY = HDXY + VDXY,

with HDXY basic π-related to ∇̌X̌ Y̌ and VDXY linear and
(V̂DXY )(V̂ )(Ž) = V̂ (Ř(Y̌ , Ž)X̌).

Proof of the proposition. Use the Koszul formula:

2〈DXY,Z〉 = X · 〈Y,Z〉+ Y · 〈Z,X〉 − Z · 〈X,Y 〉
+〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉,

for any sections X,Y, Z of TM .
Let now X,Y, Z be basic and U, V,W constant. Using proposition 3 it is

easy to see that 〈DVW,U〉 = 0 and 〈DVW,Z〉 = 0, so DVW = 0.
We have also easily 〈DVX,U〉 = 0. 〈DVX,Y 〉 = 0 follows from the fact

that ∇̌ is torsion-free. So DVX = 0.
For ξ ∈ T ∗B we have

2〈DXY,U〉ξ = (X̌ · Û(Y̌ ))π(ξ) + (Y̌ · Û(X̌))π(ξ)

+(Û([X̌, Y̌ ]))π(ξ) − ((∇̂X̌ Û)(Y̌ ))π(ξ) − ((∇̂Y̌ Û)(X̌))π(ξ)

= 2(Û(∇̌X̌ Y̌ ))π(ξ)

From this follows that the horizontal part of DXY is basic and π-related to
∇̌X̌ Y̌ .

2〈DXY,Z〉ξ = 〈[X,Y ], Z〉ξ − 〈[X,Z], Y 〉ξ − 〈[Y,Z], X〉ξ
= 〈Idξ(R̂(X̌, Y̌ )ξ), Z〉ξ − 〈Idξ(R̂(X̌, Ž)ξ), Y 〉ξ − 〈Idξ(R̂(Y̌ , Ž)ξ), X〉ξ
= −ξ(Ř(X̌, Y̌ )Ž) + ξ(Ř(X̌, Ž)Y̌ ) + ξ(Ř(Y̌ , Ž)X̌)
= 2ξ(Ř(Y̌ , Ž)X̌),

where the latter equality follows from the first Bianchi identity for ∇̌. As a
consequence the vertical part of DXY is linear and associated to the given
section of EndB(M).

�

Remark 2. The connection defined in this section fits in the scheme de-
scribed in section 3.1. We have: Φ̂ = Φ̂1, or explicitly Φ̂(X̌, Y̌ )(V̂ )(Ž) =
1
2((R̂(Ž, X̌)V̂ )(Y̌ ) + (R̂(Ž, Y̌ )V̂ )(X̌)),

3.2.2. A symplectic structure on T ∗B. We can endow M = T ∗B with an al-
most symplectic structure ω in the following way: For V,W vertical sections
of TM associated to V̂ , Ŵ and X,Y basic sections of TM π-related to X̌,
Y̌ fix: ω(V,W ) = 0, ω(X,Y ) = 0, ω(V,X)x = −ω(X,V )x = V̂ (X̌)π(x).

It is an easy verification (using basic resp. constant vertical vector fields,
the fact that ∇̌ is torsion-free and applying the first Bianchi-identity for Ř)
that dω = 0.

Proposition 5. The given almost symplectic structure is a symplectic struc-
ture.
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Remark 3. It is an easy verification that the symplectic structure is simply
the differential of the Liouville form on T ∗B and independent of the choice
of the horizontal spaces.

The following statement makes explicit under which condition a connec-
tion D on the manifold M = T ∗B of the type discussed in this section
preserves the symplectic structure:

Proposition 6. Let ω be a symplectic structure on the manifold M = T ∗B
as fixed in this paragraph. A connection D of the type described in section
3.1 verifies Dω = 0 if and only if for any vertical constant vector field V
and any basic vector fields X,Y, Z we have:

1
2

(R̂(Y̌ , Ž)V̂ )(X̌) + (Φ̂(X̌, Ž)V̂ )(Y̌ )− (Φ̂(X̌, Y̌ )V̂ )(Ž) = 0.

Proof. Make the condition Dω = 0 explicit using basic and vertical constant
vector fields. �

Proposition 7. Φ̂ verifies the conditions of proposition 6 if and only if it
is of the form Φ̂ 1

3
+ Ŝ where (Ŝ(X̌, Y̌ )Û)(Ž) = −Û(Š(X̌, Y̌ )Ž) and Š is in

Γ(S3(T ∗B)⊗ TB).

Proof. Check that Φ̂ 1
3

satisfies the condition of proposition 6 and that if Φ̂

does, Ŝ := Φ̂− Φ̂ 1
3

verifies: (Ŝ(X̌, Y̌ )Û)Ž = (Ŝ(X̌, Ž)Û)Y̌ . �

Other interesting structures on M = T ∗B are obtained for Φ̂ = Φ̂t when
t = 0 or t = −1.

3.3. Structures on TB. For M = TB and t ∈ R, let Φ̂t := tΓ. One can
consider as before the cases t = −1, t = 0, t = 1 etc. We will see later that
may be the structure corresponding to t = 1 is most important.

After these examples we return to the general case.

3.4. Further properties.

Remark 4. Note that from DVA−DAV = [V,A] follows DVA = [V,A] for
A linear and V constant, as DAV = 0. Similarly DXA = [X,A] for X basic
and A linear vertical.

Proposition 8. For A and B linear vertical vector fields, DAB is linear
vertical associated to B̂ ◦ Â.

The curvature tensor R of the connection D can be characterized as fol-
lows:

Proposition 9. For U, V vertical constant and X,Y, Z basic we have:
(i) R(U, V ) = 0

(ii) R(X,U)V = 0, R(X,U)Y is vertical constant associated to
1
2R̂(X̌, Y̌ )Û + Φ̂(X̌, Y̌ )Û .

(iii) R(X,Y )U is vertical constant associated to R̂(X̌, Y̌ )Û .
H(R(X,Y )Z) is basic associated to Ř(X̌, Y̌ )Ž.
V(R(X,Y )Z) is linear and associated to 1

2(∇̂ŽR̂)(X̌, Y̌ ) −
(∇̂X̌Φ̂)(Y̌ , Ž) + (∇̂Y̌ Φ̂)(X̌, Ž).
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Corollary 10. In the case M = T ∗B equipped with the pseudo-riemannian
structure of section 3.2.1 for U, V vertical constant and X,Y, Z basic we
have:

(ii) ̂R(X,U)Y (Ž) = Û(Ř(Y̌ , Ž)X̌).
(iii) if A = V(R(X,Y )Z), Â(V̂ )(Ť ) = ((∇̂Ť R̂)(X̌, Y̌ )V̂ )(Ž).

Note Ψ̂ := 1
2R̂+ Φ̂

Lemma 11. For U, V vertical constant, A linear and X,Y, Z basic we have:
(i) R(A,U)V = 0, R(A,U)Z = 0;

(ii) R(U, V )A = 0;
(iii) R(X,A)U = 0, R(X,A)Z is vertical linear associated to Ψ̂(X̌, Ž) ◦ Â;
(iv) R(X,U)A = 0;
(v) R(X,Y )A is vertical linear associated to R̂(X̌, Y̌ ) ◦ Â.

Proposition 12. For U, V,W vertical constant and T,X, Y, Z basic we have:
(i) (DR)(W,U, V ) = 0;

(ii) (DR)(X,U, V ) = 0;
(iii) (DR)(W,X,U) = 0;
(iv) (DR)(X,Y, U)(V ) = 0, (DR)(X,Y, U)(Z) is vertical constant associ-

ated to (∇̂Ψ̂)(X̌, Y̌ , Ž)Û ;
(v) (DR)(W,X, Y )(V ) = 0; (DR)(W,X, Y )(Z) is vertical constant asso-

ciated to −(∇̂Ψ̂)(X̌, Y̌ , Ž)Ŵ + (∇̂Ψ̂)(Y̌ , X̌, Ž)Ŵ ;
(vi) (DR)(T,X, Y )(V ) is vertical constant associated to (∇̂R̂)(Ť , X̌, Y̌ )V̂ .

H(DR)(T,X, Y )(Z) is basic π-related to (∇̌Ť Ř)(X̌, Y̌ )Ž.
V(DR)(T,X, Y )(Z) is linear associated to −(∇̂∇̂Ψ̂)(Ť , X̌, Y̌ , Ž) +
(∇̂∇̂Ψ̂)(Ť , Y̌ , X̌, Ž)+Ψ̂(Ť , Ř(X̌, Y̌ )Ž)+Ψ̂(Y̌ , Ž)◦Ψ̂(Ť , X̌)−Ψ̂(X̌, Ž)◦
Ψ̂(Ť , Y̌ )− R̂(X̌, Y̌ ) ◦ Ψ̂(Ť , Ž).

3.5. Symmetric spaces.

Proposition 13. In the case M = T ∗B equipped with the pseudo-
riemannian structure of section 3.2.1 (i.e. for Φ̂ = Φ̂1), ∇̌Ř = 0 implies
DR = 0. Further if B is a symmetric space, then T ∗B with this structure
is a symmetric space as well.

Proposition 14. In the case M = TB equipped with the connection corre-
sponding to Φ̂ = Φ̂1, ∇̌Ř = 0 implies DR = 0. Further if B is a symmetric
space, then TB with this structure is a symmetric space as well.

3.6. Parallel transport. Suppose c is a (smooth) vertical curve in M , i.e.
ċ(t) is vertical for any t. A vector field along c is parallel if and only if it can
locally be written t 7→ (Y + V )c(t) with Y basic and V vertical constant.

Suppose now c is any non vertical (smooth) curve in M . Locally c is
an integral curve of some vector field X + U . Locally any vector field
along c can be extended and written t 7→ (Y + V )c(t) with Y basic and
V vertical constant. It is parallel if (Dċ(t)(Y + V ))c(t) = 0, which can
be written (DX+U (Y + V ))c(t) = 0. By splitting this equation up into
horizontal and vertical components we obtain: (∇̌X̌ Y̌ )(π◦c)(t) = 0 and
(∇̂X̌ V̂ )(π◦c)(t) + Ψ̂(X̌, Y̌ )(π◦c)(t)(c(t)) = 0.
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The parallel transport τc along some closed curve c, such that c(0) =
Oπ(c(0)), can be decomposed as follows: Write c′ for the curve t 7→ Oπ(c(t)).
The preceding equations show that parallel transport of a vertical vector v ∈
Vx (in x = c(0)) along c coincides with parallel transport of the vector v ∈
VOπ(x)

(with the identification Vx ' VOπ(x)
) along c′. From the equations one

can also deduce that the horizontal part of parallel transport of a horizontal
vector v along c is exactly parallel transport of v along c′.

Note c̃ the path obtained by concatenating c and (c′)−1. τc is the product
τc′ ◦ τc̃. As in the classical proof of the Ambrose-Singer theorem one can
show that τc̃ is generated by the (τ∗γR)(X,U) where X is any horizontal
vector in the origin c(0), U any vertical vector in the origin and γ any path
from the origin to any point p between c′(t) and c(t) for any t.

Note γ̌ := π ◦ γ. By proposition 9, (τ∗γR)(X,U)(Y ) is vertical associated
to

τ−1
γ̌ Ψ̂π(p)(τγ̌(X̌), τγ̌(Y̌ ))τγ̌(Û).

3.7. More examples. Let B be a two dimensional manifold equipped with
a torsion-free non flat connection ∇̌. T ∗B equipped with the canonical
pseudo-Riemannian metric of section 3.2.1 and its Levi-Civita connection D
admits then the following holonomy algebra:

Hol(D) =
{(
−ta b

0 a

)
| a ∈ Hol(∇̌), b = −tb

}
.

To see this, apply the discussion of section 3.6. The condition b = −tb
follows from the fact that M is pseudo-Riemannian. It is clear that in
dimension 2, b is necessarily a multiple of

(
0 1
−1 0

)
. It is enough to show that

at least in one point of M , R(X,U) is non vanishing. But this follows from
the non flatness of ∇̌.

Note that any connected subgroup of Gl(2,R) is a restricted holonomy
group of a torsion-free connection ∇̌ on a two dimensional manifold(see [K]).

So we obtain for every candidate of indecomposable metric holonomy of
signature (2,2) with a single totally isotropic invariant plane listed in [BBI]
a corresponding metric.

Note J =
(

0 1
−1 0

)
;

K2,λ :=
{( α γ

0 αλ

)
; α, γ ∈ R, α > 0

}
with λ ∈ R;

K2,∞ :=
{(

1 γ
0 α

)
; α, γ ∈ R, α > 0

}
;

K3 :=
{( α γ

0 β

)
; α, β, γ ∈ R, α > 0, β > 0

}
;

K4 := SL(2,R);
K5 := GL+(2,R);
K6 :=

{(
α β
−β α

)
; α, β ∈ R, α2 + β2 > 0

}
;

U1 the connected group associated to the Lie algebra
{(

αA 0
0 −αtA

)
;α ∈ R

}
with A = ( 1 1

0 1 );
U2,λ the connected group associated to the Lie algebra{(
αC 0
0 −αtC

)
;α ∈ R

}
, with C =

(
λ 1
−1 λ

)
and λ ∈ R, λ ≥ 0;

A the connected group associated to the Lie algebra
{(

0 αJ
0 0

)
;α ∈ R

}
;

B the connected group associated to the Lie algebra{(
αN βJ
0 −αtN

)
;α, β ∈ R

}
with N = ( 0 1

0 0 ) ;
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Theorem 15. The restricted holonomy groups of an indecomposable non
irreducible semi-riemannian manifold of signature (2, 2) leaving invariant a
single totally isotropic plane are up to an isomorphism B, U1 ·A, U2,λ ·A(λ ∈
R), K2,λ · A(λ ∈ R ∪ {∞}), K6 · A, K3 · A, K4 · A and K5 · A.

For (B, ∇̌) a locally symmetric space of dimension 2, Holo(∇̌) is either
SO0(2), SO0(1, 1) or {( 1 t

0 1 ) | t ∈ R}, and then T ∗B equipped with the pre-
ceding pseudo-riemannian metric is a locally symmetric space.
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