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How to Obtain a Lattice Basis from a Discrete
Projected Space

Nicolas Normand, Myriam Servières and JeanPierre Guédon

IRCCyN/IVC, École polytechnique, University of Nantes
Rue Christian Pauc, 44306 Nantes

Abstract. Euclidean spaces of dimension n are characterized in discrete
spaces by the choice of lattices. The goal of this paper is to provide a
simple algorithm finding a lattice onto subspaces of lower dimensions
onto which these discrete spaces are projected. This first obtained by
depicting a tile in a space of dimension n − 1 when starting from an
hypercubic grid in dimension n. Iterating this process across dimensions
gives the final result.

1 Introduction

Regular lattices constitute the cornerstone for the building of discrete geometry
tools and also for bases of classical continuous space of functions. Of course,
these regular lattices can be defined without any outside reference. However,
the definition of the resulting lattice is not obvious when a problem is designed
in a discrete space and when it is mandatory to go back and forth from this
first space to an other discrete space using a given discrete transform. When the
same problem is entirely defined in a discrete manner, the lattice identification
problem can become even harder. This paradigm was used to construct a cryp-
tographic/signature scheme using the NTRU lattice [1].In this case, the lattice
identification leads to an NP-problem.

Lattice identifications have also been investigated by Conway and Sloane
for sphere packing which results are mainly employed for vector quantization
in the multimedia coding area [2]. In Sect. 2, the starting point to review the
literature will lie into the continuous/discrete correspondence firstly established
by Shannon and generalized by Unser-Aldroubi. This work allows to start with
a basis through a tensorial product, to sample the continuous space to give a
lattice onto which a Riesz functional basis will be defined.

The aim of this paper is then to demonstrate how to obtain an unitary
tile with a regular lattice on the projection hyperplane with discrete projection
directions. This will be performed in a general manner in Sect. 3. The fact that
we restrict the projection operator to discrete projection is based on the attempt
to get a simple way to obtain a lattice onto the hyperplane. The difficulty is then
to extract the lattice from regular projection grids, i.e. not to oversample the
hyperplane grid with unused points nor to undersample a grid from which the
lattice would not be obtained.



In other words, each point of the discrete projection plane must have a pre-
decessor in the initial space and each point of the initial lattice is projected onto
an existing point.

2 Related Work

Starting with the construction of orthonormal bases that give regular tiling leads
to the Gram-Schmidt orthonormalisation procedure that can be found in almost
any algebra textbook [3]. Because of the normalization, the resulting basis can
be easily discretised and replicated to give a regular tiling.

Following this path (starting from the continuous point of view and discretiz-
ing afterward) any n dimensional continuous space will give regular tiling from
this unconstrained orthonormal continuous grid. As a matter of fact, Unser and
Aldroubi have generalized the Shannon-Whittaker-Kotelnikov Sampling Theo-
rem starting with this n-dimensional orthogonal basis then lattice [4, 5]. The
initial purpose of this theorem is to use other functional bases than the Riesz
bases {(sinc (kx), k ∈ Z)}.

This theorem is described in Fig. 1

Fig. 1. Representation of the Unser-Aldroubi theorem

The first step corresponds to the orthogonal projection of the L2 function
f(x) onto a closed subspace of functions generated by a Riesz basis {η(kx), k ∈
Z}. In other words, these functions already need to be defined from a tiling (the
first versions of the theorem corresponds to cardinal functions as the sinc for
Shannon or cardinal splines for Unser-Aldroubi).

The second step also uses the same tiling but explicitly since it just picks up
the values onto the tiling and throw out the rest of the continuous functions.

The third step re-generates this previous continuous function from three dif-
ferent informations:

1. the dual functional basis η̊ (defined onto the tile)
2. the sample fη(k) (defined onto the tile)
3. the tile which allows to perform the discrete convolution that lies onto the

box 3.

There are two major points with this great theorem:



1. The tiling is the subsequent material that links continuous and discrete
words. The strength of this theorem is to allow to work only into a discrete
word fη(k) and go back into a continuous word only when mandatory.

2. The only tilling known to allow the conditions of the theorem are obtained
by tensorial products over higher dimensions. In other words, the Riesz basis
structure in one dimension {η(k− x), k ∈ Z} can not be used in two dimen-
sions as {η(

√
((k− l)2 +(l−y)2)), (k, l) ∈ Z2} but the only known extension

is {η(k − l).η(l− y), (k, l) ∈ Z2}. In this latter extension, Fig. 1 where x is a
n-dimensional vector still holds.

As a consequence using specific discrete operator (in our case a projector op-
erator) between step 2 and step 3 must be done with a correspondence between
grids not to loose information and the benefits of the theorem. This correspon-
dance has been applied for the continuous and discrete Radon transforms defined
into spline spaces leading to new filtered backprojection algorithms [7, 8].

3 Obtaining a Tile in a m-Dimensional Space from a
n-Dimensional Space

3.1 From n-Dimension to (n − 1)-Dimension

The initial space L is a lattice in a Euclidean space. This n-dimensional discrete
space can be seen as the regular sampling of a continuous n-dimensional space
structured by a hypercubic grid {i1, . . . , in}. Each point (b1, . . . , bn) ∈ Zn in the
discrete space corresponds to the point b1×i1+. . .+bn×in in the continuous space
(each lattice point is described by a n-dimensional vector b = {b1, . . . , bn} relative
to the lattice basis {i1, . . . , in}). The continuous space is translation invariant
according to any vector im or any integer combination of vectors i1, . . . , in.

By projecting the initial n-dimensional space along a line direction, we create
a (n − 1)-dimensional hyperplane. It can be easily seen (Fig. 2) that if the line
direction is discrete (an integer combination of i1, . . . , in), then the hyperplane
has a regular discrete structure: it is also a lattice. It is translation-invariant
along any integer combination of i′1, . . . , i

′
n, where each i′m is the projection of

im on the hyperplane. However, the set {i′1, . . . , i′n} is not a base (its dimension
is n− 1) and a n− 1-vector subset does not generally define a tile.

The purpose is to extract a n−1-vector basis from {i′1, . . . , i′n} that defines a
lattice basis for the projected hyperplane. Equivalently, it will lead to a discrete
(n− 1)× n projection matrix.

The proposed method will conceptually use the set of vectors {i′1, . . . , i′n},
obtained by projecting {i1, . . . , in} along the line direction (v1, . . . , vn) onto the
hyperplane. The relationship that links these vectors together is given by the
projection direction:

v1 × i′1 + . . . + vn × i′n = 0 . (1)

In the following, we will assume that the subset {i′1, . . . , i′n−1} is a vector
basis (i.e. that i′n is a linear combination of these vectors). Hence, i′1, . . . , i

′
n−1



Fig. 2. Some examples of 3D projected grids with projection directions (0, 1, 1), (1, 1, 2)
and (1, 2, 2)

generates the continuous projected hyperplane. This is always true except when
the last component of the projection direction, vn, is zero. In this particular
case, (1) creates a linear dependence between the vectors i′1, . . . , i

′
n−1. But since

the projection direction is not the null vector, there is at least one non-zero vm

component. The previous assumption can be ensured by permuting the vectors
twice: before applying the method in order to put i′m at the end and after
applying the method to put the vectors back in the initial order.

The method iteratively creates a set of lattice basis (j1, . . . , jk) with increas-
ing dimension k. Each intermediate basis (j1, . . . , jk) generates the part of L
contained in the space spanned by (i′1, . . . , i′k). At step k, the k − 1 previously
found vectors build a tile i.e. a parallelepiped which vertices correspond to pro-
jected discrete points and which interior does not contain any discrete points.

First Basis Vector. The first vector j1 is chosen following the i′1 direction from
the origin point O. The end point of j1 is the visible point in i′1 direction (the
closest point from O in this direction). Since the dimension of the projection
matrix is n− 1 for a line projection, there are exactly two linearly independant
ways to follow this direction, either with i′1 or with a linear combination of
i′2, . . . , i

′
n according to (1):

v1 × i′1 = −v2 × i′2 − . . .− vn × i′n . (2)

The second term of this equation can be written as an integral linear combination
with a division by the greatest common divisor of its coefficients:

v1

gcd(v2, . . . , vn)
× i′1 = −v2 × i′2 + . . . + vn × i′n

gcd(v2, . . . , vn)
. (3)

All the linear combinations of i′1 and v1i′1/ gcd(v2, . . . , vn) are obviously
collinear to i′1. The visible point from the origin O in this direction is given
by the minimal linear combination with integer coefficients. Let’s remark that
gcd(v2,...,vn)
gcd(v1,...,vn) and v1

gcd(v1,...,vn) are integers and relatively prime. Following the
Bézout’s theorem, there exist α1,β1 ∈ Z such that:



α1 ×
gcd(v2, . . . , vn)
gcd(v1, . . . , vn)

+ β1 ×
v1

gcd(v1, . . . , vn)
= 1

α1 + β1
v1

gcd(v2, . . . , vn)
=

gcd(v1, . . . , vn)
gcd(v2, . . . , vn)

. (4)

The minimal integral combination of i′1 and v1i′1
gcd(v1,...,vn) is then chosen as the

first vector of the projected lattice basis:

j1 =
gcd(v1, . . . , vn)
gcd(v2, . . . , vn)

i′1 .

From α1 and β1 (obtained with the extended Euclidean algorithm) we can
find two points that project onto j1:

A1 =
(

α1,−β1
v2

gcd(v2, . . . , vn)
, . . . ,−β1

vn

gcd(v2, . . . , vn)

)
,

B1 =



α1 + β1
v1

gcd(v2, . . . , vn)
, 0, . . . , 0︸ ︷︷ ︸

n−1



 . (5)

Conversely to B1, A1 always has integer components and thus belongs to L.

The kth Basis Vector. Let assume that vectors j1 to jk−1 have already been
found. The lattice spanned by (j1, . . . , jk−1) is the subset of L restricted to the
continuous subspace generated by (i′1, . . . , i′k−1).

The vector i′k introduces a new dimension because i′1, . . . , i
′
k are linearly in-

dependent. jk must have the smallest non null component in this new direction.
There are two independent ways to move along i′k, following i′k itself or a linear
combination of i′k+1, . . . , i

′
n according to (1):

v1i′1 + . . . + vki′k
gcd(vk+1, . . . , vn)

= −
vk+1i′k+1 + . . . + vni′n

gcd(vk+1, . . . , vn)
. (6)

The closeness of the hyperplanes to the origin is measured by the projection onto
i′k and gives respectively 1 and vk

gcd(vk+1,...,vn) . The minimum integral combination
is given by αk and βk:

αk + βk
vk

gcd(vk+1, . . . , vn)
=

gcd(vk, . . . , vn)
gcd(vk+1, . . . , vn)

. (7)

The new basis vector jk is directly derived:

jk = αki′k + βk
v1i′1 + . . . + vki′k
gcd(vk+1, . . . , vn)

. (8)



Two antecedents of jk can be obtained by:

Ak =



0, . . . , 0︸ ︷︷ ︸
k−1

,αk,−βk
vk+1

gcd(vk+1..vn)
, . . . ,−βk

vn

gcd(vk+1..vn)



 ,

Bk =




βkv1

gcd(vk+1..vn)
, . . . ,

βkvk−1

gcd(vk+1..vn)
, ak +

βkvk

gcd(vk+1..vn)
, 0, . . . , 0︸ ︷︷ ︸

n−k



 .(9)

Projection Matrix. Any point M(a1, . . . , an) in L is projected on the hy-
perplane to a point p(M) = M ′ with integer coordinates (b1, . . . , bn−1) in the
(j1, . . . , jn−1) basis. The preimage of M ′ is the set of points in L that are aligned
with M relative to the projection direction V . These points can be reached from
the known point b1A1 + . . . + bn−1An−1:

p−1(M ′) = {m|p(m) = M ′} =
{

b1A1 + . . . + bn−1An + k
V

gcd(v1..vn)
, k ∈ Z

}
.

(10)
(A1, . . . , An−1, V/ gcd(v1..vn)) is a basis of the initial lattice L. An extra row
corresponding to the direction of the projection is added:

A =
[
A1| . . . |An−1|

V

gcd(v1..vn)

]

=





α1 0 . . . 0 v1
gcd(v1..vn)

−β1
v2

gcd(v2..vn) α2
. . .

...

−β1
v3

gcd(v2..vn) −β2
v3

gcd(v3..vn)

. . . 0
...

... αn−1
vn−1

gcd(v1..vn)

−β1
vn

gcd(v2..vn) −β2
vn

gcd(v3..vn) . . . −βn1
vn

gcd(vn−1,vn)
vn

gcd(v1..vn)





. (11)

P = [Idn−1|0].A−1 . (12)

Figure 3 pictures the results of our algorithm for a simple 3D to 2D projection
of angle direction (6, 10, 15). The projection matrix is given by:

P =
[

5 6 −6
0 3 −2

]
,

and

A =




−1 0 6
−2 1 10
−3 1 15



 .



Fig. 3. The result of the projection of a 3D lattice with angle direction (6, 10, 15).
The three dashed lines vectors represent the projection of the initial 3D basis vectors
whereas the two plain lines vectors are the result of the computed lattice

3.2 From (n − 1)-Dimension to m-Dimension

To go from a n-dimensional space to a m-dimensional space (m ≥ 1), there are
(n−m) projection directions V :

V =




v1,1 . . . v1,n
...

...
vn−m,1 . . . vn−m,n



 . (13)

The described method is followed along the first direction:

V1 = [v1,1 . . . v1,n] , (14)

and gives the transformation of the basis (i1, . . . , in) to (j1, . . . , jn−1). Each
Vi, i ∈ {2, . . . , (n−m)} is projected onto (j1, . . . , jn−1). They give the projection
directions in the (n − 1)-dimensional space with the (j1, . . . , jn−1) basis. The
process is iterated to reach a m-dimensional space.

4 The Projection Matrix

We will define the projection matrix from a n-dimensional space onto a m-
dimensional space on the regular grid defined before.

To obtain the final projection matrix, the projection directions can be fol-
lowed in different order. One projection direction is chosen, the other projection
directions are projected following this first direction and the projection matrix
following this direction is derivated. In the projected direction, an other direc-
tion is chosen and the same process is iterated. Finally the projection matrix



from the n-dimensional space to the m-dimensional space is obtained by putting
together the intermediate matrix.

To go from a n-dimensional space to an m-dimensional space (m ≥ 1), there
are (n−m) projection directions Vk.

To obtain the projection matrix from a n-dimensional to an m-dimensional
space we will calculate the projection matrix step by step by lowering the di-
mension. The final nD to mD projection matrix is composed by products of
all the projection matrices describing hyperplane lattices. This matrix being the
product of integer matrices has only integer coefficients.

5 Conclusion

Tiling a discrete projected space from higher dimensional Euclidean spaces was
the subject of this paper. We first demonstrated how to obtain a tile in a (n −
1)-dimensional space from the Euclidean hypercubic grid of dimension n. The
generalization across dimensions is quite straightforward. The obtained results
are directly useful for discrete Radon transforms.
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