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Abstract

We deal with a scalar conservation law, set in a bounded multidi-

mensional domain, and such that the convective term is discontinuous

with respect to the space variable. We introduce a weak entropy formula-

tion for the homogeneous Dirichlet problem associated with the first-order

reaction-diffusion equation that we consider. We establish an existence

and uniqueness property for the weak entropy solution. The method of

doubling variables is used to state uniqueness while the vanishing viscosity

method allows us to prove the existence result.

1 Introduction

We are interested in the existence and uniqueness properties for an hyperbolic
first-order quasilinear equation set in a multidimensional bounded domain of
R

n, denoted by Ω. For any positive finite real T , the problem can be formally
written as stated below:

Find a measurable and bounded function u on Q =]0, T [×Ω such that:





∂tu+ divx(b(x)f(u)) + g(t, x, u) = 0 in Q,

u = 0 on (a part of) Σ,
u(0, x) = u0(x) on Ω,

(1)

where b is a discontinuous function along an hypersurface.
Indeed we suppose that there exists two open disjoint domains ΩL and ΩR

such that:
Ω = ΩR ∪ ΩL and ΩL ∩ ΩR = ΓL,R.

We suppose that ΩL and ΩR admit a “regular deformable Lipschitz bound-
ary” (see [25] or [10] Definition 2.1 for a rigorous definition). That will allow us
to define a “strong” trace of a solution to (1).

Moreover, for i = L,R, Hn−1(ΓL,R ∩ (Γi \ ΓL,R)) = 0, where Hq is the
q-dimensional Hausdorff measure in R

n.
We set Σ =]0, T [×Ω, for i = L,R, Σi =]0, T [×Ωi and ΣL,R =]0, T [×ΩL,R.
The function b is such that:

b(x) =

{
bL(x) if x ∈ ΩL

bR(x) if x ∈ ΩR,
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with bL ∈W 1,+∞(ΩL) and bR ∈W 1,+∞(ΩR).
The initial datum u0 belongs to L∞(Ω) and takes values in [m,M ] where m

and M are two fixed reals.
The vector function f = (f1, . . . , fn) belongs to (C1(R))n. For i = 1, . . . , n,

fi is Lipschitzian on R. We denote Mfi
its Lipschitz constant and we set Mf =

maxi=1,...,nMfi
.

The source term g is in C0([0, T ] × Ω × R) such that

∃ Mg ∈ R,∀ (t, x) ∈ Q,∀ (u, v) ∈ R
2, |g(t, x, u) − g(t, x, v)| ≤Mg|u− v|.

We introduce a nondecreasing function M1 and a nonincreasing function M2

such that:





M1(0) ≥M,

∀ t ∈ [0, T ],
M ′

1(t) + g(t, x,M1(t)) + ∇xb(x) · f(M1(t)) ≥ 0 a.e. on ΩL ∪ ΩR,

and





M2(0) ≤ m,

∀ t ∈ [0, T ],
M ′

2(t) + g(t, x,M2(t)) + ∇xb(x) · f(M2(t)) ≤ 0 a.e. on ΩL ∪ ΩR.

Generally we may choose:

M1 : t ∈ [0, T ] −→M1(t) = ess sup
Ω
u+

0 e
N1t +

N2

N1
(eN1t − 1),

and

M2 : t ∈ [0, T ] −→M2(t) = ess inf
Ω

(−u−0 )eN1t −
N2

N1
(eN1t − 1),

with: N1 = max(‖∇xb‖L∞(ΩL), ‖∇xb(x)‖L∞(ΩR))

n∑

i=1

Mfi
+ Mg , and N2 =

∑

i=L,R

max
[0,T ]×Ω

|g(t, x, 0) + ∇xbi(x) · f(0)|.

Depending on the properties of the functions f and g, better choices of M1 and
M2 can be done. For instance if f(m) = f(M) = 0 and g(.,M) ≥ 0, g(.,m) ≤ 0,
we will choose M1 = M and M2 = m.

We suppose also that the flux function f is non-degenerate that is to say,
for a.e. x ∈ Ω, ∀ξ ∈ R

n, ξ 6= 0, the function:

λ 7−→ ξ · b(x)f(λ) is not linear
on any non degenerate interval included in [M2(T ),M1(T )],

(2)

where · denotes the scalar product in R
n.

Scalar conservation laws with discontinuous flux have seen a great deal of
interest (see for example [1], [2], [3] [5], [6], [8], [9], [12], [13], [15], [16], [23],
[24] the list is far from being complete) but all these works treat the case of
a one dimensional domain Ω. To our knowledge only two works consider the
multidimensional case. In [14], the authors consider the particular case of a two
dimensional domain and use the compensated compactness method to prove
the existence of a weak solution. Note that this method cannot be genenralized
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to domains whose the dimension is greater than two. In [22], E. Yu. Panov,
thanks the framework of the “H-measures” obtains an existence result for the
Cauchy problem in R+×R

n. In section 2, we give the definition of weak entropy
solution u to (1) and we state the existence of “strong” traces for u. In section
3 we prove the uniqueness property thanks to the method of doubling variables
and a pointwise reasoning along the interface ΣL,R. In section 4, the existence
result is established via the vanishing viscosity method. Finally in section 5,
we prove, in some particular cases, that the method often used in one space
dimension namely the regularization of the coefficient b, leads to the existence
of a weak entropy solution to (1).

2 Notion of weak entropy solution

In this section we propose a definition extending that of J.D Towers in [24] -
used in [13] for the homogeneous Dirichlet problem - to the multidimensional
case. We say that:

Definition 1. A function u of L∞(Q) is a weak entropy solution to Problem
(1) if:
(i) ∀ϕ ∈ C∞

c (Q), ϕ ≥ 0, ∀k ∈ R,

∫

Q

{|u− k|∂tϕ+ b(x)Φ(u, k) · ∇xϕ}dxdt

−

∫

Q

sgn(u− k)(g(t, x, u) + ∇xb(x) · f(k))ϕdxdt

+

∫

ΣL,R

|(bR(σ) − bL(σ))f(k) · νL(σ)|ϕ(σ)dtdHn−1 ≥ 0,

(3)

where

Φ(u, k) = (Φ1(u, k), . . . ,Φn(u, k)), Φi(u, k) = sgn(u− k)(fi(u) − fi(k))

(ii) u a is weak solution to (1):

∂tu+ divx(b(x)f(u)) + g(t, x, u) = 0 in D′(Q). (4)

(iii)

ess lim
t→0+

∫

Ω

|u(t, x) − u0(x)|dx = 0, (5)

(iv) for a.e. t ∈]0, T [, Hn−1-a.e., ∀k ∈ R,

(sgn(uτ (σ) − k) + sgn(k))b(σ)(f(uτ ) − f(k)) · ν ≥ 0 (6)

where

uτ =

{
uτ

L on ΣL ∩ Σ
uτ

R on ΣR ∩ Σ.

In this definition uτ
L and uτ

R denote the traces of u respectively on ΣL and
ΣR. Indeed it follows from [25] or [21]:
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Lemma 1. Let u be a function in L∞(Q) satisfying (3). Then under (2) there
exists a function uτ

L of L∞(ΣL) (resp. uτ
R of L∞(ΣR)), such that, for every

compact K of ΣL (resp. ΣR) and every regular Lipschitz deformation Ψ of ΩL

(resp. ΩR),

ess lim
s→0+

∫

K

|u(Ψ(s, σ)) − uτ
L(σ)|dtdHn−1 = 0. (7)

Lemma 2. Let (ωε)ε>0 a sequence of functions such that, for every ε, ωε ∈
C∞

c (Ω) and: 




0 ≤ ωε ≤ 1 on Ω,
ωε(x) = 1 if x ∈ ΓL,R,

ωε(x) = 0 if d(x,ΓL,R) > ε,

(ε∇xωε)ε is bounded on Ω.

(8)

Then, for i = L,R, for every ϕ in C∞
c (Q),

lim
ε→0+

∫

Qi

b(x)Φ(u, k) · ∇xωεϕdxdt =

∫

ΣL,R

biΦ(uτ
i , k) · νiϕdtdH

n−1.

Proof. We prove the lemma when Qi is the half-space i.e.:

Ωi = {x = (x′, xn) ∈ R
n−1 × R;xn < 0},

νi = (0, . . . , 0, 1) ∈ R
n,

ΣL,R =]0, T [×R
n−1 × {0} ≡]0, T [×R

n−1, r = (t, x) ∈ Σi,

Qi = {p = (r, xn); r ∈ Σi, xn < 0}.

To come back to the general case we can use a recovery argument.
In the case of the half-space, we can define a lipschitzian deformation ψ by:

ψ : [0, 1] × ∂Qi → Qi

(s, r) → r − s · νi,

that implies:

ess lim
xn→0−

∫

ΣL,R

|u(r, xn) − uτ
i (r)|dr = 0. (9)

We also suppose (that is not restrictive) that:

∇ωε(x) = (0, . . . , ∂xn
ωε(x)) and ε‖∂xn

ωε‖∞ is bounded.

So we have to show that lim
ε→0+

Iε = 0, where:

Iε =

∫

ΣL,R

1

ε

∫ 0

−ε

|bi(x)Φn(u, k)ϕ(r, xn) − bi(x
′)Φn(uτ

i , k)ϕ(r, 0)|dxndr.

Since Φn is lipschitzian, we use the properties of bi and ϕ, and equality (9) to
conclude.

3 The uniqueness property

The proof relies on that proposed in [13] for the one dimensional case. First we
focus on the transmission conditions along the interface ΣL,R.
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3.1 Interface conditions

We first look for a “Rankine-Hugoniot” condition along the interface of discon-
tinuity. We consider a weak entropy solution u, in the sense of Definition 1.
Since u is a weak solution ((4) is fulfilled) it follows:

Lemma 3. Let u be an entropy solution to (1). Then, for a.e. σ in ΣL,R,

bLf(uτ
L) · νL = bRf(uτ

R) · νL. (10)

Besides we can deduce from (3) an entropy inequality along ΓL,R:

Lemma 4. Let u be a weak entropy solution to (1). Then, for a.e. σ in ΣL,R,
for all real k,

{bLΦ(uτ
L, k) − bRΦ(uτ

R, k)} · νL + |(bL − bR)f(k) · νL| ≥ 0. (11)

Proof. We consider a sequence of functions (ωε)ε>0 in C∞
c (Ω) that fulfills the

condition (8) of Lemma 2. For every positive ε, we choose in (3) the test function
ϕωε, ϕ ∈ C∞

c (Q), ϕ ≥ 0. For any real k we obtain:

∫

Q

{|u− k|∂tϕωε+ b(x)Φ(u, k) · ∇x(ϕωǫ)}dxdt

−

∫

Q

sgn(u− k)(g(t, x, u) + ∇xb(x) · f(k))ϕωǫdxdt

+

∫

ΣL,R

|(bR(σ) − bL(σ))f(k) · νL(σ)|ϕ(σ)dtdHn−1 ≥ 0.

We take now the ε-limit. Lemma 2 allows us to assert:

lim
ε→0+

∫

Q

b(x)Φ(u, k) · ∇x(ϕωε)dxdt

=

∫

ΣL,R

(bLΦ(uτ
L, k) · νL + bRΦ(uτ

R, k) · νR)ϕ(σ)dtdHn−1.

Thanks to the dominated convergence Theorem the other terms go to 0 with ε
(except the last one that do not depend on ε). The conclusion follows.

Remark 1. The Rankine-Hugoniot condition (10) is included in (11) as soon
as bR, bL and f are such that:






∃ k1,∃ k2 ∈ R, k2 ≤ k1 such that u ∈ [k2, k1], and , for a.e. σ of ΓL,R

(bR(σ) − bL(σ))f(k1) · νL(σ) ≥ 0,
(bR(σ) − bL(σ))f(k2) · νL(σ) ≤ 0.

3.2 The uniqueness result

We are now able to give a uniqueness property through a Lipschitzian depen-
dence in L1(Ω) of a weak entropy solution with respect to corresponding initial
data. To do so we suppose that for a.e. σ of ΓL,R the function:

λ 7−→ f(λ) · νL(σ)
changes no more than once its monotonicity on [M2(T ),M1(T )].

(12)
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Theorem 1. Let u and v be two weak entropy solutions to (1) that take values
in [M2(T ),M1(T )], associated with initial conditions u0 and v0 in L∞(Ω) with
values in [m,M ]. Then, under (12), for a.e. t in ]0, T [,

∫

Ω

|u(t, x) − v(t, x)|dx ≤ eMgt

∫

Ω

|u0(x) − v0(x)|dx. (13)

The proof of Theorem 1 is divided into several steps. First, we use the
method of doubling variables, due to S. Kruzkov (see [17]) to show:

Lemma 5. For any function ϕ in C∞
c (Q) vanishing in a neighborhood of ΣL,R,

ϕ ≥ 0, ∫

Q

{|u− v|∂tϕ+ b(x)Φ(u, v) · ∇xϕ−G(u, v)ϕ}dxdt ≥ 0, (14)

where
G(u, v) = sgn(u− v)(g(t, x, u) − g(t, x, v)).

Proof. This result is proved in [13] for the one-dimensional case. The multidi-
mensional one does not bring specific difficulties.

Our aim is now to obtain inequality (14) for any nonnegative function ϕ

in C∞
c (Q). So, for any positive real ε, we consider in (14) the test function

ϕ(1−ωε), such that ωε satisfies the assumptions of Lemma 2. We take the limit
on ε. For i = L,R, Lemma 2 provides:

lim
ε→0+

∫

Qi

biΦ(u, v) · ∇x(1 − ωε)ϕdxdt = −

∫

ΣL,R

biΦ(uτ
i , v

τ
i ) · νiϕdtdH

n−1,

and we can deduce that:
∫

Q

{|u− v|ϕt + b(x)Φ(u, v) · ∇xϕ−G(u, v)ϕ}dxdt

≥

∫

ΣL,R

{bLΦ(uτ
L, v

τ
L) − bRΦ(uτ

R, v
τ
R)} · νLϕdtdH

n−1.

Next we show the term in the right-hand side is nonnegative. Indeed we study,
for a.e. σ, the sign of:

J = {bL(σ)Φ(uτ
L(σ), vτ

L(σ)) − bR(σ)Φ(uτ
R(σ), vτ

R(σ)} · νL .

Here we make a pointwise reasoning and we have to consider different cases.
If sgn(uτ

L − vτ
L) = sgn(uτ

R − vτ
R),

J = sgn(uτ
L − vτ

L){bL(f(uτ
L) − f(vτ

L)) − bR(f(uτ
R) − f(vτ

R))} · νL = 0,

by using (10).
If sgn(uτ

L − vτ
L) = −sgn(uτ

R − vτ
R), we use (10) to have:

J = 2sgn(uτ
L−v

τ
L)bL(f(uτ

L)−f(vτ
L))·νL = 2sgn(uτ

L−v
τ
L)bR(f(uτ

R)−f(vτ
R))·νL .

We suppose that sgn(uτ
L − vτ

L) = −1 (i.e. uτ
L < vτ

L), sgn(uτ
R − vτ

R) = 1 (i.e.
uτ

R > vτ
R), and bR < bL, the study of the other cases being similar.
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• uτ
L < vτ

L < vτ
R < uτ

R

From Lemma 4 we deduce, for any k in [uτ
L, u

τ
R],

{−bL(f(uτ
L)−f(k))−bR(f(uτ

R)−f(k))}·νL +(bL−bR)|f(k) ·νL(σ)| ≥ 0.
(15)

If f(vτ
L).νL ≥ 0, we choose k = vτ

L in (15) to obtain:

{−bL(f(uτ
L) − f(vτ

L)) − bRf(uτ
R) + bLf(vτ

L)} · νL ≥ 0.

We refer to (10) to ensure that;

−2bL(f(uτ
L) − f(vτ

L)) · νL ≥ 0, so J ≥ 0.

If f(vτ
R).νL ≤ 0, we choose k = vτ

R in (15) and we have:

−2bR(f(uτ
R) − f(vτ

R)) · νL ≥ 0 and thus J ≥ 0.

Finally, if f(vτ
L) · νL < 0 and f(vτ

R) · νL > 0, since bL > bR, by (10)
we deduce that bL > 0 and bR < 0. If we suppose that J < 0, J =
−2bL(f(uτ

L) − f(vτ
L)) · νL implies (f(uτ

L) − f(vτ
L)) · νL > 0. Similarly

J = −2bR(f(uτ
R)− f(vτ

R)) · νL implies (f(uτ
R)− f(vτ

R)) · νL < 0. To sum
up, we have:

f(vτ
L) · νL < f(vτ

R)) · νL, f(uτ
L) · νL > f(vτ

L) · νL et
f(vτ

R)) · νL > f(uτ
R) · νL.

Thus the function λ 7→ f(λ).νL changes at least twice its monotonicity in
[M2(T ),M1(T )] that contradicts the assumption (12).

• uτ
L < vτ

R < vτ
L < uτ

R

If f(vτ
L) · νL ≥ 0 or f(vτ

R) · νL ≤ 0 we can adapt the method used in the
two first cases of the previous situation.

If f(vτ
L) · νL < 0 and f(vτ

R) · νL > 0, there exists α in ]vτ
R, v

τ
L[, such that

f(α) · νL = 0.

By choosing k = α in (15), we obtain:

−bLf(uτ
L) · νL − bRf(uτ

R) · νL ≥ 0.

So, by (10),
−2bLf(uτ

L) · νL ≥ 0.

Likewise, we choose k = α in the inequality of Lemma 4 written for v et
we use (10) to ensure:

2bLf(vτ
L) · νL ≥ 0.

We add up these two inequalities to have: J ≥ 0.

All the others cases may be reduced to one of the previous situations. Then
(14) still hold for any ϕ ∈ C∞

c (Q), ϕ ≥ 0. Now we introduce the sequence of
functions (βε)ε>0 such that βε ∈ C∞

c (Ω) and βε = 1 if d(x, ∂Ω) ≥ ε. We choose
in (14) the sequence of test functions (αβε)ε>0, where α ∈ C∞

c (]0, T [).
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To take the limit on ε in the convective term, we adapt the proof of Lemma
2 (by taking ωε = 1 − βε) to state:

lim
ε→0+

∫

Q

b(x)Φ(u, v) · ∇xβεα(t)dxdt = −

∫

Σ

b(σ)Φ(uτ , vτ ) · να(t)dtdHn−1.

Then, passing to the limit with ε in (14) yields to:
∫

Q

{|u− v|α′(t) −G(u, v)α(t)}dxdt−

∫

Σ

b(σ)Φ(uτ , vτ ) · να(t)dtdHn−1 ≥ 0.

Boundary condition (6) ensure, by reasoning for almost every point of Σ that:
∫

Σ

b(σ)Φ(uτ , vτ ) · να(t)dtdHn−1 ≥ 0.

Lastly the Lipschitz condition on g provides:

−

∫

Q

{|u− v|α′(t)dxdt ≤Mg

∫

Q

|u− v|α(t)dxdt.

For almost every t of ]0, T [, we consider a sequence of functions (αε)ε>0 ∈
C∞

c ([0, T ]) approximating the characteristic function I[0,t]. We use the initial
condition (5) for u and v et we obtain (13) thanks to Gronwall’s Lemma.

4 Existence

In order to state an existence result we use the vanishing viscosity method. To
this purpose we consider the functional space W (0, T ) defined by:

W (0, T ) = {v ∈ L2(0, T ;H1
0 (Ω)); ∂tv ∈ L2(0, T ;H−1(Ω))}.

Moreover we denote by 〈., .〉 the pairing between H−1(Ω) and H1
0 (Ω).

Then we introduce, for any positive real µ, the viscous problem related to
(1),

Find a bounded and measurable function on Q, uµ, such that:






∂tuµ + divx(b(x)f(uµ)) + g(t, x, uµ) = µ∆uµ dans Q,

uµ(0, x) = u0(x) sur Ω,
uµ = 0 sur Σ.

(16)

First we show that Problem (16) admits a unique weak solution that is
bounded independently of µ. Then the existence of a function u satisfying (3)
will be provided by taking the limit on µ. Before this we give the definition of
a weak solution to (16).

Definition 2. A function u in W (0, T ) is a weak solution to (16) if:

uµ(0, .) = u0 a.e. on Ω, (17)

uµ fulfills the variational equality, for a.e. t ∈]0, T [, for any v ∈ H1
0 (Ω):

〈∂tuµ, v〉 +

∫

Ω

((µ∇xuµ − b(x)f(uµ)) · ∇xv + g(t, x, uµ)v)dx = 0. (18)
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In order to deal with bounded solutions, we use the following assumption on
the flux function:

∀t ∈ [0, T ], for a.e. σ ∈ ΓL,R, (bR(σ) − bL(σ))f(M1(t)) · νL(σ) ≥ 0 (19)

∀t ∈ [0, T ], for a.e. σ ∈ ΓL,R, (bR(σ) − bL(σ))f(M2(t)) · νL(σ) ≤ 0 .(20)

Remark 2. Conditions (19)-(20) are a little more general than the ones taken
in the previous works. Indeed (19)-(20) are fulfilled as soon as b and f are such
that, for a.e. σ of ΓL,R, the function λ 7→ (bL − bR)f(λ) · νL is nondecreasing
and vanishes at a point. This kind of assumption is considered in [4]. Besides
(19)-(20) are also fulfilled when:






f(m) = f(M) = 0,
for a.e. (t, x) ∈ Q, g(t, x,M) ≥ 0,
for a.e. (t, x) ∈ Q, g(t, x,m) ≤ 0,

as we may choose in this case M1 ≡M and M2 ≡ m.
This previous hypothesis, with g ≡ 0, is in particular used in [1], [5], [6],

[9], [16], [23], [24] for the one dimensional case, and in [14], [22] for the mul-
tidimensional case.

Now we prove:

Theorem 2. Under (19) and (20) there exists a unique weak solution uµ to
(16) such that:

∀t ∈ [0, T ],M2(t) ≤ uµ(t, .) ≤M1(t) a.e. on Ω, (21)

Proof. (i) Existence
We use the Schauder-Tychonoff fixed point Theorem to obtain a function

uµ that satisfies (17), (18) and (21). First, for any real a, b, c, we define
B(a, b, c) = max{a,min{b, c}} and we introduce, for µ > 0, the problem:





Find uµ ∈W (0, T ) such that a.e. on ]0, T [ and for any v of H1
0 (Ω),

〈∂tuµ, v〉 +

∫

Ω

((µ∇xuµ − b(x)f(u⋆
µ)) · ∇xv + g(t, x, u⋆

µ)v)dx = 0

uµ(0, .) = u0 p.p. on Ω,

(22)

where u⋆
µ(t, x) = B(M2(t), uµ(t, x),M1(t)). Let us remark that if uµ is a solution

to (22), then uµ fulfills (21). Indeed we can consider in (22) the test function
vη = sgnη(uµ −M1(t))

+ (since vη ∈ L2(0, T ;H1
0 (Ω))). For any s of ]0, T [, we

integrate over ]0, s[. Then,
∫ s

0

〈∂tuµ, vη〉dt+

∫ s

0

∫

Ω

((µ∇xuµ − b(x)f(u⋆
µ)) · ∇xvη + g(t, x, u⋆

µ)vη)dxdt = 0.

We write the evolution term under the form:
∫ s

0

〈∂tuµ, vη〉dt =

∫ s

0

〈∂t(uµ −M1(t)), vη〉dt+

∫

Qs

M ′
1(t)vηdxdt,

and we use Mignot-Bamberger Lemma (see [11]) to obtain:

∫ s

0

〈∂t(uµ −M1(t)), vη〉dt =

∫

Ω

(

∫ uµ(s,x)−M1(s)

0

sgnη(r −M1(s))
+dr)dx.
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We use the definition of u⋆
µ to write the convection term under the form:

−

∫

Qs

b(x)f(u⋆
µ) · ∇xvηdxdt = −

∫

Qs

b(x)f(M1(t)) · ∇xvηdxdt.

We integrate by parts separately on ΩL and ΩR to have:

−

∫ s

0

∫

Ω

b(x)f(M1(t)) · ∇vηdxdt

=

∫ s

0

∫

ΓL,R

(bR − bL)f(M1(t)) · νLvηdH
n−1dt

+
∑

i=L,R

∫

Qi,s

∇xb(x) · f(M1(t))vηdxdt.

We notice that, thanks to (19) the interface integral is nonnegative.
The diffusion term is equal to:

∫ s

0

∫

Ω

µ(∇xuµ)2sgn′η(uµ −M1(t))
+dxdt,

and so, is nonnegative.
Moreover, by definition of u⋆

µ,

∫ s

0

∫

Ω

g(t, x, u⋆
µ)vηdxdt =

∫

Qi,s

g(t, x,M1(t))vηdxdt.

We take the η-limit. That yields to:
∫

Ω

(uµ(s, x) −M1(s))
+dx

+

∫ s

0

∫

Ω

(M ′
1(t) + g(t, x,M1(t))sgn(uµ −M1(t)))

+dxdt

+
∑

i=L,R

∫ s

0

∫

Ωi

∇xb(x) · f(M1(t))sgn(uµ −M1(t))
+dxdt ≤ 0.

By definition of M1, M
′
1(t) + g(t, x,M1(t)) + ∇xb(x) · f(M1(t)) ≥ 0, a.e. on

QL and QR. Then we deduce the majorization of uµ given in (21). To obtain
the minorization of uµ the reasoning is the same: we choose the test function
vη = −sgnη(uµ −M2(t))

− in (22). We use (20) to show the interface integral
is nonnegative. Thus the existence of weak solution to (16) is proved as soon
as (22) has a solution. To state this, for any w in W (0, T ), we consider the
linearized problem:






Find U in W (0, T ) such that a.e. in ]0, T [, for any v of H1
0 (Ω),

〈∂tU, v〉 +

∫

Ω

((µ∇xU − b(x)f(w⋆)) · ∇v + g(t, x, w⋆)v)dx = 0,

U(0, .) = u0.

(23)

Since Problem (23) admits a unique solution, we can define the operator:

T : W (0, T ) → W (0, T )
w → U ≡ T (w)
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where U is the unique solution to (23). By taking v = U in (23), as w⋆(t, x) takes
values in [M2(t),M1(t)], we have: ‖U‖L2(0,T ;H1

0
(Ω)) ≤ C1. This estimate implies,

by using the definition of L2(0, T ;H−1(Ω))-norm that: ‖∂tU‖L2(0,T ;H−1(Ω)) ≤
C2, where C1 and C2 are two constants dependent on ε (but independent of
w⋆). So, with C3 =

√
C2

1 + C2
2 , the set:

C = {U ∈W (0, T ), ‖U‖W (0,T ) ≤ C3, U(0, .) = u0 a.e. on Ω},

is convex, bounded, weakly compact in W (0, T ) and such that T (C) ⊂ C. It
remains to prove the sequential continuity of T for the weak topology

σ(W (0, T ),W ′(0, T )). Let (wn)n a sequence converging towards w weakly
in C. Then the sequence (Un)n = (T (wn))n is bounded in W (0, T ) and so there
exists U in W (0, T ) such that, up to a subsequence, (T (wn))n goes to U , weakly
in W (0, T ), strongly in L2(Q). Moreover, Un(0, .) goes to U(0, .) = u0 a.e. on
Ω. We take the limit with respect to n in (23) to state that U = T (w). Since
the solution to (23) is unique, we deduce that the whole sequence (T (wn))n goes
to T (w) weakly in C. Thus T has (at least) one fixed point, denoted uµ, that
satisfies (22) and so (17), (18) and (21).

(ii) Uniqueness
We use an Holmgren-type duality method. Let u and û be two weak solutions

to (16). For the sake of simplicity we do not write the subscript µ. For any t

in [0, T [, we introduce z(t, .) (resp. ẑ(t, .)) the element of H1
0 (Ω) solution to the

problem: 




for any v ∈ H1
0 (Ω),∫

Ω

µ∇z(t, .).∇vdx =

∫

Ω

u(t, .)vdx

(resp.

∫

Ω

µ∇ẑ(t, .) · ∇vdx =

∫

Ω

û(t, .)vdx).

(24)

Since ∂tu and ∂tû belong to L2(0, T,H−1(Ω)), we can assert that ∂tz (resp.
∂tẑ) is an element of L2(0, T ;H1(Ω)) such that, for a.e. t ∈]0, T [, ∀v ∈ H1

0 (Ω),

∫

Ω

µ∇∂tz · ∇vdx = 〈∂tu, v〉 ( resp.

∫

Ω

µ∇∂tẑ · ∇vdx = 〈∂tû, v〉). (25)

By choosing v = z − ẑ in (18) written for u and û, and by integrating from
0 to s, s ∈]0, T [, we have:

∫ s

0

〈∂t(u− û), z − ẑ〉dt+

∫ s

0

∫

Ω

µ∇(u− û) · ∇(z − ẑ)dxdt

=

∫ s

0

∫

Ω

b(x)(f(u) − f(û)) · ∇(z − ẑ)dxdt

−

∫ s

0

∫

Ω

(g(t, x, u) − g(t, x, û))(z − ẑ)dxdt.

For a.e. t ∈]0, T [, we take v = u(t, .) − û(t, .) in (24) in order to have:

µ

∫ s

0

∫

Ω

∇(u− û) · ∇(z − ẑ)dxdt =

∫ s

0

∫

Ω

(u− û)2dxdt = ‖u− û‖2
L2(]0,s[×Ω).

In a same way, for a.e. t ∈]0, T [ we choose v = z(t, .) − ẑ(t, .) in (25) to obtain:
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∫ s

0

〈∂t(u− û), z − ẑ〉dt =

∫ s

0

∫

Ω

µ∇∂t(z − ẑ) · ∇(z − ẑ)dxdt

=
1

2

∫

Ω

µ|∇(z − ẑ)|2(s, .)dxdt.

Thus

1

2

∫

Ω

µ|∇(z − ẑ)|2(s, .)dx+ ‖u− û‖2
L2(]0,s[×Ω) ≤

‖u− û‖L2(]0,s[×Ω)(2‖b‖∞Mf )‖∇(z − ẑ)‖L2(]0,s[×Ω)n +Mg‖z − ẑ‖L2(]0,s[×Ω)).

We use Poincaré Inequality to bound ‖z − ẑ‖L2(]0,s[×Ω) with
‖∇(z − ẑ)‖L2(]0,s[×Ω)n , and then the Young inequality to state the existence of
a positive real C such that, for a.e. s ∈]0, T [:

1

2

∫

Ω

µ|∇(z − ẑ)|2(s, .)dx ≤ C

∫ s

0

‖∇(z − ẑ)‖L2(Ω)ndt.

The conclusion follows thanks to Gronwall’s Lemma.

Estimate (21) allows us to prove thanks to (18) the following Lemma, that
will be useful to take the µ-limit.

Lemma 6. There exists a positive real C such that:

µ

∫

Q

|∇xuµ|
2dxdt ≤ C. (26)

Now we take the limit on µ. The convergence of the sequence (uµ)µ>0 is a
consequence of E. Yu. Panov’s work in [20]. Indeed it follows from Assumption
(2):

Lemma 7. The sequence of weak solutions (uµ)µ>0 to problems (16)µ, contains
a subsequence that converges in L1(Q).

Proof. We first focus on QL. Since the convective term bL(x)f(u) is regular
enough and the sequence (uµ)µ>0 is bounded in L∞(QL), we can apply E. Yu.
Panov’s result in [20] to state there exists a subsequence, still labelled (uµ)µ>0

that converges in L1(QL). Then we use the same argument on the subdomain
QR to extract from this last subsequence a new subsequence, still denoted by
(uµ)µ>0 that converges in L1(QR), and so in L1(Q).

We denote by u the limit of a subsequence (uµ)µ that converges in L1(Q).
Let us show that u is a weak entropy solution to (1). First we prove that u
fulfills the entropy inequality (3). To this aim we come back to the viscous
problem (16). We choose in (18) the test function sgnη(uµ − k)ϕ1ϕ2 where k
is a real, ϕ1 an element of C∞

c ([0, T [), ϕ2 an element of C∞
c (Ω), ϕ1, ϕ2 ≥ 0. We

integrate over [0, T ] to obtain:
∫ T

0

〈∂tuµ, sgnη(uµ − k)ϕ1ϕ2〉

+

∫

Q

(µ∇xuµ − b(x)f(uµ)) · ∇x(sgnη(uµ − k)ϕ1ϕ2)dxdt

+

∫

Q

g(t, x, uµ)sgnη(uµ − k)ϕ1ϕ2dx = 0.

(27)
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Again we use the F. Mignot-A. Bamberger Lemma to transform the evolution
term:

∫ T

0

〈∂tuµ, sgnη(uµ−k)ϕ2〉ϕ1dt = −

∫

Q

Iη(uµ)ϕ2∂tϕ1dxdt−

∫

Ω

Iη(u0)ϕ2ϕ1(0)dx

where

Iη(uµ) =

∫ uµ

k

sgnη(τ − k)dτ.

The diffusion term is transformed as below:
∫

Q

µ∇xuµ · ∇x(sgnη(uµ − k)ϕ1ϕ2)dxdt =

∫

Q

µ(∇uµ)2sgn′η(uµ − k)ϕ1ϕ2dxdt

+

∫

Q

µ∇uµ · ∇ϕ2ϕ1sgnη(uµ − k)dxdt,

so that the first term on the right-hand side of the equality is nonnegative.
The convective term is studied separately on QL and QR. We write it under

the form:

−
∑

i∈{L,R}

∫

Qi

bi(x)f(uµ) · ∇uµsgn
′
η(uµ − k)ϕ1ϕ2dxdt

−
∑

i∈{L,R}

∫

Qi

bi(x)f(uµ) · ∇ϕ2sgnη(uµ − k)ϕ1dxdt

We focus on the first integral for i = L (the reasoning for i = R being the
same). We denote:

Jη,µ = −

∫

QL

bL(x)f(uµ).∇uµsgn
′
η(uµ − k)ϕ1ϕ2dxdt

= −

∫

QL

bL(x)divxDη(uµ, k)ϕ1ϕ2dxdt,

where

Dη(uµ, k) =

∫ uµ

k

f(τ)sgn′η(τ − k)dτ.

Thanks to the Green formula, we have:

Jη,µ =

∫

QL

(bL(x)Dη(uµ, k) · ∇ϕ2 + ∇xbL(x).Dη(uµ, k)ϕ2ϕ1)dxdt

−

∫

ΣL,R

bL(σ)Dη(uµ, k) · νLϕ1ϕ2dtdH
n−1.

Next we look at the interface integral. We have:
∫

ΣL,R

bL(σ)Dη(uµ, k) · νLϕ1ϕ2dtdH
n−1

=

∫

ΣL,R

bL(σ)(Dη(uµ, k) − f(k)sgnη(uµ − k)) · νLϕ1ϕ2dtdH
n−1

+

∫

ΣL,R

bL(σ)f(k) · νLsgnη(uµ − k)ϕ1ϕ2dtdH
n−1.
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We point out, by an integration by parts that, for any reals θ and k,

Dη(θ, k) = −

∫ θ

k

f ′(τ)sgnη(τ − k)dτ + f(θ)sgnη(θ − k).

where f ′ = (f ′1, . . . , f
′
n).

Then we make sure that, for i = 1, . . . , n:

∣∣∣∣−
∫ uµ

k

f ′i(τ)sgnη(τ − k)dτ + fi(uµ) − f(k))sgnη(uµ − k)

∣∣∣∣ ≤ 2ηMfi
.

So we deduce:

|(Dη(uµ, k) − f(k)sgnη(uµ − k))| ≤ 2nηMf .

We use the same method to study the integral over QR and, for any positive µ
and η, we obtain:

∫

Q

Iη(uµ)∂tϕ1ϕ2dxdt+

∫

Ω

Iη(u0)ϕ1(0)ϕ2dx

+
∑

i∈L,R

∫

Qi

bi(sgnη(uµ − k)f(uµ) − Dη(uµ, k)) · ∇ϕ2)ϕ1dxdt

−
∑

i∈L,R

∫

Qi

∇xbi(x) · Dη(uµ, k)ϕ1ϕ2dxdt

+

∫

ΣL,R

(bL − bR)f(k) · νLsgnη(uµ − k)ϕ1ϕ2dtdH
n−1

+

∫

ΣL,R

2nηMf (|bL| + |bR|)ϕ1ϕ2dtdH
n−1

−

∫

Q

g(t, x, uµ)sgnη(uµ − k)ϕ1ϕ2dxdt

−

∫

Q

µ∇uµ.∇ϕ2ϕ1sgnη(uµ − k)dxdt ≥ 0.

(28)

However,

∫

ΣL,R

(bL − bR)f(k) · νLsgnη(uµ − k)ϕ1ϕ2dtdH
n−1

≤

∫

ΣL,R

|(bL − bR)f(k) · νL|ϕ1ϕ2dtdH
n−1.

We take now the µ-limit in (28). By (26),

lim
µ→0+

∫

Q

µ∇uµ · ∇ϕ2ϕ1sgnµ(uµ − k)dxdt = 0.

We use Lemma 7 and the Lebesgue dominated convergence Theorem to ensure
there exists u ∈ L∞(Q) such that,

∀k ∈ R, ∀ϕ1 ∈ C∞
c ([0, T [), ∀ϕ2 ∈ C∞

c (Ω), ∀η > 0,
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∫

Q

Iη(u)∂tϕ1ϕ2dxdt+

∫

Ω

Iη(u0)ϕ1(0)ϕ2dx

−

∫

Q

g(t, x, u)sgnη(u− k)ϕ1ϕ2dxdt

+
∑

i∈L,R

∫

Qi

bi(sgnη(u− k)f(u) − Dη(u, k)) · ∇ϕ2ϕ1dxdt

−
∑

i∈L,R

∫

Qi

∇xbi(x) · Dη(u, k)ϕ1ϕ2dxdt

+

∫

ΣL,R

(|(bL − bR)f(k) · νL| + 2nηMf (|bL| + |bR|)ϕ1ϕ2dtdH
n−1 ≥ 0.

(29)
Since limη→0 Dη(u, k) = sgn(u− k)f(k), a.e. on Q, the η-limit gives (3).
Now let us establish that u fulfills (4), (5) and (6). We write (18) with a

test function v in D(Q) and we take the µ-limit. Thanks to the L1-convergence
of (uµ)µ that yields to (4). To prove (5) we consider in (29) test functions such
that ϕ1 is in C∞

c ([0, T [) and ϕ2 belongs to C∞
c (Ωi), i = {L,R}. We take the

η-limit and it comes:

−

∫

Qi

(|u− k|∂tϕ1ϕ2 + bi(x)Φ(u, k) · ∇xϕ2ϕ1)dxdt

−

∫

Qi

sgn(u− k)((g(t, x, u) + ∇xb(x).f(k))ϕ1ϕ2dxdt

≤

∫

Ωi

|u0 − k|ϕ1(0)ϕ2(x)dx.

Then we use F. Otto’s arguments (see [18] or [19]) to ensure that:

ess lim
t→0+

∫

Ωi

|u(t, x) − u0(x)|dx = 0,

and (5) follows.
In order to show (6), we consider the functions Hδ and Qδ defined in [19],

for any τ, k ∈ R by:

Hδ(τ, k) =
(
(dist(τ, I[0, k]))2 + δ2

) 1
2 − δ,

and

Qδ(τ, k) =

∫ τ

k

∂1Hδ(λ, k)f
′(λ)dλ.

where I[0, k] denotes the closed interval bounded by 0 and k.
We choose in (18) the test function ∂1Hδ(uµ, k)ϕ, ϕ ∈ C∞

c (]0, T [×Ω), ϕ ≥ 0,
that vanishes on ΣL,R. We integrate over [0, T ] and we use the same arguments
as to obtain (28) from (27). In particular, for the convection term we use Green
formulas in each subdomain Qi, i = L,R. That yields to:

∫

Q

{Hδ(uµ, k)∂tϕ+ b(x)Qδ(uµ, k) · ∇xϕ− g(t, x, uµ)∂1Hδ(uµ, k)ϕ}dxdt

+

∫

Q

∇xb(x)(Qδ(uµ, k) − ∂1Hδ(uµ, k)f(u))dxdt

≥ µ

∫

Q

∂1Hδ(uµ, k)∇uµ · ∇ϕdxdt.
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We take the µ-limit. By (26) and the boundness of the sequence (uµ)µ in L∞(Q),
the term on the right hand side of the inequality goes to 0. We use Lemma 7
to obtain:

∫

Q

{Hδ(u, k)ϕt + b(x)Qδ(u, k) · ∇ϕ− g(t, x, u)∂1Hδ(u, k)ϕ}dxdt
∫

Q

∇xb(x) · (Qδ(u, k) − ∂1Hδ(u, k)f(u))dxdt ≥ 0.

Then we consider in the previous inequality a sequence of test functions (ϕn)n

such that ϕn(t, x) = β(t)αn(x) where β ∈ C∞
c (]0, T [), and αn ∈ C∞(Ω), 0 ≤

αn ≤ 1,

αn(x) =

{
1 si x ∈ ∂Ω \ ΓL,R et d(x,ΓL,R) ≥ 1

n
,

0 sur ΓL,R ou si d(x, ∂Ω) ≥ 1
n
,

and ( 1
n
∇xαn)n is bounded on Ω.

We refer to F. Otto’s work in [18] to assert:

lim
n→∞

∫

Q

b(x)Qδ(u, k) · ∇(αn(x))β(t)dxdt exists and is nonnegative.

Moreover we adapt the proof of Lemma 2 et we use the definition of uτ to have:

lim
n→∞

∫

Q

b(x)Qδ(u, k).∇(αn(x))β(t)dxdt =

∫

Σ

b(σ)Qδ(u
τ , k) · ν(σ)β(t)dtdHn−1.

Thus, when δ goes to 0:

∫

Σ

b(σ)F0(u
τ , k)β(t)dtdHn−1 ≥ 0,

that is equivalent to boundary condition (6).

5 A particular case

Another idea to prove an existence property in the one dimensional case, used
for example in [5], [13], or [23] is to introduce a regularization of the coefficient
b. Naturally we can wonder if we can apply it in the multidimensional case.
In this section we show that, at least for some simple situations, an existence
result can be obtained by regularization of the function b.

In this part we suppose Ω =]−1, 1[n and ΓL,R = {0}×]−1, 1[n−1.
We denote ΩL =]−1, 0[×]−1, 1[n−1 and ΩR =]0, 1[×]−1, 1[n. So on ΣL,R,

νL = (1, 0, . . . , 0) and νR = −νL. Lastly, on ΣL,R, σ = (x2, . . . , xn).
We suppose also:

b(x) =

{
bL si x ∈ ΩL

bR si x ∈ ΩR,

where bL and bR are two fixed reals.
Let us remark that when bL and bR depend on the space variable, we can

apply the techniques we will use if, for all σ of ΓL,R, (bL(σ) − bR(σ)) has the
same sign.
We note that the entropy inequality (3) becomes:
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∀ϕ ∈ C∞
c (Q), ϕ ≥ 0, ∀k ∈ R,

∫

Q

{|u− k|∂tϕ+ b(x)Φ(u, k) · ∇xϕ− sgn(u− k)g(t, x, u)ϕ}dxdt

+|(bR − bL)f1(k)|

∫ T

0

∫

ΣL,R

ϕ(t, σ)dσdt ≥ 0.
(30)

We introduce a sequence of smooth functions (bε)ε>0 such that:

∀x ∈ Ω, bε(x) = θε(x1),

with:

θε(x1) =

{
bL si x1 ≤ −ε
bR si x1 ≥ ε,

and such that θε is monotonic on [−ε, ε] (depending on the sign of (bL − bR)).
So,

∀x ∈ Ω, x1 6= 0, bε(x) → b(x).

To state an existence result, we will use in this section assumptions (19)-(20)
that is:

∀t ∈ [0, T ], (bR − bL)f1(M1(t)) ≥ 0, (31)

∀t ∈ [0, T ], (bR − bL)f1(M2(t)) ≤ 0. (32)

We consider also a sequence of functions (uj
0)j∈N∗ such that:

∀j ∈ N
∗, uj

0 ∈ C∞
c (Ω), and lim

j→+∞
u

j
0 = u0 in L1(Ω).

For j ∈ N
∗ and ε > 0, we denote uε the unique entropy solution (see [7]) to the

“regularized” problem:
Find a measurable and bounded function u in BV (Q)∩C([0, T ];L1(Ω)) such

that:





∂tuε + divx(bε(x)f(uε)) + g(t, x, uε) = 0 in Q,

uε(0, x) = u
j
0(x) on Ω,

uε = 0 on (a part of) Σ.
(33)

We know that uε is bounded but the bounds depend on ε a priori. That is
why we state:

Lemma 8. Under (31) and (32), for a.e. t ∈ [0, T ],

M2(t) ≤ uε(t, .) ≤M1(t) a.e. on Ω. (34)

Proof. We come back to the viscous problem related to (33):
Find a measurable and bounded function uε,µ such that:






∂tuε,µ + divx(bε(x)f(uε,µ)) + g(t, x, uε,µ) = µ∆uε,µ in Q,

uε,µ(0, x) = u
j
0(x) on Ω,

uε,µ = 0 on Σ.
(35)

For µ > 0, (35) admits a unique solution uε,µ of L2(0, T ;H2(Ω)) ∩ C([0, T ];
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H1(Ω)) and such that ∂tuε,µ ∈ L2(Q). Furthermore the sequence (uε,µ)µ con-
verges towards uε in L1(Q) when µ goes to 0+.
We multiply (35) by (uε,µ −M1(t))

+ and we integrate over ]0, s[×Ω, s ∈]0, T ].
We have:

µ

∫ s

0

∫

Ω

∆uε,µ(uε,µ −M1(t))
+dxdt = −µ

∫ s

0

∫

Ω

[∇(uε,µ −M1(t))
+]2dxdt ≤ 0.

For the evolution term, we write:
∫ s

0

∫

Ω

∂tuε,µ(uε,µ −M1(t))
+dxdt =

1

2
‖(uε,µ(s, .) −M1(s))

+‖2
L2(Ω)

+

∫ s

0

∫

Ω

M ′
1(t)(uε,µ −M1(t))

+dxdt.

We introduce in the convective term, the term div(bε(x)f(M1(t)). By definition
of bε(x), that gives:

∫ s

0

∫

Ω

divx(bε(x)f(uε,µ))(uε,µ −M1(t))
+dxdt

=

∫ s

0

∫

Ω

θ′ε(x1)f1(M1(t))(uε,µM1(t))
+dxdt

+

∫ s

0

∫

Q

div(bε(x)(f(uε,µ) − f(M1(t)))(uε,µ −M1(t))
+dxdt.

For the reaction term,
∫ s

0

∫

Ω

g(t, x, uε,µ)(uε,µ −M1(t))
+dxdt

=

∫ s

0

∫

Ω

g(t, x,M1(t))(uε,µ −M1(t))
+dxdt

+

∫

s

∫

Ω

[g(t, x, uε,µ) − g(t, x,M1(t))](uε,µ −M1(t))
+dxdt.

We gather all the terms to assert:

1
2‖(uε,µ(s, .) −M1(s))

+‖2
L2(Ω) +

∫

s

∫

Ω

Ψ(t, x)(uε,µ −M1(t))
+dxdt

≤ (Mg + ‖b‖∞MF

4µ
)

∫

s

∫

Ω

((uε,µ −M1(t))
+)2dxdt,

where
Ψ(t, x) = θ′ε(x1)f1(M1(t)) +M ′

1(t) + g(t, x,M1(t)).

Since sgn(θ′ε(x1)) = sgn(bR − bL), we use (31) to have:

θ′ε(x1)f1(M1(t)) ≥ 0.

As, by definition of M1, for every t in ]0, T [ and every x in ΩL ∪ ΩR, M ′
1(t) +

g(t, x,M1(t)) ≥ 0, we deduce that Ψ(t, x) ≥ 0 a.e. on Q.
Then we use the Gronwall Lemma to ensure the sequence (uε,µ(t, .))ε,µ, so
uε(t, .) is majorized by M1(t).

We multiply (35) by −(uε,µ − M2(t))
− et we apply the same techniques

as previously, especially condition (32) to prove that uε(t, .) is minorized by
M1(t).
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Nonlinear assumption (2) and Lemma 8 allow us to state, by refering to E.
Yu. Panov’s work in [20]:

Lemma 9. There is a subsequence of (uε)ε>0 that converges in L1(Q).

Now we have to prove that the limit highlighted, denoted u, fulfills the
entropy inequality (30). It is known that uε satisfies the entropy inequality:

∫

Q

{Iη(uε)∂tϕ+ bε(x)Φη(uε, k) · ∇ϕ− sgnη(uε − k)g(t, x, uε)ϕ}dxdt

+

∫

Q

θ′ε(x1)(Φ1,η(uε, k) − I ′η(uε)f1(uε))ϕdxdt+

∫

Ω

Iη(uj
0)ϕ(0, x)dx ≥ 0,

where (Iη,Φη) is the regular entropy pair defined, for any real k by:

Iη(uε, k) =

∫ uε

k

sgnη(τ − k)dτ and Φη(uε, k) =

∫ uε

k

sgnη(τ − k)f ′(τ)dτ.

We take now the ε-limit. By definition of bε,

∫

Q

θ′ε(x1)(Φ1,η(uε, k) − I ′η(uε)f1(uε))ϕdxdt =

−

∫

ΣL,R

(∫ ε

−ε

θ′ε(x1)f1(k)sgnη(uε − k)ϕdx1

)
dHn−1dt

+

∫

ΣL,R

(∫ ε

−ε

θ′ε(x1){Φ1,η(uε, k) − I ′η(uε)(f1(uε) − f1(k))}ϕdx1

)
dHn−1dt.

We remark that |θ′ε(x1)| = sgn(bR − bL)θ′ε(x1). So

∣∣∣∣−
∫ ε

−ε

θ′ε(x1)f1(k)sgnη(uε − k)ϕdx1

∣∣∣∣ ≤ sgn(bR − bL)|f1(k)|

∫ ε

−ε

θ′ε(x1)ϕdx1.

Moreover,
|Φ1,η(uε) − I ′η(uε)(f1(uε) − f1(k))| ≤ 2Mf1

η.

Then,

∫

Q

θ′ε(x1)(Φ1,η(uε, k) − I ′η(uε)f1(uε))ϕdxdt

≤ sgn(bR − bL)(|f1(k)| + 2Mf1
η)

∫

ΣL,R

(∫ ε

−ε

θ′εϕdx1

)
dHn−1dt.

After an integration by parts with respect to x1, we pass to the limit with ε to
obtain:

∫

Q

{Iη(u)∂tϕ+ b(x)Φη(u, k) · ∇ϕ− sgnη(u− k)g(t, x, u)ϕ}dxdt

+(2Mf1
η + |f1(k)|)(|bR − bL|)

∫

ΣL,R

ϕ(t, 0, x2)dtdx2

+
∫
Ω
Iη(uj

0)ϕ(0, x)dx ≥ 0.

(36)

If we consider only functions ϕ ∈ C∞
c (Q), when η goes to 0+, we establish thanks

to the Lebesgue dominated convergence Theorem, the entropy inequality (30).
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To prove (4), we multiply (33) by ϕ, ϕ ∈ C∞
c (Q) and we integrate over Q.

We obtain:
∫

Q

(uε∂tϕ+ bεf(uε) · ∇xϕ− g(t, x, uε)ϕdxdt = 0.

We take the ε-limit and the conclusion follows.
By reasoning as in the previous section, we show that u satisfies the initial

condition (5). To prove (6), we consider again, for any positive real δ, the
sequence (Hδ,Qδ) used in Section 4. We can assert that uε fulfills:

∫

Q

{Hδ(uε, k)∂tϕdxdt+ bε(x)Qδ(uε, k) · ∇ϕ− ∂1Hδ(uε, k)g(t, x, uε)ϕ}dxdt

+

∫

Q

b′ε(x)(Qδ(uε, k) − ∂1Hδ(uε, k)f(uε))dxdt ≥ 0.

If we consider functions ϕ vanishing in a neighborhood of ΣL,R, we take the
ε-limit without difficulties to have:

∫

Q

{Hδ(u, k)ϕtdxdt+ b(x)Qδ(u, k) · ∇ϕ− ∂1Hδ(u, k)ϕg(t, x, u)}dxdt

+

∫

Q

b′(x)(Qδ(u, k) − ∂1Hδ(u, k)f(u))ϕdxdt ≥ 0.
(37)

We choose in the above inequality, a sequence of test functions, ϕn(t, x) =
β(t)αn(x) where β ∈ C∞

c (]0, T [), β ≥ 0, and αn ∈ C∞(Ω), 0 ≤ αn ≤ 1,

αn(x) =

{
1 if x ∈ ∂Ω \ ΓL,R and d(x,ΓL,R) ≥ 2

n
,

0 if d(x,ΓL,R) ≤ 1
n

where d(x, ∂Ω) ≥ 1
n
.

We use F. Otto’s arguments (see [18]) to state:

lim
n→∞

∫

Q

b(x)Qη(u, k) · ∇(αn(x))β(t)dxdt exists and is nonnegative.

The conclusion follows.
Lastly we have to take the j-limit. We denote uj the weak entropy solution

to (1) associated with the initial condition uj
0. For j 6= j′, the comparison result

(13) ensures there exists a positive real C such that:

∫

Q

|uj(t, x) − uj′(t, x)| ≤ C

∫

Ω

|uj
0 − u

j′

0 |dx.

Then (uj)j is a Cauchy sequence in L1(Q), and so converges towards a limit u.
Moreover, for any j of N

∗, uj fulfills (36) and (37). Thus by taking the j-limit
in (36) and (37), we prove that u is a weak entropy solution to (1).
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