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Scalar Conservation Laws with Discontinuous Flux in Several Space Dimensions

We deal with a scalar conservation law, set in a bounded multidimensional domain, and such that the convective term is discontinuous with respect to the space variable. We introduce a weak entropy formulation for the homogeneous Dirichlet problem associated with the first-order reaction-diffusion equation that we consider. We establish an existence and uniqueness property for the weak entropy solution. The method of doubling variables is used to state uniqueness while the vanishing viscosity method allows us to prove the existence result.

Introduction

We are interested in the existence and uniqueness properties for an hyperbolic first-order quasilinear equation set in a multidimensional bounded domain of R n , denoted by Ω. For any positive finite real T , the problem can be formally written as stated below:

Find a measurable and bounded function u on Q =]0, T [×Ω such that:    ∂ t u + div x (b(x)f (u)) + g(t, x, u) = 0 in Q, u = 0 on (a part of) Σ, u(0, x) = u 0 (x) on Ω, [START_REF] Adimurthi | Godunov-type methods for conservation laws with a flux function discontinuous in space[END_REF] where b is a discontinuous function along an hypersurface.

Indeed we suppose that there exists two open disjoint domains Ω L and Ω R such that:

Ω = Ω R ∪ Ω L and Ω L ∩ Ω R = Γ L,R .
We suppose that Ω L and Ω R admit a "regular deformable Lipschitz boundary" (see [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF] or [START_REF] Chen | Divergence-Measure fields and hyperbolic conservation laws[END_REF] Definition 2.1 for a rigorous definition). That will allow us to define a "strong" trace of a solution to [START_REF] Adimurthi | Godunov-type methods for conservation laws with a flux function discontinuous in space[END_REF].

Moreover, for i = L, R, H n-1 (Γ L,R ∩ (Γ i \ Γ L,R )) = 0, where H q is the q-dimensional Hausdorff measure in R n .

We set Σ =]0, T [×Ω, for i = L, R, Σ i =]0, T [×Ω i and Σ L,R =]0, T [×Ω L,R . The function b is such that:

b(x) = b L (x) if x ∈ Ω L b R (x) if x ∈ Ω R , 1 with b L ∈ W 1,+∞ (Ω L ) and b R ∈ W 1,+∞ (Ω R ).
The initial datum u 0 belongs to L ∞ (Ω) and takes values in [m, M ] where m and M are two fixed reals.

The vector function f = (f 1 , . . . , f n ) belongs to (C 1 (R)) n . For i = 1, . . . , n, f i is Lipschitzian on R. We denote M fi its Lipschitz constant and we set M f = max i=1,...,n M fi .

The source term g is in

C 0 ([0, T ] × Ω × R) such that ∃ M g ∈ R, ∀ (t, x) ∈ Q, ∀ (u, v) ∈ R 2 , |g(t, x, u) -g(t, x, v)| ≤ M g |u -v|.
We introduce a nondecreasing function M 1 and a nonincreasing function M 2 such that:

   M 1 (0) ≥ M, ∀ t ∈ [0, T ], M ′ 1 (t) + g(t, x, M 1 (t)) + ∇ x b(x) • f (M 1 (t)) ≥ 0 a.e. on Ω L ∪ Ω R , and 
   M 2 (0) ≤ m, ∀ t ∈ [0, T ], M ′ 2 (t) + g(t, x, M 2 (t)) + ∇ x b(x) • f (M 2 (t)) ≤ 0 a.e. on Ω L ∪ Ω R .
Generally we may choose: with:

M 1 : t ∈ [0, T ] -→ M 1 (t) = ess sup Ω u + 0 e N1t + N 2 N 1 (e N1t
N 1 = max( ∇ x b L ∞ (Ω L ) , ∇ x b(x) L ∞ (Ω R ) ) n i=1
M fi + M g , and

N 2 = i=L,R max [0,T ]×Ω |g(t, x, 0) + ∇ x b i (x) • f (0)|.
Depending on the properties of the functions f and g, better choices of M 1 and M 2 can be done. For instance if f (m) = f (M ) = 0 and g(., M ) ≥ 0, g(., m) ≤ 0, we will choose M 1 = M and M 2 = m. We suppose also that the flux function f is non-degenerate that is to say, for a.e. x ∈ Ω, ∀ξ ∈ R n , ξ = 0, the function:

λ -→ ξ • b(x)f (λ) is not linear on any non degenerate interval included in [M 2 (T ), M 1 (T )], (2) 
where • denotes the scalar product in R n . Scalar conservation laws with discontinuous flux have seen a great deal of interest (see for example [START_REF] Adimurthi | Godunov-type methods for conservation laws with a flux function discontinuous in space[END_REF], [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux function[END_REF], [START_REF] Adimurthi | Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes[END_REF] [5], [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF], [START_REF] Bürger | Well-posedness in BV t and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units[END_REF], [START_REF] Bürger | A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units[END_REF], [START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF], [START_REF] Jimenez | Some Scalar Conservation Laws with Discontinuous Flux[END_REF], [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF], [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux[END_REF], [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF], [START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF] the list is far from being complete) but all these works treat the case of a one dimensional domain Ω. To our knowledge only two works consider the multidimensional case. In [START_REF] Karlsen | On the existence and compactness of a two-dimensional resonant system of conservation law[END_REF], the authors consider the particular case of a two dimensional domain and use the compensated compactness method to prove the existence of a weak solution. Note that this method cannot be genenralized to domains whose the dimension is greater than two. In [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF], E. Yu. Panov, thanks the framework of the "H-measures" obtains an existence result for the Cauchy problem in R + ×R n . In section 2, we give the definition of weak entropy solution u to (1) and we state the existence of "strong" traces for u. In section 3 we prove the uniqueness property thanks to the method of doubling variables and a pointwise reasoning along the interface Σ L,R . In section 4, the existence result is established via the vanishing viscosity method. Finally in section 5, we prove, in some particular cases, that the method often used in one space dimension namely the regularization of the coefficient b, leads to the existence of a weak entropy solution to (1).

Notion of weak entropy solution

In this section we propose a definition extending that of J.D Towers in [START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF] used in [START_REF] Jimenez | Some Scalar Conservation Laws with Discontinuous Flux[END_REF] for the homogeneous Dirichlet problem -to the multidimensional case. We say that:

Definition 1. A function u of L ∞ (Q) is a weak entropy solution to Problem (1) if: (i) ∀ϕ ∈ C ∞ c (Q), ϕ ≥ 0, ∀k ∈ R, Q {|u -k|∂ t ϕ + b(x)Φ(u, k) • ∇ x ϕ}dxdt - Q sgn(u -k)(g(t, x, u) + ∇ x b(x) • f (k))ϕdxdt + Σ L,R |(b R (σ) -b L (σ))f (k) • ν L (σ)|ϕ(σ)dtdH n-1 ≥ 0, (3) 
where

Φ(u, k) = (Φ 1 (u, k), . . . , Φ n (u, k)), Φ i (u, k) = sgn(u -k)(f i (u) -f i (k))
(ii) u a is weak solution to (1):

∂ t u + div x (b(x)f (u)) + g(t, x, u) = 0 in D ′ (Q). (4) 
(iii)

ess lim t→0 + Ω |u(t, x) -u 0 (x)|dx = 0, (5) 
(iv) for a.e. t ∈]0, T [, H n-1 -a.e., ∀k ∈ R,

(sgn(u τ (σ) -k) + sgn(k))b(σ)(f (u τ ) -f (k)) • ν ≥ 0 ( 6 
)
where

u τ = u τ L on Σ L ∩ Σ u τ R on Σ R ∩ Σ.
In this definition u τ L and u τ R denote the traces of u respectively on Σ L and Σ R . Indeed it follows from [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF] or [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]:

Lemma 1. Let u be a function in L ∞ (Q) satisfying (3). Then under (2) there exists a function u τ L of L ∞ (Σ L ) (resp. u τ R of L ∞ (Σ R
)), such that, for every compact K of Σ L (resp. Σ R ) and every regular Lipschitz deformation Ψ of Ω L (resp. Ω R ), ess lim

s→0 + K |u(Ψ(s, σ)) -u τ L (σ)|dtdH n-1 = 0. ( 7 
)
Lemma 2. Let (ω ε ) ε>0 a sequence of functions such that, for every ε, ω ε ∈ C ∞ c (Ω) and:

       0 ≤ ω ε ≤ 1 on Ω, ω ε (x) = 1 if x ∈ Γ L,R , ω ε (x) = 0 if d(x, Γ L,R ) > ε, (ε∇ x ω ε ) ε is bounded on Ω. ( 8 
)
Then, for i = L, R, for every ϕ in C ∞ c (Q), lim ε→0 + Qi b(x)Φ(u, k) • ∇ x ω ε ϕdxdt = Σ L,R b i Φ(u τ i , k) • ν i ϕdtdH n-1 .
Proof. We prove the lemma when Q i is the half-space i.e.:

Ω i = {x = (x ′ , x n ) ∈ R n-1 × R; x n < 0}, ν i = (0, . . . , 0, 1) ∈ R n , Σ L,R =]0, T [×R n-1 × {0} ≡]0, T [×R n-1 , r = (t, x) ∈ Σ i , Q i = {p = (r, x n ); r ∈ Σ i , x n < 0}.
To come back to the general case we can use a recovery argument.

In the case of the half-space, we can define a lipschitzian deformation ψ by:

ψ : [0, 1] × ∂Q i → Q i (s, r) → r -s • ν i , that implies: ess lim xn→0 -Σ L,R |u(r, x n ) -u τ i (r)|dr = 0. (9) 
We also suppose (that is not restrictive) that:

∇ω ε (x) = (0, . . . , ∂ xn ω ε (x)) and ε ∂ xn ω ε ∞ is bounded.
So we have to show that lim ε→0 + I ε = 0, where:

I ε = Σ L,R 1 ε 0 -ε |b i (x)Φ n (u, k)ϕ(r, x n ) -b i (x ′ )Φ n (u τ i , k)ϕ(r, 0)|dx n dr.
Since Φ n is lipschitzian, we use the properties of b i and ϕ, and equality (9) to conclude.

The uniqueness property

The proof relies on that proposed in [START_REF] Jimenez | Some Scalar Conservation Laws with Discontinuous Flux[END_REF] for the one dimensional case. First we focus on the transmission conditions along the interface Σ L,R .

Interface conditions

We first look for a "Rankine-Hugoniot" condition along the interface of discontinuity. We consider a weak entropy solution u, in the sense of Definition 1.

Since u is a weak solution (( 4) is fulfilled) it follows:

Lemma 3. Let u be an entropy solution to [START_REF] Adimurthi | Godunov-type methods for conservation laws with a flux function discontinuous in space[END_REF]. Then, for a.e.

σ in Σ L,R , b L f (u τ L ) • ν L = b R f (u τ R ) • ν L . ( 10 
)
Besides we can deduce from (3) an entropy inequality along Γ L,R :

Lemma 4. Let u be a weak entropy solution to [START_REF] Adimurthi | Godunov-type methods for conservation laws with a flux function discontinuous in space[END_REF]. Then, for a.e. σ in Σ L,R , for all real k,

{b L Φ(u τ L , k) -b R Φ(u τ R , k)} • ν L + |(b L -b R )f (k) • ν L | ≥ 0. ( 11 
)
Proof. We consider a sequence of functions (ω ε ) ε>0 in C ∞ c (Ω) that fulfills the condition (8) of Lemma 2. For every positive ε, we choose in (3) the test function

ϕω ε , ϕ ∈ C ∞ c (Q), ϕ ≥ 0.
For any real k we obtain:

Q {|u -k|∂ t ϕω ε + b(x)Φ(u, k) • ∇ x (ϕω ǫ )}dxdt - Q sgn(u -k)(g(t, x, u) + ∇ x b(x) • f (k))ϕω ǫ dxdt + Σ L,R |(b R (σ) -b L (σ))f (k) • ν L (σ)|ϕ(σ)dtdH n-1 ≥ 0.
We take now the ε-limit. Lemma 2 allows us to assert:

lim ε→0 + Q b(x)Φ(u, k) • ∇ x (ϕω ε )dxdt = Σ L,R (b L Φ(u τ L , k) • ν L + b R Φ(u τ R , k) • ν R )ϕ(σ)dtdH n-1 .
Thanks to the dominated convergence Theorem the other terms go to 0 with ε (except the last one that do not depend on ε). The conclusion follows.

Remark 1. The Rankine-Hugoniot condition [START_REF] Chen | Divergence-Measure fields and hyperbolic conservation laws[END_REF] is included in [START_REF] Gagneux | Madaune-Tort : Analyse mathématique de modèles nonlinéaires de l'ingénierie pétrolière[END_REF] as soon as b R , b L and f are such that:

   ∃ k 1 , ∃ k 2 ∈ R, k 2 ≤ k 1 such that u ∈ [k 2 , k 1 ],
and , for a.e.

σ of Γ L,R (b R (σ) -b L (σ))f (k 1 ) • ν L (σ) ≥ 0, (b R (σ) -b L (σ))f (k 2 ) • ν L (σ) ≤ 0.

The uniqueness result

We are now able to give a uniqueness property through a Lipschitzian dependence in L 1 (Ω) of a weak entropy solution with respect to corresponding initial data. To do so we suppose that for a.e. σ of Γ L,R the function:

λ -→ f (λ) • ν L (σ) changes no more than once its monotonicity on [M 2 (T ), M 1 (T )]. ( 12 
)
Theorem 1. Let u and v be two weak entropy solutions to (1) that take values in [M 2 (T ), M 1 (T )], associated with initial conditions

u 0 and v 0 in L ∞ (Ω) with values in [m, M ]. Then, under (12), for a.e. t in ]0, T [, Ω |u(t, x) -v(t, x)|dx ≤ e Mgt Ω |u 0 (x) -v 0 (x)|dx. ( 13 
)
The proof of Theorem 1 is divided into several steps. First, we use the method of doubling variables, due to S. Kruzkov (see [START_REF] Kruzkov | First-order quasilinear equations with several independent variables[END_REF]) to show:

Lemma 5. For any function ϕ in C ∞ c (Q) vanishing in a neighborhood of Σ L,R , ϕ ≥ 0, Q {|u -v|∂ t ϕ + b(x)Φ(u, v) • ∇ x ϕ -G(u, v)ϕ}dxdt ≥ 0, ( 14 
)
where

G(u, v) = sgn(u -v)(g(t, x, u) -g(t, x, v)).
Proof. This result is proved in [START_REF] Jimenez | Some Scalar Conservation Laws with Discontinuous Flux[END_REF] for the one-dimensional case. The multidimensional one does not bring specific difficulties.

Our aim is now to obtain inequality ( 14) for any nonnegative function ϕ in C ∞ c (Q). So, for any positive real ε, we consider in ( 14) the test function ϕ(1ω ε ), such that ω ε satisfies the assumptions of Lemma 2. We take the limit on ε. For i = L, R, Lemma 2 provides:

lim ε→0 + Qi b i Φ(u, v) • ∇ x (1 -ω ε )ϕdxdt = - Σ L,R b i Φ(u τ i , v τ i ) • ν i ϕdtdH n-1 ,
and we can deduce that:

Q {|u -v|ϕ t + b(x)Φ(u, v) • ∇ x ϕ -G(u, v)ϕ}dxdt ≥ Σ L,R {b L Φ(u τ L , v τ L ) -b R Φ(u τ R , v τ R )} • ν L ϕdtdH n-1 .
Next we show the term in the right-hand side is nonnegative. Indeed we study, for a.e. σ, the sign of:

J = {b L (σ)Φ(u τ L (σ), v τ L (σ)) -b R (σ)Φ(u τ R (σ), v τ R (σ)} • ν L .
Here we make a pointwise reasoning and we have to consider different cases.

If sgn(u τ L -v τ L ) = sgn(u τ R -v τ R ), J = sgn(u τ L -v τ L ){b L (f (u τ L ) -f (v τ L )) -b R (f (u τ R ) -f (v τ R ))} • ν L = 0,
by using [START_REF] Chen | Divergence-Measure fields and hyperbolic conservation laws[END_REF].

If sgn(u τ L -v τ L ) = -sgn(u τ R -v τ R )
, we use [START_REF] Chen | Divergence-Measure fields and hyperbolic conservation laws[END_REF] to have:

J = 2sgn(u τ L -v τ L )b L (f (u τ L )-f (v τ L ))•ν L = 2sgn(u τ L -v τ L )b R (f (u τ R )-f (v τ R ))•ν L . We suppose that sgn(u τ L -v τ L ) = -1 (i.e. u τ L < v τ L ), sgn(u τ R -v τ R ) = 1 (i.e. u τ R > v τ R )
, and b R < b L , the study of the other cases being similar. [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF] to obtain:

• u τ L < v τ L < v τ R < u τ R From Lemma 4 we deduce, for any k in [u τ L , u τ R ], {-b L (f (u τ L )-f (k))-b R (f (u τ R )-f (k))}•ν L +(b L -b R )|f (k)•ν L (σ)| ≥ 0. ( 15 
) If f (v τ L ).ν L ≥ 0, we choose k = v τ L in
{-b L (f (u τ L ) -f (v τ L )) -b R f (u τ R ) + b L f (v τ L )} • ν L ≥ 0.
We refer to [START_REF] Chen | Divergence-Measure fields and hyperbolic conservation laws[END_REF] to ensure that; [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF] and we have:

-2b L (f (u τ L ) -f (v τ L )) • ν L ≥ 0, so J ≥ 0. If f (v τ R ).ν L ≤ 0, we choose k = v τ R in
-2b R (f (u τ R ) -f (v τ R )) • ν L ≥ 0 and thus J ≥ 0. Finally, if f (v τ L ) • ν L < 0 and f (v τ R ) • ν L > 0, since b L > b R , by (10) we deduce that b L > 0 and b R < 0. If we suppose that J < 0, J = -2b L (f (u τ L ) -f (v τ L )) • ν L implies (f (u τ L ) -f (v τ L )) • ν L > 0. Similarly J = -2b R (f (u τ R ) -f (v τ R )) • ν L implies (f (u τ R ) -f (v τ R )) • ν L < 0.
To sum up, we have:

f (v τ L ) • ν L < f (v τ R )) • ν L , f (u τ L ) • ν L > f (v τ L ) • ν L et f (v τ R )) • ν L > f (u τ R ) • ν L .
Thus the function λ → f (λ).ν L changes at least twice its monotonicity in [M 2 (T ), M 1 (T )] that contradicts the assumption [START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF].

• u τ L < v τ R < v τ L < u τ R If f (v τ L ) • ν L ≥ 0 or f (v τ R )
• ν L ≤ 0 we can adapt the method used in the two first cases of the previous situation.

If f (v τ L ) • ν L < 0 and f (v τ R ) • ν L > 0, there exists α in ]v τ R , v τ L [, such that f (α) • ν L = 0.
By choosing k = α in [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF], we obtain:

-b L f (u τ L ) • ν L -b R f (u τ R ) • ν L ≥ 0.
So, by [START_REF] Chen | Divergence-Measure fields and hyperbolic conservation laws[END_REF],

-2b L f (u τ L ) • ν L ≥ 0.
Likewise, we choose k = α in the inequality of Lemma 4 written for v et we use [START_REF] Chen | Divergence-Measure fields and hyperbolic conservation laws[END_REF] to ensure:

2b L f (v τ L ) • ν L ≥ 0.
We add up these two inequalities to have: J ≥ 0.

All the others cases may be reduced to one of the previous situations. Then [START_REF] Karlsen | On the existence and compactness of a two-dimensional resonant system of conservation law[END_REF] 

still hold for any ϕ ∈ C ∞ c (Q), ϕ ≥ 0. Now we introduce the sequence of functions (β ε ) ε>0 such that β ε ∈ C ∞ c (Ω) and β ε = 1 if d(x, ∂Ω) ≥ ε.
We choose in [START_REF] Karlsen | On the existence and compactness of a two-dimensional resonant system of conservation law[END_REF] the sequence of test functions (αβ ε ) ε>0 , where α ∈ C ∞ c (]0, T [).

To take the limit on ε in the convective term, we adapt the proof of Lemma 2 (by taking ω ε = 1β ε ) to state:

lim ε→0 + Q b(x)Φ(u, v) • ∇ x β ε α(t)dxdt = - Σ b(σ)Φ(u τ , v τ ) • να(t)dtdH n-1 .
Then, passing to the limit with ε in ( 14) yields to:

Q {|u -v|α ′ (t) -G(u, v)α(t)}dxdt - Σ b(σ)Φ(u τ , v τ ) • να(t)dtdH n-1 ≥ 0.
Boundary condition (6) ensure, by reasoning for almost every point of Σ that:

Σ b(σ)Φ(u τ , v τ ) • να(t)dtdH n-1 ≥ 0.
Lastly the Lipschitz condition on g provides:

- Q {|u -v|α ′ (t)dxdt ≤ M g Q |u -v|α(t)dxdt.
For almost every t of ]0, T [, we consider a sequence of functions

(α ε ) ε>0 ∈ C ∞ c ([0, T ]) approximating the characteristic function I [0,t]
. We use the initial condition (5) for u and v et we obtain [START_REF] Jimenez | Some Scalar Conservation Laws with Discontinuous Flux[END_REF] thanks to Gronwall's Lemma.

Existence

In order to state an existence result we use the vanishing viscosity method. To this purpose we consider the functional space W (0, T ) defined by:

W (0, T ) = {v ∈ L 2 (0, T ; H 1 0 (Ω)); ∂ t v ∈ L 2 (0, T ; H -1 (Ω))}.
Moreover we denote by ., . the pairing between H -1 (Ω) and H 1 0 (Ω). Then we introduce, for any positive real µ, the viscous problem related to (1), Find a bounded and measurable function on Q, u µ , such that:

   ∂ t u µ + div x (b(x)f (u µ )) + g(t, x, u µ ) = µ∆u µ dans Q, u µ (0, x) = u 0 (x) sur Ω, u µ = 0 sur Σ. (16) 
First we show that Problem ( 16) admits a unique weak solution that is bounded independently of µ. Then the existence of a function u satisfying (3) will be provided by taking the limit on µ. Before this we give the definition of a weak solution to [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux[END_REF].

Definition 2. A function u in W (0, T ) is a weak solution to (16) if: u µ (0, .) = u 0 a.e. on Ω, (17) 
u µ fulfills the variational equality, for a.e. t ∈]0, T [, for any v ∈ H 1 0 (Ω):

∂ t u µ , v + Ω ((µ∇ x u µ -b(x)f (u µ )) • ∇ x v + g(t, x, u µ )v)dx = 0. ( 18 
)
In order to deal with bounded solutions, we use the following assumption on the flux function:

∀t ∈ [0, T ], f or a.e. σ ∈ Γ L,R , (b R (σ) -b L (σ))f (M 1 (t)) • ν L (σ) ≥ 0 (19) ∀t ∈ [0, T ], f or a.e. σ ∈ Γ L,R , (b R (σ) -b L (σ))f (M 2 (t)) • ν L (σ) ≤ 0 . ( 20 
)
Remark 2. Conditions (19)-( 20) are a little more general than the ones taken in the previous works. Indeed [START_REF] Otto | Initial-Boundary Value Problem for a Scalar Conservation Law[END_REF]-( 20) are fulfilled as soon as b and f are such that, for a.e.

σ of Γ L,R , the function λ → (b L -b R )f (λ) • ν L is nondecreasing
and vanishes at a point. This kind of assumption is considered in [START_REF] Audusse | Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies[END_REF]. Besides (19)-( 20) are also fulfilled when:

   f (m) = f (M ) = 0, for a.e. (t, x) ∈ Q, g(t, x, M ) ≥ 0, for a.e. (t, x) ∈ Q, g(t, x, m) ≤ 0,
as we may choose in this case M 1 ≡ M and M 2 ≡ m. This previous hypothesis, with g ≡ 0, is in particular used in [START_REF] Adimurthi | Godunov-type methods for conservation laws with a flux function discontinuous in space[END_REF], [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF], [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF], [START_REF] Bürger | A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units[END_REF], [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux[END_REF], [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF], [START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF] for the one dimensional case, and in [START_REF] Karlsen | On the existence and compactness of a two-dimensional resonant system of conservation law[END_REF], [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF] for the multidimensional case.

Now we prove:

Theorem 2. Under [START_REF] Otto | Initial-Boundary Value Problem for a Scalar Conservation Law[END_REF] and (20) there exists a unique weak solution u µ to (16) such that:

∀t ∈ [0, T ], M 2 (t) ≤ u µ (t, .) ≤ M 1 (t) a.e. on Ω, (21) 

Proof. (i) Existence

We use the Schauder-Tychonoff fixed point Theorem to obtain a function u µ that satisfies [START_REF] Kruzkov | First-order quasilinear equations with several independent variables[END_REF], [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] and [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]. First, for any real a, b, c, we define B(a, b, c) = max{a, min{b, c}} and we introduce, for µ > 0, the problem:

       Find u µ ∈ W (0, T ) such that a.e. on ]0, T [ and for any v of H 1 0 (Ω), ∂ t u µ , v + Ω ((µ∇ x u µ -b(x)f (u ⋆ µ )) • ∇ x v + g(t, x, u ⋆ µ )v)dx = 0 u µ (0, .) = u 0 p.p. on Ω, (22) 
where u ⋆ µ (t, x) = B(M 2 (t), u µ (t, x), M 1 (t)). Let us remark that if u µ is a solution to [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF], then u µ fulfills [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]. Indeed we can consider in [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF] the test function

v η = sgn η (u µ -M 1 (t)) + (since v η ∈ L 2 (0, T ; H 1 0 (Ω))). For any s of ]0, T [, we integrate over ]0, s[. Then, s 0 ∂ t u µ , v η dt + s 0 Ω ((µ∇ x u µ -b(x)f (u ⋆ µ )) • ∇ x v η + g(t, x, u ⋆ µ )v η )dxdt = 0.
We write the evolution term under the form:

s 0 ∂ t u µ , v η dt = s 0 ∂ t (u µ -M 1 (t)), v η dt + Qs M ′ 1 (t)v η dxdt,
and we use Mignot-Bamberger Lemma (see [START_REF] Gagneux | Madaune-Tort : Analyse mathématique de modèles nonlinéaires de l'ingénierie pétrolière[END_REF]) to obtain:

s 0 ∂ t (u µ -M 1 (t)), v η dt = Ω ( uµ(s,x)-M1(s) 0 sgn η (r -M 1 (s)) + dr)dx.
We use the definition of u ⋆ µ to write the convection term under the form:

- Qs b(x)f (u ⋆ µ ) • ∇ x v η dxdt = - Qs b(x)f (M 1 (t)) • ∇ x v η dxdt.
We integrate by parts separately on Ω L and Ω R to have:

- s 0 Ω b(x)f (M 1 (t)) • ∇v η dxdt = s 0 Γ L,R (b R -b L )f (M 1 (t)) • ν L v η dH n-1 dt + i=L,R Qi,s ∇ x b(x) • f (M 1 (t))v η dxdt.
We notice that, thanks to (19) the interface integral is nonnegative. The diffusion term is equal to:

s 0 Ω µ(∇ x u µ ) 2 sgn ′ η (u µ -M 1 (t)) + dxdt,
and so, is nonnegative. Moreover, by definition of u ⋆ µ ,

s 0 Ω g(t, x, u ⋆ µ )v η dxdt = Qi,s g(t, x, M 1 (t))v η dxdt.
We take the η-limit. That yields to:

Ω (u µ (s, x) -M 1 (s)) + dx + s 0 Ω (M ′ 1 (t) + g(t, x, M 1 (t))sgn(u µ -M 1 (t))) + dxdt + i=L,R s 0 Ωi ∇ x b(x) • f (M 1 (t))sgn(u µ -M 1 (t)) + dxdt ≤ 0. By definition of M 1 , M ′ 1 (t) + g(t, x, M 1 (t)) + ∇ x b(x) • f (M 1 (t))
≥ 0, a.e. on Q L and Q R . Then we deduce the majorization of u µ given in [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]. To obtain the minorization of u µ the reasoning is the same: we choose the test function [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF]. We use [START_REF] Yu | Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation[END_REF] to show the interface integral is nonnegative. Thus the existence of weak solution to ( 16) is proved as soon as [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF] has a solution. To state this, for any w in W (0, T ), we consider the linearized problem:

v η = -sgn η (u µ -M 2 (t)) -in
       Find U in W (0, T ) such that a.e. in ]0, T [, for any v of H 1 0 (Ω), ∂ t U, v + Ω ((µ∇ x U -b(x)f (w ⋆ )) • ∇v + g(t, x, w ⋆ )v)dx = 0, U (0, .) = u 0 . ( 23 
)
Since Problem (23) admits a unique solution, we can define the operator:

T : W (0, T ) → W (0, T ) w → U ≡ T (w)
where U is the unique solution to [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF]. By taking v = U in [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF], as w ⋆ (t, x) takes values in [M 2 (t), M 1 (t)], we have: U L 2 (0,T ;H 1 0 (Ω)) ≤ C 1 . This estimate implies, by using the definition of L 2 (0, T ; H -1 (Ω))-norm that: ∂ t U L 2 (0,T ;H -1 (Ω)) ≤ C 2 , where C 1 and C 2 are two constants dependent on ε (but independent of w ⋆ ). So, with

C 3 = C 2 1 + C 2 2
, the set:

C = {U ∈ W (0, T ), U W (0,T ) ≤ C 3 , U (0, .) = u 0 a.e. on Ω},
is convex, bounded, weakly compact in W (0, T ) and such that T (C) ⊂ C. It remains to prove the sequential continuity of T for the weak topology σ(W (0, T ), W ′ (0, T )). Let (w n ) n a sequence converging towards w weakly in C. Then the sequence (U n ) n = (T (w n )) n is bounded in W (0, T ) and so there exists U in W (0, T ) such that, up to a subsequence, (T (w n )) n goes to U , weakly in W (0, T ), strongly in L 2 (Q). Moreover, U n (0, .) goes to U (0, .) = u 0 a.e. on Ω. We take the limit with respect to n in [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF] to state that U = T (w). Since the solution to ( 23) is unique, we deduce that the whole sequence (T (w n )) n goes to T (w) weakly in C. Thus T has (at least) one fixed point, denoted u µ , that satisfies [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF] and so ( 17), ( 18) and ( 21).

(ii) Uniqueness

We use an Holmgren-type duality method. Let u and u be two weak solutions to [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux[END_REF]. For the sake of simplicity we do not write the subscript µ. For any t in [0, T [, we introduce z(t, .) (resp. z(t, .)) the element of H 1 0 (Ω) solution to the problem: (

           for any v ∈ H 1 0 (Ω),
) 24 
Since ∂ t u and ∂ t u belong to L 2 (0, T, H -1 (Ω)), we can assert that ∂ t z (resp. ∂ t z) is an element of L 2 (0, T ; H 1 (Ω)) such that, for a.e. t ∈]0, T [, ∀v ∈ H 1 0 (Ω),

Ω µ∇∂ t z • ∇vdx = ∂ t u, v ( resp. Ω µ∇∂ t z • ∇vdx = ∂ t u, v ). ( 25 
)
By choosing v = zz in [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] written for u and u, and by integrating from 0 to s, s ∈]0, T [, we have:

s 0 ∂ t (u -u), z -z dt + s 0 Ω µ∇(u -u) • ∇(z -z)dxdt = s 0 Ω b(x)(f (u) -f ( u)) • ∇(z -z)dxdt - s 0 Ω (g(t, x, u) -g(t, x, u))(z -z)dxdt.
For a.e. t ∈]0, T [, we take v = u(t, .)u(t, .) in ( 24) in order to have:

µ s 0 Ω ∇(u -u) • ∇(z -z)dxdt = s 0 Ω (u -u) 2 dxdt = u -u 2 L 2 (]0,s[×Ω) .
In a same way, for a.e. t ∈]0, T [ we choose v = z(t, .)z(t, .) in ( 25) to obtain:

s 0 ∂ t (u -u), z -z dt = s 0 Ω µ∇∂ t (z -z) • ∇(z -z)dxdt = 1 2 Ω µ|∇(z -z)| 2 (s, .)dxdt. Thus 1 2 Ω µ|∇(z -z)| 2 (s, .)dx + u -u 2 L 2 (]0,s[×Ω) ≤ u -u L 2 (]0,s[×Ω) (2 b ∞ M f ) ∇(z -z) L 2 (]0,s[×Ω) n + M g z -z L 2 (]0,s[×Ω) ).
We use Poincaré Inequality to bound zz L 2 (]0,s[×Ω) with ∇(zz) L 2 (]0,s[×Ω) n , and then the Young inequality to state the existence of a positive real C such that, for a.e. s ∈]0, T [:

1 2 Ω µ|∇(z -z)| 2 (s, .)dx ≤ C s 0 ∇(z -z) L 2 (Ω) n dt.
The conclusion follows thanks to Gronwall's Lemma.

Estimate [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF] allows us to prove thanks to [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] the following Lemma, that will be useful to take the µ-limit. Lemma 6. There exists a positive real C such that:

µ Q |∇ x u µ | 2 dxdt ≤ C. ( 26 
)
Now we take the limit on µ. The convergence of the sequence (u µ ) µ>0 is a consequence of E. Yu. Panov's work in [START_REF] Yu | Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation[END_REF]. Indeed it follows from Assumption (2): Lemma 7. The sequence of weak solutions (u µ ) µ>0 to problems (16) µ , contains a subsequence that converges in L 1 (Q).

Proof. We first focus on Q L . Since the convective term b L (x)f (u) is regular enough and the sequence (u µ ) µ>0 is bounded in L ∞ (Q L ), we can apply E. Yu. Panov's result in [START_REF] Yu | Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation[END_REF] to state there exists a subsequence, still labelled (u µ ) µ>0 that converges in L 1 (Q L ). Then we use the same argument on the subdomain Q R to extract from this last subsequence a new subsequence, still denoted by (u µ ) µ>0 that converges in L 1 (Q R ), and so in L 1 (Q). We denote by u the limit of a subsequence (u µ ) µ that converges in L 1 (Q). Let us show that u is a weak entropy solution to (1). First we prove that u fulfills the entropy inequality (3). To this aim we come back to the viscous problem [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux[END_REF]. We choose in [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] 

the test function sgn η (u µ -k)ϕ 1 ϕ 2 where k is a real, ϕ 1 an element of C ∞ c ([0, T [), ϕ 2 an element of C ∞ c (Ω), ϕ 1 , ϕ 2 ≥ 0. We integrate over [0, T ] to obtain: T 0 ∂ t u µ , sgn η (u µ -k)ϕ 1 ϕ 2 + Q (µ∇ x u µ -b(x)f (u µ )) • ∇ x (sgn η (u µ -k)ϕ 1 ϕ 2 )dxdt + Q g(t, x, u µ )sgn η (u µ -k)ϕ 1 ϕ 2 dx = 0. (27)
Again we use the F. Mignot-A. Bamberger Lemma to transform the evolution term:

T 0 ∂ t u µ , sgn η (u µ -k)ϕ 2 ϕ 1 dt = - Q I η (u µ )ϕ 2 ∂ t ϕ 1 dxdt- Ω I η (u 0 )ϕ 2 ϕ 1 (0)dx where I η (u µ ) = uµ k sgn η (τ -k)dτ.
The diffusion term is transformed as below:

Q µ∇ x u µ • ∇ x (sgn η (u µ -k)ϕ 1 ϕ 2 )dxdt = Q µ(∇u µ ) 2 sgn ′ η (u µ -k)ϕ 1 ϕ 2 dxdt + Q µ∇u µ • ∇ϕ 2 ϕ 1 sgn η (u µ -k)dxdt,
so that the first term on the right-hand side of the equality is nonnegative. The convective term is studied separately on Q L and Q R . We write it under the form:

- i∈{L,R} Qi b i (x)f (u µ ) • ∇u µ sgn ′ η (u µ -k)ϕ 1 ϕ 2 dxdt - i∈{L,R} Qi b i (x)f (u µ ) • ∇ϕ 2 sgn η (u µ -k)ϕ 1 dxdt
We focus on the first integral for i = L (the reasoning for i = R being the same). We denote:

J η,µ = - Q L b L (x)f (u µ ).∇u µ sgn ′ η (u µ -k)ϕ 1 ϕ 2 dxdt = - Q L b L (x)div x D η (u µ , k)ϕ 1 ϕ 2 dxdt,
where

D η (u µ , k) = uµ k f (τ )sgn ′ η (τ -k)dτ.
Thanks to the Green formula, we have:

J η,µ = Q L (b L (x)D η (u µ , k) • ∇ϕ 2 + ∇ x b L (x).D η (u µ , k)ϕ 2 ϕ 1 )dxdt - Σ L,R b L (σ)D η (u µ , k) • ν L ϕ 1 ϕ 2 dtdH n-1 .
Next we look at the interface integral. We have:

Σ L,R b L (σ)D η (u µ , k) • ν L ϕ 1 ϕ 2 dtdH n-1 = Σ L,R b L (σ)(D η (u µ , k) -f (k)sgn η (u µ -k)) • ν L ϕ 1 ϕ 2 dtdH n-1 + Σ L,R b L (σ)f (k) • ν L sgn η (u µ -k)ϕ 1 ϕ 2 dtdH n-1 .
We point out, by an integration by parts that, for any reals θ and k,

D η (θ, k) = - θ k f ′ (τ )sgn η (τ -k)dτ + f (θ)sgn η (θ -k).
where

f ′ = (f ′ 1 , . . . , f ′ n ).
Then we make sure that, for i = 1, . . . , n:

- uµ k f ′ i (τ )sgn η (τ -k)dτ + f i (u µ ) -f (k))sgn η (u µ -k) ≤ 2ηM fi .
So we deduce:

|(D η (u µ , k) -f (k)sgn η (u µ -k))| ≤ 2nηM f .
We use the same method to study the integral over Q R and, for any positive µ and η, we obtain:

Q I η (u µ )∂ t ϕ 1 ϕ 2 dxdt + Ω I η (u 0 )ϕ 1 (0)ϕ 2 dx + i∈L,R Qi b i (sgn η (u µ -k)f (u µ ) -D η (u µ , k)) • ∇ϕ 2 )ϕ 1 dxdt - i∈L,R Qi ∇ x b i (x) • D η (u µ , k)ϕ 1 ϕ 2 dxdt + Σ L,R (b L -b R )f (k) • ν L sgn η (u µ -k)ϕ 1 ϕ 2 dtdH n-1 + Σ L,R 2nηM f (|b L | + |b R |)ϕ 1 ϕ 2 dtdH n-1 - Q g(t, x, u µ )sgn η (u µ -k)ϕ 1 ϕ 2 dxdt - Q µ∇u µ .∇ϕ 2 ϕ 1 sgn η (u µ -k)dxdt ≥ 0. (28) 
However,

Σ L,R (b L -b R )f (k) • ν L sgn η (u µ -k)ϕ 1 ϕ 2 dtdH n-1 ≤ Σ L,R |(b L -b R )f (k) • ν L |ϕ 1 ϕ 2 dtdH n-1 .
We take now the µ-limit in (28). By (26),

lim µ→0 + Q µ∇u µ • ∇ϕ 2 ϕ 1 sgn µ (u µ -k)dxdt = 0.
We use Lemma 7 and the Lebesgue dominated convergence Theorem to ensure there exists

u ∈ L ∞ (Q) such that, ∀k ∈ R, ∀ϕ 1 ∈ C ∞ c ([0, T [), ∀ϕ 2 ∈ C ∞ c (Ω), ∀η > 0, Q I η (u)∂ t ϕ 1 ϕ 2 dxdt + Ω I η (u 0 )ϕ 1 (0)ϕ 2 dx - Q g(t, x, u)sgn η (u -k)ϕ 1 ϕ 2 dxdt + i∈L,R Qi b i (sgn η (u -k)f (u) -D η (u, k)) • ∇ϕ 2 ϕ 1 dxdt - i∈L,R Qi ∇ x b i (x) • D η (u, k)ϕ 1 ϕ 2 dxdt + Σ L,R (|(b L -b R )f (k) • ν L | + 2nηM f (|b L | + |b R |)ϕ 1 ϕ 2 dtdH n-1 ≥ 0.
(29) Since lim η→0 D η (u, k) = sgn(uk)f (k), a.e. on Q, the η-limit gives (3). Now let us establish that u fulfills (4), ( 5) and ( 6). We write [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] with a test function v in D(Q) and we take the µ-limit. Thanks to the L 1 -convergence of (u µ ) µ that yields to (4). To prove [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF] we consider in (29) test functions such that ϕ 1 is in C ∞ c ([0, T [) and ϕ 2 belongs to C ∞ c (Ω i ), i = {L, R}. We take the η-limit and it comes:

- Qi (|u -k|∂ t ϕ 1 ϕ 2 + b i (x)Φ(u, k) • ∇ x ϕ 2 ϕ 1 )dxdt - Qi sgn(u -k)((g(t, x, u) + ∇ x b(x).f (k))ϕ 1 ϕ 2 dxdt ≤ Ωi |u 0 -k|ϕ 1 (0)ϕ 2 (x)dx.
Then we use F. Otto's arguments (see [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] or [START_REF] Otto | Initial-Boundary Value Problem for a Scalar Conservation Law[END_REF]) to ensure that: ess lim In order to show (6), we consider the functions H δ and Q δ defined in [START_REF] Otto | Initial-Boundary Value Problem for a Scalar Conservation Law[END_REF], for any τ, k ∈ R by:

H δ (τ, k) = (dist(τ, I[0, k])) 2 + δ 2 1 2 -δ, and 
Q δ (τ, k) = τ k ∂ 1 H δ (λ, k)f ′ (λ)dλ.
where I[0, k] denotes the closed interval bounded by 0 and k. We choose in [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] the test function

∂ 1 H δ (u µ , k)ϕ, ϕ ∈ C ∞ c (]0, T [×Ω)
, ϕ ≥ 0, that vanishes on Σ L,R . We integrate over [0, T ] and we use the same arguments as to obtain (28) from (27). In particular, for the convection term we use Green formulas in each subdomain Q i , i = L, R. That yields to:

Q {H δ (u µ , k)∂ t ϕ + b(x)Q δ (u µ , k) • ∇ x ϕ -g(t, x, u µ )∂ 1 H δ (u µ , k)ϕ}dxdt + Q ∇ x b(x)(Q δ (u µ , k) -∂ 1 H δ (u µ , k)f (u))dxdt ≥ µ Q ∂ 1 H δ (u µ , k)∇u µ • ∇ϕdxdt.
We take the µ-limit. By (26) and the boundness of the sequence (u µ ) µ in L ∞ (Q), the term on the right hand side of the inequality goes to 0. We use Lemma 7 to obtain:

Q {H δ (u, k)ϕ t + b(x)Q δ (u, k) • ∇ϕ -g(t, x, u)∂ 1 H δ (u, k)ϕ}dxdt Q ∇ x b(x) • (Q δ (u, k) -∂ 1 H δ (u, k)f (u))dxdt ≥ 0.
Then we consider in the previous inequality a sequence of test functions (ϕ

n ) n such that ϕ n (t, x) = β(t)α n (x) where β ∈ C ∞ c (]0, T [), and α n ∈ C ∞ (Ω), 0 ≤ α n ≤ 1, α n (x) = 1 si x ∈ ∂Ω \ Γ L,R et d(x, Γ L,R ) ≥ 1 n , 0 sur Γ L,R ou si d(x, ∂Ω) ≥ 1
n , and ( 1n ∇ x α n ) n is bounded on Ω. We refer to F. Otto's work in [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] to assert:

lim n→∞ Q b(x)Q δ (u, k) • ∇(α n (x))β(t)
dxdt exists and is nonnegative.

Moreover we adapt the proof of Lemma 2 et we use the definition of u τ to have:

lim n→∞ Q b(x)Q δ (u, k).∇(α n (x))β(t)dxdt = Σ b(σ)Q δ (u τ , k) • ν(σ)β(t)dtdH n-1 .
Thus, when δ goes to 0:

Σ b(σ)F 0 (u τ , k)β(t)dtdH n-1 ≥ 0,
that is equivalent to boundary condition (6).

A particular case

Another idea to prove an existence property in the one dimensional case, used for example in [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF], [START_REF] Jimenez | Some Scalar Conservation Laws with Discontinuous Flux[END_REF], or [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux fonction with discontinuous coefficients[END_REF] is to introduce a regularization of the coefficient b. Naturally we can wonder if we can apply it in the multidimensional case. In this section we show that, at least for some simple situations, an existence result can be obtained by regularization of the function b.

In this part we suppose

Ω =]-1, 1[ n and Γ L,R = {0}×]-1, 1[ n-1 . We denote Ω L =]-1, 0[×]-1, 1[ n-1 and Ω R =]0, 1[×]-1, 1[ n . So on Σ L,R , ν L = (1, 0, . . . , 0) and ν R = -ν L . Lastly, on Σ L,R , σ = (x 2 , . . . , x n ).
We suppose also:

b(x) = b L si x ∈ Ω L b R si x ∈ Ω R ,
where b L and b R are two fixed reals. Let us remark that when b L and b R depend on the space variable, we can apply the techniques we will use if, for all σ of Γ L,R , (b L (σ)b R (σ)) has the same sign. We note that the entropy inequality (3) becomes: H 1 (Ω)) and such that ∂ t u ε,µ ∈ L 2 (Q). Furthermore the sequence (u ε,µ ) µ converges towards u ε in L 1 (Q) when µ goes to 0 + . We multiply (35) by (u ε,µ -M 1 (t)) + and we integrate over ]0, s[×Ω, s ∈]0, T ]. We have:

µ s 0 Ω ∆u ε,µ (u ε,µ -M 1 (t)) + dxdt = -µ s 0 Ω [∇(u ε,µ -M 1 (t)) + ] 2 dxdt ≤ 0.
For the evolution term, we write:

s 0 Ω ∂ t u ε,µ (u ε,µ -M 1 (t)) + dxdt = 1 2 (u ε,µ (s, .) -M 1 (s)) + 2 L 2 (Ω) + s 0 Ω M ′ 1 (t)(u ε,µ -M 1 (t)) + dxdt.
We introduce in the convective term, the term div(b ε (x)f (M 1 (t)). By definition of b ε (x), that gives:

s 0 Ω div x (b ε (x)f (u ε,µ ))(u ε,µ -M 1 (t)) + dxdt = s 0 Ω θ ′ ε (x 1 )f 1 (M 1 (t))(u ε,µ M 1 (t)) + dxdt + s 0 Q div(b ε (x)(f (u ε,µ ) -f (M 1 (t)))(u ε,µ -M 1 (t)) + dxdt.
For the reaction term, [g(t, x, u ε,µ )g(t, x, M 1 (t))](u ε,µ -M 1 (t)) + dxdt.

We gather all the terms to assert:

1 2 (u ε,µ (s, .) -M 1 (s)) + 2 L 2 (Ω) + s Ω Ψ(t, x)(u ε,µ -M 1 (t)) + dxdt ≤ (M g + b ∞ M F 4µ )
s Ω ((u ε,µ -M 1 (t)) + ) 2 dxdt, where Ψ(t, x) = θ ′ ε (x 1 )f 1 (M 1 (t)) + M ′ 1 (t) + g(t, x, M 1 (t)). Since sgn(θ ′ ε (x 1 )) = sgn(b Rb L ), we use (31) to have: θ ′ ε (x 1 )f 1 (M 1 (t)) ≥ 0. As, by definition of M 1 , for every t in ]0, T [ and every x in Ω L ∪ Ω R , M ′ 1 (t) + g(t, x, M 1 (t)) ≥ 0, we deduce that Ψ(t, x) ≥ 0 a.e. on Q. Then we use the Gronwall Lemma to ensure the sequence (u ε,µ (t, .)) ε,µ , so u ε (t, .) is majorized by M 1 (t).

We multiply (35) by -(u ε,µ -M 2 (t)) -et we apply the same techniques as previously, especially condition (32) to prove that u ε (t, .) is minorized by M 1 (t).

Nonlinear assumption [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux function[END_REF] and Lemma 8 allow us to state, by refering to E. Yu. Panov's work in [START_REF] Yu | Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation[END_REF]: Lemma 9. There is a subsequence of (u ε ) ε>0 that converges in L 1 (Q). Now we have to prove that the limit highlighted, denoted u, fulfills the entropy inequality (30). It is known that u ε satisfies the entropy inequality:

Q {I η (u ε )∂ t ϕ + b ε (x)Φ η (u ε , k) • ∇ϕ -sgn η (u ε -k)g(t, x, u ε )ϕ}dxdt + Q θ ′ ε (x 1 )(Φ 1,η (u ε , k) -I ′ η (u ε )f 1 (u ε ))ϕdxdt + Ω I η (u j 0 )ϕ(0, x)dx ≥ 0,
where (I η , Φ η ) is the regular entropy pair defined, for any real k by: We take now the ε-limit. By definition of b ε ,

I η (u ε , k) =
Q θ ′ ε (x 1 )(Φ 1,η (u ε , k) -I ′ η (u ε )f 1 (u ε ))ϕdxdt = - Σ L,R ε -ε θ ′ ε (x 1 )f 1 (k)sgn η (u ε -k)ϕdx 1 dH n-1 dt + Σ L,R ε -ε θ ′ ε (x 1 ){Φ 1,η (u ε , k) -I ′ η (u ε )(f 1 (u ε ) -f 1 (k))}ϕdx 1 dH n-1 dt.
We remark that |θ ′ ε (x 1 )| = sgn(b Rb L )θ ′ ε (x 1 ). So

- ε -ε θ ′ ε (x 1 )f 1 (k)sgn η (u ε -k)ϕdx 1 ≤ sgn(b R -b L )|f 1 (k)| ε -ε θ ′ ε (x 1 )ϕdx 1 . Moreover, |Φ 1,η (u ε ) -I ′ η (u ε )(f 1 (u ε ) -f 1 (k))| ≤ 2M f1 η. Then, Q θ ′ ε (x 1 )(Φ 1,η (u ε , k) -I ′ η (u ε )f 1 (u ε ))ϕdxdt ≤ sgn(b R -b L )(|f 1 (k)| + 2M f1 η) Σ L,R ε -ε θ ′ ε ϕdx 1 dH n-1 dt.
After an integration by parts with respect to x 1 , we pass to the limit with ε to obtain:

Q {I η (u)∂ t ϕ + b(x)Φ η (u, k) • ∇ϕsgn η (uk)g(t, x, u)ϕ}dxdt

+(2M f1 η + |f 1 (k)|)(|b R -b L |) Σ L,R
ϕ(t, 0, x 2 )dtdx 2

+ Ω I η (u j 0 )ϕ(0, x)dx ≥ 0.

(36)

If we consider only functions ϕ ∈ C ∞ c (Q), when η goes to 0 + , we establish thanks to the Lebesgue dominated convergence Theorem, the entropy inequality (30).

-1), and M 2 :

 2 t ∈ [0, T ] -→ M 2 (t) = ess inf Ω

  t→0 + Ωi |u(t, x)u 0 (x)|dx = 0, and (5) follows.

  , x, u ε,µ )(u ε,µ -M 1 (t)) + dxdt = s 0 Ω g(t, x, M 1 (t))(u ε,µ -M 1 (t)) + dxdt + s Ω

  uε k sgn η (τk)dτ and Φ η (u ε , k) = uε k sgn η (τk)f ′ (τ )dτ.

We introduce a sequence of smooth functions (b ε ) ε>0 such that:

with:

and such that θ ε is monotonic on [-ε, ε] (depending on the sign of (b

To state an existence result, we will use in this section assumptions ( 19)-( 20) that is:

We consider also a sequence of functions (u j 0 ) j∈N * such that:

, and lim j→+∞ u j 0 = u 0 in L 1 (Ω).

For j ∈ N * and ε > 0, we denote u ε the unique entropy solution (see [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]) to the "regularized" problem: Find a measurable and bounded function

We know that u ε is bounded but the bounds depend on ε a priori. That is why we state: Lemma 8. Under (31) and (32), for a.e. t ∈ [0, T ],

Proof. We come back to the viscous problem related to (33): Find a measurable and bounded function u ε,µ such that:

For µ > 0, (35) admits a unique solution u ε,µ of L 2 (0, T ;

To prove (4), we multiply (33) by ϕ, ϕ ∈ C ∞ c (Q) and we integrate over Q. We obtain:

We take the ε-limit and the conclusion follows.

By reasoning as in the previous section, we show that u satisfies the initial condition (5). To prove (6), we consider again, for any positive real δ, the sequence (H δ , Q δ ) used in Section 4. We can assert that u ε fulfills:

If we consider functions ϕ vanishing in a neighborhood of Σ L,R , we take the ε-limit without difficulties to have:

We choose in the above inequality, a sequence of test functions,

n where d(x, ∂Ω) ≥ 1 n .

We use F. Otto's arguments (see [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF]) to state:

)β(t)dxdt exists and is nonnegative.

The conclusion follows.

Lastly we have to take the j-limit. We denote u j the weak entropy solution to (1) associated with the initial condition u j 0 . For j = j ′ , the comparison result (13) ensures there exists a positive real C such that:

Then (u j ) j is a Cauchy sequence in L 1 (Q), and so converges towards a limit u. Moreover, for any j of N * , u j fulfills (36) and (37). Thus by taking the j-limit in (36) and (37), we prove that u is a weak entropy solution to (1).