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GROTHENDIECK GROUP AND GENERALIZED MUTATION

RULE FOR 2-CALABI–YAU TRIANGULATED CATEGORIES

YANN PALU

Abstract. We compute the Grothendieck group of certain 2-Calabi–Yau tri-
angulated categories appearing naturally in the study of the link between
quiver representations and Fomin–Zelevinsky’s cluster algebras. In this setup,
we also prove a generalization of Fomin–Zelevinsky’s mutation rule.

Introduction

In their study [5] of the connections between cluster algebras (see [21]) and quiver
representations, P. Caldero and B. Keller conjectured that a certain antisymmetric
bilinear form is well–defined on the Grothendieck group of a cluster–tilted algebra
associated with a finite–dimensional hereditary algebra. The conjecture was proved
in [18] in the more general context of Hom-finite 2-Calabi–Yau triangulated cate-
gories. It was used in order to study the existence of a cluster character on such a
category C, by using a formula proposed by Caldero–Keller.

In the present paper, we restrict to the case where C is algebraic (i.e. is the
stable category of a Frobenius category). We first use this bilinear form to prove
a generalized mutation rule for quivers of cluster–tilting subcategories in C. When
the cluster–tilting subcategories are related by a single mutation, this shows, via the
method of [8], that their quivers are related by the Fomin–Zelevinsky mutation rule.
This special case was already proved in [2], without assuming C to be algebraic.

We also compute the Grothendieck group of the triangulated category C. In
particular, this allows us to improve on results by M. Barot, D. Kussin and H.
Lenzing: We compare the Grothendieck group of a cluster category CA with the
group K0(CA). The latter group was defined in [1] by only considering the triangles
in CA which are induced by those of the derived category. More precisely, we prove
that those two groups are isomorphic for any cluster category associated with a
finite dimensional hereditary algebra, with its triangulated structure defined by B.
Keller in [15].

This paper is organized as follows: The first section is dedicated to notation
and necessary background from [7], [8], [16], [18]. In section 2, we compute the
Grothendieck group of the triangulated category C. In section 3, we prove a gener-
alized mutation rule for quivers of cluster–tilting subcategories in C. In particular,
this yields a new proof of the Fomin–Zelevinsky mutation rule, under the restric-
tion that C is algebraic. We finally show that K0(CA) = K0(CA) for any finite
dimensional hereditary algebra A.
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1. Notations and background

Let E be a Frobenius category whose idempotents split and which is linear over
a given algebraically closed field k. By a result of Happel [9], its stable category
C = E is triangulated. We assume moreover, that C is Hom-finite, 2-Calabi–Yau
and has a cluster–tilting subcategory (see section 1.2), and we denote by Σ its
suspension functor. Note that we do not assume that E is Hom-finite.

We write X ( , ), or HomX ( , ), for the morphisms in a category X and HomX ( , )
for the morphisms in the category of X -modules. We also denote by Xˆ the projec-
tive X -module represented by X : Xˆ= X (?, X).

1.1. Fomin–Zelevinsky mutation for matrices. Let B = (bij)i,j∈I be a finite
or infinite matrix, and let k be in I. The Fomin and Zelevinsky mutation of B
(see [7]) in direction k is the matrix

µk(B) = (b′ij)

defined by

b′ij =

{

−bij if i = k or j = k,

bij +
|bik|bkj+bik|bkj |

2 else.

Note that µk

(

µk(B)
)

= B and that if B is skew-symmetric, then so is µk(B).
We recall some results from [8, section 7], stated for infinite matrices, which will

be useful in section 3. Let S = (sij) be the matrix defined by

sij =

{

−δij +
|bij |−bij

2 if i = k,
δij else.

Lemma 7.1 [8, Geiss–Leclerc–Schröer] : Assume that B is skew-symmetric. Then,
S2 = 1 and the (i, j)-entry of the transpose of the matrix S is given by

st
ij =

{

−δij +
|bij |+bij

2 if j = k,
δij else.

The matrix S yields a convienent way to describe the mutation of B in the
direction k:
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Lemma 7.2 [8, Geiss–Leclerc–Schröer] : Assume that B is skew-symmetric. Then
we have:

µk(B) = StBS.

Note that the product is well-defined since the matrix S has a finite number of
non vanishing entries in each column.

1.2. Cluster–tilting subcategories. A cluster–tilting subcategory (see [16]) of C
is a full subcategory T such that

a) T is a linear subcategory;
b) for any object X in C, the contravariant functor C(?, X)|T is finitely gen-

erated;
c) for any object X in C, we have C(X, ΣT ) = 0 for all T in T if and only if

X belongs to T .

We now recall some results from [16], which we will use in the sequel. Let T be a
cluster–tilting subcategory of C, and denote by M its preimage in E . In particular
M contains the full subcategory P of E formed by the projective-injective objects,
and we have M = T .

The following proposition will be used implicitly, extensively in this paper.
Proposition [16, Keller–Reiten] :

a) The category modM of finitely presented M-modules is abelian.
b) For each object X ∈ C, there is a triangle

Σ−1X −→ T X
1 −→ T X

0 −→ X

of C, with T X
0 and T X

1 in T .

Recall that the perfect derived category perM is the full triangulated subcate-
gory of the derived category of DModM generated by the finitely generated pro-
jective M-modules.
Proposition [16, Keller–Reiten] :

a) For each X ∈ E, there are conflations

0 −→ M1 −→ M0 −→ X −→ 0 and 0 −→ X −→ M0 −→ M1 −→ 0

in E, with M0, M1, M0 and M1 in M.
b) Let Z be in modM. Then Z considered as an M-module lies in the perfect

derived category perM and we have canonical isomorphisms

D(perM)(Z, ?) ≃ (perM)(?, Z[3]).

1.3. The antisymmetric bilinear form. In section 3, we will use the existence of
the antisymmetric bilinear form 〈 , 〉a on K0(modM). We thus recall its definition
from [5].

Let 〈 , 〉 be a truncated Euler form on modM defined by

〈M, N〉 = dimHomM(M, N) − dimExt1M(M, N)

for any M, N ∈ modM. Define 〈 , 〉a to be the antisymmetrization of this form:

〈M, N〉a = 〈M, N〉 − 〈N, M〉.

This bilinear form descends to the Grothendieck group K0(modM):
Lemma [18, section 3] : The antisymmetric bilinear form

〈M, N〉a : K0(modM) × K0(modM) −→ Z

is well-defined.
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2. Grothendieck groups of algebraic 2-CY categories with a

cluster–tilting subcategory

We fix a cluster-tilting subcategory T of C, and we denote by M its preimage in
E . In particular M contains the full subcategory P of E formed by the projective-
injective objects, and we have M = T .

We denote by Hb (E) and Db (E) respectively the bounded homotopy category
and the bounded derived category of E . We also denote by Hb

E−ac (E), Hb (P),

Hb (M) and Hb
E−ac (M) the full subcategories of Hb (E) whose objects are the E-

acyclic complexes, the complexes of projective objects in E , the complexes of objects
of M and the E-acyclic complexes of objects of M, respectively.

2.1. A short exact sequence of triangulated categories.

Lemma 1. Let A1 and A2 be thick, full triangulated subcategories of a triangulated
category A and let B be A1 ∩ A2. Assume that for any object X in A there is a
triangle X1 −→ X −→ X2 −→ ΣX1 in A, with X1 in A1 and X2 in A2. Then the
induced functor A1/B −→ A/A2 is a triangle equivalence.

Proof. Under these assumptions, denote by F the induced triangle functor from
A1/B to A/A2. We are going to show that the functor F is a full, conservative,
dense functor. Since any full conservative triangle functor is fully faithful, F will
then be an equivalence of categories.

We first show that F is full. Let X1 and X ′
1 be two objects in A1. Let f be a

morphism from X1 to X ′
1 in A/A2 and let

Y
w

  A
AA

AA

~~}}
}}

}

X1 X ′
1

be a left fraction which represents f . The morphism w is in the multiplicative

system associated with A2 and thus yields a triangle Σ−1A2 → Y
w

−→ X ′
1 → A2

where A2 lies in the subcategory A2. Moreover, by assumption, there exists a
triangle Y1 → Y → Y2 → ΣY1 with Yi in Ai. Applying the octahedral axiom to the
composition Y1 → Y → X ′

1 yields a commutative diagram whose two middle rows
and columns are triangles in A

Σ−1A2

��

Σ−1A2

��
Y1

// Y

��

// Y2

��

// ΣY1

Y1
// X ′

1

��

// Z

��

// ΣY1

A2 A2 .

Since Y2 and A2 belong to A2, so does Z. And since X ′
1 and Y1 belong to A1,

so does Z. This implies, that Z belongs to B. The morphism Y1 → X ′
1 is in the

multiplicative system of A1 associated with B and the diagram

Y1

  A
AA

AA

~~}}
}}

}

X1 X ′
1
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is a left fraction which represents f . This implies that f is the image of a morphism
in A1/B. Therefore the functor F is full.

We now show that F is conservative. Let X1
f

−→ Y1 → Z1 → ΣX1 be a triangle
in A1. Assume that Ff is an isomorphism in A/A2, which implies that Z1 is an
object of A2. Therefore, Z1 is an object of B and f is an isomorphism in A1/B.

We finally show that F is dense. Let X be an object of the category A/A2, and
let X1 → X → X2 → ΣX1 be a triangle in A with Xi in Ai. Since X2 belongs to
A2, the image of the morphism X1 → X in A/A2 is an isomorphism. Thus X is
isomorphic to the image by F of an object in A1/B. �

As a corollary, we have the following:

Lemma 2. The following sequence of triangulated categories is short exact:

0 −→ Hb
E−ac (M) −→ Hb (M) −→ Db (E) −→ 0.

Remark: This lemma remains true if C is d-Calabi–Yau and M is (d − 1)-cluster–
tilting, using section 5.4 of [16].

Proof. For any object X in Hb (E), the existence of an object M in Hb (M) and of a
quasi-isomorphism w from M to X is obtained using the approximation conflations
of Keller–Reiten (see section 1.2). Since the cone of the morphism w belongs to
Hb

E−ac (E), lemma 1 applies to the subcategoriesHb
E−ac (M), Hb (M) and Hb

E−ac (E)

of Hb (E). �

Proposition 3.The following diagram is commutative with exact rows and columns:

0 0

0 // Hb
E−ac (M)

iM // Hb (M) /Hb (P)

OO

// E //

OO

0

0 // Hb
E−ac (M) // Hb (M) //

OO

Db (E) //

OO

0 (D)

Hb (P)

OO

Hb (P)

iP

OO

// 0

0

OO

0

OO

.

Proof. The column on the right side has been shown to be exact in [17] and [19].
The second row is exact by lemma 2. The subcategories Hb

E−ac (M) and Hb (P) of

Hb (M) are left and right orthogonal to each other. This implies that the induced
functors iM and iP are fully faithful and that taking the quotient of Hb (M) by
those two subcategories either in one order or in the other gives the same category.
Therefore the first row is exact. �

2.2. Invariance under mutation. A natural question is then to which extent the
diagram (D) depends on the choice of a particular cluster–tilting subcategory. Let
thus T ′ be another cluster–tilting subcategory of C, and let M′ be its preimage in E .
Let ModM (resp. ModM′) be the category of M-modules (resp. M′-modules),
i.e. of k-linear contravariant functors from M (resp. M′) to the category of k-vector
spaces.

Let X be the M-M′-bimodule which sends the pair of objects (M, M ′) to the
k-vector space E(M, M ′). The bimodule X induces a functor F =? ⊗M′ X :
ModM′ −→ ModM denoted by TX in [14, section 6.1].
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Recall that the perfect derived category perM is the full triangulated subcate-
gory of the derived categoryDModM generated by the finitely generated projective
M-modules.

Proposition 4. The left derived functor

LF : DMod M′ −→ DMod M

is an equivalence of categories.

Proof. Recall that if X is an object in a category X , we denote by Xˆ the functor
X (?, X) represented by X . By [14, 6.1], it is enough to check the following three
properties:

1. For all objects M ′, M ′′ of M, the group HomDMod M (LFM ′ ,̂ LFM ′′ [̂n])
vanishes for n 6= 0 and identifies with HomM′ (M ′, M ′′) for n = 0;

2. for any object M ′ of M′, the complex LFM ′ˆ belongs to perM;
3. the set {LFM ′ ,̂ M ′ ∈ M′} generates DMod M as a triangulated category

with infinite sums.

Let M ′ be an object of M′, and let M1
// // M0

// // M ′ be a conflation in

E , with M0 and M1 in M, and whose deflation is a right M-approximation (c.f.
section 4 of [16]). The surjectivity of the map M0̂ −→ E(?, M ′)|M implies that
the complex P = (· · · → 0 → M1̂ → M0̂ → 0 → · · · ) is quasi-isomorphic to
LFM ′ˆ = E(?, M ′)|M. Therefore LFM ′ˆ belongs to the subcategory perM of
DMod M. Moreover, we have, for any n ∈ Z and any M ′′ ∈ M′, the equality

HomD Mod M (LFM ′ ,̂ LFM ′′ [̂n]) = HomHb ModM (P, E(?, M ′′)|M[n])

where the right–hand side vanishes for n 6= 0, 1. In case n = 1 it also vanishes,
since Ext1E(M ′, M ′′) vanishes. Now,

HomHb ModM (P, E(?, M ′′)|M) ≃ Ker (E(M0, M
′′) → E(M1, M

′′))

≃ E(M ′, M ′′).

It only remains to be shown that the set R = {LFM ′ ,̂ M ′ ∈ M′} generates
DMod M. Denote by R the full triangulated subcategory with infinite sums of
DMod M generated by the set R. The set {M ,̂ M ∈ M} generates DMod M
as a triangulated category with infinite sums. Thus it is enough to show that,
for any object M of M, the complex Mˆ concentrated in degree 0 belongs to the

subcategory R. Let M be an object of M, and let M // i // M ′
0

p // // M ′
1 be a

conflation of E with M ′
0 and M ′

1 in M′. Since Ext1E(?, M)|M vanishes, we have a
short exact sequence of M-modules

0 −→ E(?, M)|M −→ E(?, M ′
0)|M −→ E(?, M ′

1)|M −→ 0,

which yields the triangle

Mˆ−→ LFM ′
0̂ −→ LFM ′

1̂ −→ ΣM .̂

�

As a corollary of proposition 4, up to equivalence the diagram (D) does not
depend on the choice of a cluster–tilting subcategory. To be more precise: Let G
be the functor which sends an object X in the category Hb (M′) to a representative
of (LF )Xˆ in Hb (M), and a morphism in Hb (M′) to the induced one in Hb (M).
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Corollary 5. The following diagram is commutative

DMod M′ LF // DMod M

Hb (M′)

��

* 


88ppppppppppp
G //

OO

Hb (M)

��

+ �

88qqqqqqqqqq

Hb (P)
S3

ffMMMMMMMMMM
?�

kK

xxqqqqqqqqqq
Hb (P)
S3

ffLLLLLLLLLL
?�

OO

kK

xxrrrrrrrrrr

Db (E) Db (E)

and the functor G is an equivalence of categories.

We denote by perM M the full subcategory of perM whose objects are the com-
plexes with homologies in modM. The following lemma will allow us to compute
the Grothendieck group of perM M in section 2.3:

Lemma 6. The canonical t-structure on DMod M restricts to a t-structure on
perM M, whose heart is modM.

Proof. By [12], it is enough to show that for any object M• of perM M, its trunca-
tion τ≤0M

• in DMod M belongs to perM M. Since M• is in perM M, τ≤0M
• is

bounded, and is thus formed from the complexes Hi(M•) concentrated in one de-
gree by taking iterated extensions. But, for any i, the M-module Hi(M•) actually
is an M-module. Therefore, by [16] (see section 1.2), it is perfect as an M-module
and it lies in perM M. �

The next lemma already appears in [20]. For the convenience of the reader, we
include a proof.

Lemma 7. The Yoneda equivalence of triangulated categories Hb (M) −→ perM
induces a triangle equivalence Hb

E−ac (M) −→ perM M.

Proof. We first show that the cohomology groups of an E-acyclic bounded complex
M vanish on P . Let P be a projective object in E and let E be a kernel in E of the
map Mn −→ Mn+1. Since M is E-acyclic, such an object exists, and moreover, it is
an image of the map Mn−1 −→ Mn. Any map from P to Mn whose composition
with Mn → Mn+1 vanishes factors through the kernel E  Mn. Since P is
projective, this factorization factors through the deflation Mn−1

։ E.

P

vvl l l l l l l l

��

o
w

�


�
�
"

��

0

((PPPPPPPPPPPPPP

Mn−1

"" ""F
FFFFFFF

// Mn // Mn+1

E
==

==||||||||

Therefore, we have Hn(M )̂(P ) = 0 for all projective objects P , and Hn(M )̂ be-
longs to modM. Thus the Yoneda functor induces a fully faithful functor from
Hb

E−ac (M) to perM M. To prove that it is dense, it is enough to prove that any
object of the heart modM of the t-structure on perM M is in its essential image.

But this was proved in [16, section 4] (see section 1.2).
�
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Proposition 8. There is a triangle equivalence of categories

perM M
≃
−→ perM′ M′

Proof. Since the categories Hb (P) and Hb
E−ac (M) are left-right orthogonal in

Hb (M), this is immediate from corollary 5 and lemma 7. �

2.3. Grothendieck groups. For a triangulated (resp. additive, resp. abelian)

category A, we denote by Ktri
0 (A) or simply K0(A) (resp. Kadd

0 (A), resp. Kab
0 (A))

its Grothendieck group (with respect to the mentioned structure of the category).
For an object A in A, we also denote by [A] its class in the Grothendieck group of
A.

The short exact sequence of triangulated categories

0 −→ Hb
E−ac (M) −→ Hb (M) /Hb (P) −→ E −→ 0

given by proposition 3 induces an exact sequence in the Grothendieck groups

(∗) K0

(

Hb
E−ac (M)

)

−→ K0

(

Hb (M) /Hb (P)
)

−→ K0

(

E
)

−→ 0.

Lemma 9. The exact sequence (∗) is isomorphic to an exact sequence

(∗∗) Kab

0

(

modM
) ϕ
−→ Kadd

0

(

M
)

−→ Ktri

0

(

E
)

−→ 0.

Proof. First, note that, by [20], see also lemma 7, we have an isomorphism between
the Grothendieck groups K0

(

Hb
E−ac (M)

)

and K0

(

perM M
)

. The t-structure on
perM M whose heart is modM, see lemma 6, in turn yields an isomorphism be-

tween the Grothendieck groups Ktri
0

(

perM M
)

and Kab
0

(

modM
)

. Next, we show

that the canonical additive functor M
α

−→ Hb (M) /Hb (P) induces an isomorphism

between the Grothendieck groups Kadd
0

(

M
)

and Ktri
0

(

Hb (M) /Hb (P)
)

. For this,

let us consider the canonical additive functor M
β

−→ Hb (M) and the triangle

functor Hb (M)
γ

−→ Hb (M). The following diagram describes the situation:

Hb (M) Hb (M)
γoo

��
M

β

OO

α // Hb (M) /Hb (P)

γ
ggO O O O O O

The functor γ vanishes on the full subcategory Hb (P), thus inducing a triangle
functor, still denoted by γ, from Hb (M) /Hb (P) to Hb (M). Furthermore, the
functor β induces an isomorphism at the level of Grothendieck groups, whose inverse
K0(β)−1 is given by

Ktri
0

(

Hb (M)
)

−→ Kadd
0

(

M
)

[M ] 7−→
∑

i∈Z

(−1)i[M i].

As the group Ktri
0

(

Hb (M) /Hb (P)
)

is generated by objects concentrated in degree

0, it is straightforward to check that the morphisms K0(α) and K0(β)−1 K0(γ) are
inverse to each other.

�

As a consequence of the exact sequence (∗∗), we have an isomorphism between

Ktri
0

(

E
)

and Kadd
0

(

M
)

/ Im ϕ. In order to compute Ktri
0

(

E
)

, the map ϕ has to be
made explicit. We first recall some results from Iyama–Yoshino [11] which generalize
results from [3]: For any indecomposable M of M not in P , there exists M∗ unique
up to isomorphism such that (M, M∗) is an exchange pair. This means that M
and M∗ are not isomorphic and that the full additive subcategory of C generated
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by all the indecomposable objects of M but those isomorphic to M , and by the
indecomposable objects isomorphic to M∗ is again a cluster–tilting subcategory.
Moreover, dim E(M, ΣM∗) = 1. We can thus fix two (non-split) exchange triangles

M∗ → BM → M → ΣM∗ and M → BM∗ → M∗ → ΣM.

We may now state the following:

Theorem 10. The Grothendieck group of the triangulated category E is the quotient
of that of the additive subcategory M by all relations [BM∗ ] − [BM ]:

Ktri

0

(

E
)

≃ Kadd

0

(

M
)

/([BM∗ ] − [BM ])M .

Proof. We denote by SM the simple M-module associated to the indecomposable
object M . This means that SM (M ′) vanishes for all indecomposable objects M ′ in
M not isomorphic to M and that SM (M) is isomorphic to k. The abelian group

Kab
0

(

modM
)

is generated by all classes [SM ]. In view of lemma 9, it is sufficient
to prove that the image of the class [SM ] under ϕ is [BM∗ ] − [BM ]. First note
that the M-module Ext1E(?, M∗)|M vanishes on the projectives ; it can thus be
viewed as an M-module, and as such, is isomorphic to SM . After replacing BM

and BM ′ by isomorphic objects of E , we can assume that the exchange triangles
M∗ → BM → M → ΣM∗ and M → BM∗ → M∗ → ΣM come from conflations

M∗ // // BM
// // M and M // // BM∗

// // M∗. The spliced complex

(· · · → 0 → M → BM∗ → BM → M → 0 → · · · )

denoted by C•, is then an E-acyclic complex, and it is the image of SM under
the functor modM ⊂ perM M ≃ Hb

E−ac (M). Indeed, we have two long exact
sequences induced by the conflations above:

0 → M(?, M) → M(?, BM∗) → E(?, M∗)|M → Ext1E(?, M)|M = 0 and

0 → E(?, M∗)|M → M(?, BM ) → M(?, M) → Ext1E(?, M∗)|M → Ext1E(?, BM )|M.

Since BM belongs to M, the functor Ext1E(?, BM ) vanishes on M, and the complex:

(C )̂ : (· · · → 0 → Mˆ→ (BM∗ )̂ → (BM )̂ → Mˆ→ 0 → · · · )

is quasi-isomorphic to SM .
Now, in the notations of the proof of lemma 9, ϕ[SM ] is the image of the class

of the E-acyclic complex complex C• under the morphism K0(β)−1 K0(γ). This is
[M ] − [BM ] + [BM∗ ] − [M ] which equals [BM∗ ] − [BM ] as claimed. �

3. The generalized mutation rule

Let T and T ′ be two cluster–tilting subcategories of C. Let Q and Q′ be the
quivers obtained from their Auslander–Reiten quivers by removing all loops and
oriented 2-cycles.

Our aim, in this section, is to give a rule relating Q′ to Q, and to prove that it
generalizes the Fomin–Zelevinsky mutation rule.
Remark:

. Assume that C has cluster–tilting objects. Then it is proved in [2, Theorem
I.1.6], without assuming that C is algebraic, that the Auslander–Reiten
quivers of two cluster–tilting objects having all but one indecomposable
direct summands in common (up to isomorphism) are related by the Fomin–
Zelevinsky mutation rule.

. To prove that the generalized mutation rule actually generalizes the Fomin–
Zelevinsky mutation rule, we use the ideas of section 7 of [8].
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3.1. The rule. As in section 2, we fix a cluster–tilting subcategory T of C, and
write M for its preimage in E , so that T = M. Define Q to be the quiver obtained
from the Auslander–Reiten quiver of M by deleting its loops and its oriented 2-
cycles. Its vertex corresponding to an indecomposable object L will also be labeled
by L. We denote by aLN the number of arrows from vertex L to vertex N in the
quiver Q. Let BM be the matrix whose entries are given by bLN = aLN − aNL.

Let RM be the matrix of 〈 , 〉a : K0(modM) × K0(modM) −→ Z in the basis
given by the classes of the simple modules.

Lemma 11. The matrices RM and BM are equal: RM = BM.

Proof. Let L and N be two non-projective indecomposable objects in M. Then
dimHom(SL, SN ) − dimHom(SN , SL) = 0 and we have:

〈[SL], [SN ]〉a = dimExt1(SN , SL) − dimExt1(SL, SN) = bL,N .

�

Let T ′ be another cluster–tilting subcategory of C, and let M′ be its preimage
in the Frobenius category E . Let (M ′

i)i∈I (resp. (Mj)j∈J ) be representatives for
the isoclasses of non-projective indecomposable objects in M′ (resp. M). The
equivalence of categories perM M ∼−→ perM′ M′ of proposition 8 induces an iso-

morphism between the Grothendieck groups K0(modM) and K0(modM′) whose
matrix, in the bases given by the classes of the simple modules, is denoted by
S. The equivalence of categories DMod M ∼−→ DMod M′ restricts to the iden-
tity on Hb (P), so that it induces an equivalence perM/ perP ∼−→ perM′/ perP .
Let T be the matrix of the induced isomorphism from K0(projM)/ K0(projP) to
K0(projM′)/ K0(projP), in the bases given by the classes [M(?, Mj)], j ∈ J , and
[M′(?, M ′

i)], i ∈ I. The matrix T is much easier to compute than the matrix S.
Its entries tij are given by the approximation triangles of Keller and Reiten in the
following way: For all j, there exists a triangle of the form

Σ−1Mj −→
⊕

i

βijM
′
i −→

⊕

i

αijM
′
i −→ Mj.

Then, we have:

Theorem 12. a) (Generalized mutation rule) The following equalities hold:

tij = αij − βij

and

BM′ = TBMT t.

b) The category C has a cluster–tilting object if and only if all its cluster–tilting
subcategories have a finite number of pairwise non-isomorphic indecompos-
able objects.

c) All cluster–tilting objects of C have the same number of indecomposable
direct summands (up to isomorphism).

Note that point c) was shown in [10, 5.3.3(1)] (see also [2, I.1.8]) and, in a more
general context, in [6]. Note also that, for the generalized mutation rule to hold, the
cluster–tilting subcategories do not need to be related by a sequence of mutation.

Proof. Assertions b) and c) are consequences of the existence of an isomorphism
between the Grothendieck groups K0(modM) and K0(modM′). Let us prove the
equalities a). Recall from [18, section 3.3], that the antisymmetric bilinear form
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〈 , 〉a on modM is induced by the usual Euler form 〈 , 〉E on perM M. The
following commutative diagram

perM M× perM M

〈 , 〉E

''OOOOOOOOOOOOO
≃ // perM′ M′ × perM′ M′

〈 , 〉E

wwnnnnnnnnnnnnn

Z
,

thus induces a commutative diagram

K0(modM) × K0(modM)

〈 , 〉a

((RRRRRRRRRRRRRRR
S×S // K0(modM′) × K0(modM′)

〈 , 〉a

vvlllllllllllllll

Z .

This proves the equality RM = StRM′S, or, by lemma 11,

(1) BM = StBM′S.

Any object of perM M becomes an object of perM/ perP through the compo-

sition perM M →֒ perM ։ perM/ perP . Let M and N be two non-projective
indecomposable objects in M. Since SN vanishes on P , we have

HomperM/ perP

(

M(?, M), SN

)

= HomperM

(

M(?, M), SN

)

= HomModM

(

M(?, M), SN

)

= SN (M).

Thus dimHomperM/ perP

(

M(?, M), SN

)

= δMN , and the commutative diagram

perM/ perP × perM/ perP

RHom
))SSSSSSSSSSSSSSS

≃ // perM′/ perP × perM′/ perP

RHom
uukkkkkkkkkkkkkkkk

per k ,

induces a commutative diagram

K0(projM)/ K0(projP)×K0(modM)

Id
))SSSSSSSSSSSSSSSSS
T×S // K0(projM′)/ K0(projP)×K0(modM′)

Id
uukkkkkkkkkkkkkkkkk

Z .

In other words, the matrix S is the inverse of the transpose of T :

(2) S = T -t

Equalities (1) and (2) imply what was claimed, that is

BM′ = TBMT t .

Let us compute the matrix T : Let M be indecomposable non-projective in M,
and let

Σ−1M −→ M ′
1 −→ M ′

0 −→ M

be a Keller–Reiten approximation triangle of M with respect to M′, which we may
assume to come from a conflation in E . This conflation yields a projective resolution

0 −→ (M ′
1)̂ −→ (M ′

0)̂ −→ E(?, M)|M′ −→ Ext1E(?, M ′
1)|M′ = 0.

so that T sends the class of Mˆto [(M ′
0)̂ ]−[(M ′

1)̂ ]. Therefore, tij equals αij−βij. �
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3.2. Examples.

3.2.1. As a first example, let C be the cluster category associated with the quiver
of type A4: 1 → 2 → 3 → 4. Its Auslander–Reiten quiver is the Moebius strip:

4′

��?
??

? 4

��>
>>

>>

��9
99

99
9

��>
>>

>>

@@�����
3′

��>
>>

>>

@@����

��;
;;

;;
;

AA������

��9
99

99

��9
99

99

BB�����
2

  @
@@

@@

>>~~~~

��>
>>

>>

??������

��9
99

99

BB�����

��=
==

==CC�����
1

??����

??������
2′

AA�����
3

BB�����
4′.

Let M = M1 ⊕ M2 ⊕ M3 ⊕ M4, where the indecomposable Mi corresponds to the
vertex labelled by i in the picture. Let also M ′ = M ′

1 ⊕ M ′
2 ⊕ M ′

3 ⊕ M ′
4, where

M ′
1 = M1, and where the indecomposable M ′

i corresponds to the vertex labelled
by i′ if i 6= 1. One easily computes the following Keller–Reiten approximation
triangles:
Σ−1M1 −→ 0 −→ M ′

1 −→ M1,
Σ−1M2 −→ M ′

2 −→ M ′
1 −→ M2,

Σ−1M3 −→ M ′
4 −→ 0 −→ M4 and

Σ−1M4 −→ M ′
4 −→ M ′

3 −→ M4;
so that the matrix T is given by:

T =









1 1 0 0
0 −1 0 0
0 0 0 1
0 0 −1 −1









.

We also have

BM ′ =









0 −1 1 0
1 0 −1 0

−1 1 0 −1
0 0 1 0









.

Let maple compute

T -1BM ′T -t =









0 1 0 0
−1 0 −1 1

0 1 0 −1
0 −1 1 0









,

which is BM .

3.2.2. Let us look at a more interesting example, where one cannot easily read the
quiver of M ′ from the Auslander–Reiten quiver of C. Let C be the cluster category
associated with the quiver Q:

1

0

??����
??����

��?
??

?

��?
??

?

2.

For i = 0, 1, 2, let Mi be (the image in C of) the projective indecomposable (right)
kQ-module associated with vertex i. Their dimension vectors are respectively
[1, 0, 0], [2, 1, 0] and [2, 0, 1]. Let M be the direct sum M0 ⊕ M1 ⊕ M2. Let M ′

be the direct sum M ′
0 ⊕ M ′

1 ⊕ M ′
2, where M ′

0, M
′
1 and M ′

2 are (the images in C
of) the indecomposable regular kQ-modules with dimension vectors [1, 2, 0], [0, 1, 0]
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and [2, 4, 1] respectively. As one can check, using [13], M and M ′ are two cluster–
tilting objects of C. To compute Keller–Reiten’s approximation triangles, amounts
to computing projective resolutions in mod kQ, viewed as mod EndC(M). One eas-
ily computes these projective resolutions, by considering dimension vectors:
0 −→ 8M0 −→ M2 ⊕ 4M1 −→ M ′

2 −→ 0,
0 −→ 2M0 −→ M1 −→ M ′

1 −→ 0 and
0 −→ 3M0 −→ 2M1 −→ M ′

0 −→ 0.
By applying the generalized mutation rule, one gets the following quiver

1
(6)

����
��

��
��

0

(2) ��>
>>

>>
>>

2,

(4)

OO

which is therefore the quiver of EndC(M ′) since by [4], there are no loops or 2-cycles
in the quiver of the endomorphism algebra of a cluster–tilting object in a cluster
category.

3.3. Back to the mutation rule. We assume in this section that the Auslander–
Reiten quiver of T has no loops nor 2-cycles. Under the notations of section 3.1,
let k be in I and let (Mk, M ′

k) be an exchange pair (see section 2.3). We choose
M′ to be the cluster-tilting subcategory of C obtained from M by replacing Mk by
M ′

k, so that M ′
i = Mi for all i 6= k. Recall that T is the matrix of the isomorphism

K0(projM)/ K0(projP) −→ K0(projM′)/ K0(projP).

Lemma 13. Then, the (i, j)-entry of the matrix T is given by

tij =

{

−δij +
|bij |+bij

2 if j = k
δij else.

Proof. Let us apply theorem 12 to compute the matrix T . For all j 6= k, the triangle
Σ−1Mj → 0 → M ′

j = Mj is a Keller–Reiten approximation triangle of Mj with

respect to M′. We thus have tij = δij for all j 6= k. There is a triangle unique up
to isomorphism

M ′
k −→ BMk

−→ Mk −→ ΣM ′
k

where BMk
−→ Mk is a right T ∩ T ′-approximation. Since the Auslander–Reiten

quiver of T has no loops and no 2-cycles, BMk
is isomorphic to the direct sum:

⊕

i∈I(M
′
j)

aik . We thus have tik = −δik + aik, which equals |bik|+bik

2 . Remark that,

by lemma 7.1 of [8], as stated in section 1.1, we have T 2 = Id, so that S = T t and

sij =

{

−δij +
|bij |−bij

2 if i = k
δij else.

�

Theorem 14. The matrix BM′ is obtained from the matrix BM by the Fomin–
Zelevinski mutation rule in the direction M .

Proof. By lemma 7.2 of [8], as it is stated in section 1.1, and by lemma 13, we know
that the mutation of the matrix BM in direction M is given by TBM′T t, which is
BM, by the generalized mutation rule (theorem 12). �
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3.4. Cluster categories. In [1], the authors study the Grothendieck group of
the cluster category CA associated to an algebra A which is either hereditary or
canonical, endowed with any admissible triangulated structure. A triangulated
structure on the category CA is called admissible in [1] if the projection functor
from the bounded derived category Db(mod A) to CA is exact (triangulated). They
define a Grothendieck group K0(CA) with respect to the triangles induced by those
of Db(mod A), and show that it coincides with the usual Grothendieck group of the
cluster category in many cases:

Theorem 15. [Barot–Kussin–Lenzing] We have K0(CA) = K0(CA) in each of the
following three cases:

(i) A is canonical with weight sequence (p1, . . . , pt) having at least one even
weight.

(ii) A is tubular,
(iii) A is hereditary of finite representation type.

Under some restriction on the triangulated structure of CA, we have the following
generalization of case (iii) of theorem 15:

Theorem 16. Let A be a finite-dimensional hereditary algebra, and let CA be the
associated cluster category with its triangulated structure defined in [15]. Then we
have K0(CA) = K0(CA).

Proof. By lemma 3.2 in [1], this theorem is a corollary of the following lemma. �

Lemma 17. Under the assumptions of section 3.1, and if moreover M has a finite
number n of non-isomorphic indecomposable objects, then we have an isomorphism
K0(C) ≃ Z

n/ ImBM.

Proof. This is a restatement of theorem 10. �
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