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Stéphane Rossignol
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Abstract

This paper explores a two-candidate spatial voting model, where one can-

didate has a valence advantage. Contrary to previous models, we introduce a

multiplicative advantage, rather than an additive one. This takes into account

the possible interaction between the quality of a candidate and his policy plat-

form. This leads to a strikingly different model, in which all extreme voters

support the favored candidate.
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1 Introduction.

The Downsian model constitutes a benchmark for the analysis of electoral competi-

tion. It predicts a close race between the two candidates and minimal differentiation

in chosen platforms at equilibrium (Downs, 1957). At equilibrium, both parties or

candidates choose the median platform. However, the empirical analysis of elec-

tions shows that differentiation exists1. To explain this fact, a first line of research

introduces uncertainty in the position of the median voter (i.e. candidates have

imperfect information on the voters’ positions) as well as partisan preferences (i.e.

candidates care not only about winning but also about defending a particular pro-

gram)2. Adding both uncertainty and partisan preferences for the candidates allows

us to predict differentiation at equilibrium.

An alternative line of research examines the impact of removing the hypothesis

of symmetric candidates. Candidates can be differently evaluated, even if they

adopt the same policy positions. Voters then evaluate the candidates not only

on the ”policy issues”, but also according to characteristics that are unanimously

positively or negatively evaluated. For example, all agents prefer candidates who

are not corrupt , have more charisma, greater intelligence, superior character, or

better handshaking skills. Stokes (1963) was the first to underline the importance

of those non spatial aspects. He called them ”valence issues”3. It is rather intuitive

that the candidate with a valence disadvantage will lose the election if he chooses

a platform identical to his opponent’s. He thus has a clear incentive to choose a

different platform. Valence advantages then account for differentiation in the spatial

model.

The literature on valence-issues has grown significantly in the last decade offer-

ing a better understanding of the strategic consequences of the introduction of a

1See Poole and Rosenthal, 1984.
2Among others, see Wittman, 1977 and 1990, and Osborne 1995 for a survey
3The origin of the term ”valence” deserves comment. Stokes indicates that he borrowed the term

from the German psychologist Kurt Lewin. In psychology indeed, valence refers to the attraction

or repulsion for an object. Note that psychology itself borrowed this notion from chemistry, where

valence measures the potential number of chemical links of an atom.
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valence advantage (Groseclose(2001), Schofield (2003), Aragones and Palfrey(2002),

Ansolabehere and Snyder(2000), Dix and Santore (2002) among others). Recent

contributions proposed more sophisticated models, that help understanding the ori-

gins of valence advantages. A valence advantage could arise from a greater capacity

to commit to a precise platform (Egan 2007), party support (Wiseman 2006) or

campaign spending (Herrera et al. 2007, Ashworth and Bueno de Mesquita 2007).

Explicitly modeling the process of valence formation allows us to extend the Down-

sian framework to take into account an endogenous determination of valence ad-

vantages. Candidates can choose a level of effort that (stochastically) increase their

valence (Carrilo and Castanheira, 2002 and 2006 and Meirowitz 2006), a level of

campaign spending (Erikson and Palfrey 2000, Sahuget and Persico 2006, Zakharov

2005).

A common feature to these models is to assume that the utility of a voter in-

creases by a fixed amount when he considers the position of the favored candidate

i.e. valence advantage results in adding a constant amount of utility. Such an ad-

ditive valence-advantage means that the utility is separable, i.e. that valence-issues

have no link with the policy issues. This hypothesis is clearly quite restrictive, since

we can validly think that candidates’ qualities can interact with the evaluation by

the agents of their policy positions. The degree of corruption of a candidate matters

more if he proposes a high level of public spending. This justifies a multiplicative

form for the valence-advantage.

This paper investigates the consequences of moving from an additive form to

a multiplicative form. The main result proves that the less favored candidate is

supported by voters whose preferred platform is in an unbounded set in the additive

case, but a bounded set in the multiplicative one. It is important to note that our

result holds for any dimension of the policy space (while it is often assumed that

the policy space is of dimension 1), and any distance (while much of the literature

is restricted to the Euclidean distance).

A direct and striking consequence of this result for dimension 1 is that the

electorates of both sides on the equilibrium spectrum support the most favored
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candidate. We get an ”ends against the middle” split of the population. This is

in sharp contrast with the additive case which predicts a split into two intervals.

This result holds for the higher dimensions. For example in dimension 2, voters

supporting the less favored candidates are located within a ball. This offers a new

explanation for situations in which a candidate, or alternative, is supported by

extreme voters from both the left and the right.

As in the additive case, the favored candidate is guaranteed to win the election

if his valence advantage is above a threshold. No equilibrium in pure strategy exists

if the valence advantage is below that threshold.

The paper is organized as follows : Section 2 presents the model and main

assumptions and Section 3 presents the main results. We conclude in Section 4.

2 The model

A voter i is identified with his preferred platform, or bliss point, ai in the policy

space R
n. A candidate j chooses a policy platform xj ∈ R

n. In the basic spatial

model of electoral competition, a voter i votes for candidate j whose announced

platform xj is the closest to ai. If candidate j is elected, the utility function of voter

i is:

u(xj, ai) = −‖xj − ai‖ . (1)

When valence advantages are introduced, each candidate has an intrinsic quality

independent of the chosen platform. An additional parameter θj > 0 thus accounts

for candidate j valence. The higher θj, the more appreciated candidate j.

When the valence advantage is modeled by adding a constant, the utility is

written as the following:

uad(θj, xj, ai) = −‖xj − ai‖ + θj (2)

As explained, we introduce a multiplicative valence advantage. The utility func-

tion is now written:
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u(θj, xj, ai) = −
1

θj

‖xj − ai‖ (3)

Note that x 7→ ‖x‖ is any norm on R
n. Most of our results don’t depend on the

choice of the norm. We define k = θ1

θ2
and assume, without loss of generality, that

0 < θ2 < θ1, i.e. k > 1. Then candidate 1 gets a clear advantage.

Once candidates have announced their platforms x1 and x2, the electorate splits

in three parts Ω1(x1, x2, k), Ω2(x1, x2, k) and I(x1, x2, k). Ωi is the set of voters who

support candidate i and I is the set of voters who are indifferent between the two

candidates. Formally, we have:

Ω1(x1, x2, k) =

{

a ∈ R
n;

1

θ1

‖x1 − a‖ <
1

θ2

‖x2 − a‖

}

(4)

= {a ∈ R
n; ‖x1 − a‖ < k ‖x2 − a‖}

Ω2(x1, x2, k) =

{

a ∈ R
n;

1

θ2

‖x2 − a‖ <
1

θ1

‖x1 − a‖

}

(5)

= {a ∈ R
n; k ‖x2 − a‖ < ‖x1 − a‖}

I(x1, x2, k) = {a ∈ R
n; k ‖x2 − a‖ = ‖x1 − a‖}

Voters, i.e. bliss points, are distributed on R
n, according to a density distribution

function f . The function f is assumed to be bounded on R
n, and we denote by X

the support of f , i.e. f(x) = 0 for x /∈ X. The proportion of voters who prefer

candidate j to his opponent is then given by the function Sj(x1, x2, k), where:

Sj(x1, x2, k) =

∫

Ωj

f(a)da. (6)

Note that the set I = I(x1, x2, k) is of negligible importance, i.e.
∫

I
f(a)da = 0.

In the additive case, we replace u(θj, xj, ai) by uad(θj, xj, ai) = −‖xj − ai‖+ θj.

We set b = θ1 − θ2 > 0. We define the sets:
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Ωad
1 (x1, x2, b) = {a ∈ R

n; ‖x1 − a‖ < b + ‖x2 − a‖}

and

Ωad
2 (x1, x2, b) = {a ∈ R

n; ‖x1 − a‖ > b + ‖x2 − a‖}

Then, Sad
j (x1, x2, k) =

∫

Ωad
j

f(a)da.

Since the candidates are only office-motivated, we can then assume that the

utility of candidate j is formally given by:

vj(x1, x2) =



















0 if Sj(x1, x2, k) < 1/2

1
2

if Sj(x1, x2, k) = 1/2

1 if Sj(x1, x2, k) > 1/2

(7)

The game of asymmetric electoral competition is played sequentially and its main

elements are summarized by the couple (k, f). The chronology of the game is the

following: first the two candidates announce their platforms x1 and x2; secondly the

electors vote for their preferred candidate. In the next section, we solve the game

sequentially.

3 Main results

We first explore the electorate’s split both in the additive and multiplicative cases,

when the candidates have already announced their platforms. The first step of the

game of asymmetric electoral competition, i.e. the existence of equilibria, is then

analyzed in the second subsection.

3.1 The electorate’s split in the additive and multiplicative

cases

The multiplicative and the additive cases mainly differ in the split of the electorate

between those who support candidate 1, the advantaged candidate, and those who

support candidate 2. Technically, we explore the properties of the sets Ω1 and

Ω2. Our main proposition proves that a substantial difference exists for any norm

and any dimension of the policy space (proposition 1). This result is particularly
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striking if we restrict to the Euclidean norm (proposition 2). We also provide an

explicit comparison in the particular, but popular, case where the policy space is of

dimension 1 (corollary 1).

Proposition 1 For every norm on R
n, we have:

(i) The set Ω2(x1, x2, k) is a bounded open set in R
n. It is non-empty iff x1 6= x2

(ii) The set Ωad
2 (x1, x2, b) is unbounded if b < ‖x2 − x1‖,

and empty if b ≥ ‖x2 − x1‖.

Proof. (i) If a ∈ Ω2(x1, x2, k), then

k ‖x2 − a‖ < ‖x1 − a‖ = ‖x1 − x2 + x2 − a‖ ≤ ‖x1 − x2‖ + ‖x2 − a‖

thus (k − 1) ‖x2 − a‖ < ‖x1 − x2‖

i.e.

If a ∈ Ω2(x1, x2, k), then ‖x2 − a‖ <
1

k − 1
‖x1 − x2‖ (8)

Thus Ω2(x1, x2, k) is a bounded set. It is clearly an open set, according to (5).

(ii) If x1 = x2, then Ω2(x1, x2, b) is clearly empty. We assume now that x1 6= x2.

We set u = x2−x1

‖x2−x1‖
.

- For a = x2 + λu, with λ > 0, we have ‖x2 − a‖ = λ since ‖u‖ = 1. Moreover:

‖x1 − a‖ = ‖x2 + λu − x1‖ =
∥

∥

∥
(x2 − x1)

(

1 + λ
‖x2−x1‖

)∥

∥

∥
= ‖x2 − x1‖

(

1 + λ
‖x2−x1‖

)

= ‖x2 − x1‖ + λ

‖x1 − a‖−‖x2 − a‖−b = ‖x2 − x1‖+λ−λ−b = ‖x2 − x1‖−b > 0 if b < ‖x2 − x1‖

Thus ‖x1 − a‖ > ‖x2 − a‖ + b if a = x2 + λu, for every λ > 0, when b < ‖x2 − x1‖.

It shows that Ωad
2 (x1, x2, b) is unbounded if b < ‖x2 − x1‖.

- When b ≥ ‖x2 − x1‖, we have

‖x1 − a‖ = ‖x1 − x2 + x2 − a‖ ≤ ‖x1 − x2‖ + ‖x2 − a‖ ≤ b + ‖x2 − a‖

thus Ωad
2 (x1, x2, b) is empty. ¨

Voters supporting the disadvantaged party have their bliss points included in

a bounded set in the multiplicative case. Our next proposition shows how the set

Ω2(x1, x2, k) can be constructed, in the case of an Euclidean norm.

Proposition 2 With the Euclidean norm, the set Ω2(x1, x2, k) is a hyperball in R
n

centered at c(x1, x2, k) = k2

k2−1
x2−

1
k2−1

x1 of radius r(x1, x2, k) = k
k2−1

‖x1 − x2‖. Let
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∆ denote the line (x1, x2). The set Ω2(x1, x2, k) is a hyperball tangent to the cone

of vertex x1, axis ∆, and angle 2α such that sin α = 1
k
.

Proof See Appendix.

Figure 1: Ω2(x1, x2, k)

The Downsian model as the limit of the asymmetric game It is natural to

ask how the model behaves when parties tend toward symmetry, i.e. when k → 1+.

We have Ω2 = {a ∈ X; k ‖x2 − a‖ < ‖x1 − a‖} −→ {a ∈ X; ‖x2 − a‖ < ‖x1 − a‖},

as k → 1+, i.e. the set Ω2 tends to the half-space delimited by the median hyper-

surface4 between x1 and x2 as in the symmetrical model.

Corollary 1 In a one dimensional setting, Ω2(x1, x2, k) =]kx2+x1

k+1
; kx2−x1

k−1
[ if x1 < x2

We can observe that Ω1 = R \ Ω̄2 is a non convex set. It is a situation of ”ends

against the middle”. Candidate 1 gets support of voters located at both ends of the

electoral spectrum (see Figure 2).

4The median hypersurface of x1 and x2 is the set of points in IR
n that are equidistant from x1

and x2.
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Figure 2: dim 1

3.2 Analysis of the game of asymmetric spatial competition

Before analyzing the game, some further notations are required. We define the set

X∗
1 player 1’s strategies that guarantee him or her, to win the election.

X∗
1 = {x1 ∈ X; ∀x2 ∈ X, v1(x1, x2, k) = 1} (9)

=

{

x1 ∈ X; ∀x2 ∈ X, S1(x1, x2, k) >
1

2

}

We can define similarly X∗ad
1 in the additive case.

Proposition 3 With the Euclidean norm, if X is a compact set, then X∗
1 is an

open, convex set.

Proof. See Appendix.

We now turn to the analysis of Nash equilibria:

Proposition 4 For every norm on R
n, in both multiplicative and additive cases,

one of the following two assertions holds:

- The set X∗
1 is not empty and for any x2 ∈ X, (x1, x2) is a Nash equilibrium if

and only if x1 ∈ X∗
1 .

- The set X∗
1 is empty and there exists no Nash equilibrium in pure strategy.

Proof. We have to show that (x1, x2) is a Nash equilibrium iff x1 ∈ X∗
1 .

If (x1, x2) is a Nash equilibrium, then v1(x1, x2) ≥ v1(x2, x2) = 1, thus v1(x1, x2) = 1
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Then 0 = v2(x1, x2) ≥ v2(x1, x
′
2) for all x′

2 ∈ X

As v1 = 1 − v2, it means that

1 = v1(x1, x2) ≤ v1(x1, x
′
2) for all x′

2 ∈ X

i.e. v1(x1, x
′
2) = 1 for all x′

2 ∈ X

i.e. x1 ∈ X∗
1 .

Conversely, if x1 ∈ X∗
1 and x2 ∈ X, we have

v1(x1, x2) = 1 ≥ v1(x
′
1, x2) for all x′

1 ∈ X

v2(x1, x2) = 0 ≥ v2(x1, x
′
2) for all x′

2 ∈ X

which proves that (x1, x2) is a Nash equilibrium. ¨

Proposition 5 For every continuous distribution function f on the set X, there

exist positive numbers k∗ (f), k∗∗ (f), with 1 ≤ k∗ (f) ≤ k∗∗ (f) and k∗ (f) < +∞

such that:

(i) X∗
1 (k) = ∅ if k < k∗ (f)

(ii) X∗
1 (k) 6= ∅ and X∗

1 (k) 6= X if k∗ (f) < k < k∗∗(f)

(iii) X∗
1 (k) = X if k > k∗∗ (f) .

Moreover, k∗∗ (f) < +∞ if and only if X is bounded.

Proof - Assume that 0 < k < k′.

If a ∈ Ω2(x1, x2, k
′) then

‖x1 − a‖ > k′ ‖x2 − a‖ ≥ k ‖x2 − a‖

thus

a ∈ Ω2(x1, x2, k)

Hence if k < k′, then Ω2(x1, x2, k
′) ⊆ Ω2(x1, x2, k)

Since X∗
1 (k) =

{

x1 ∈ X;
∫

Ω2(x1,x2,k)
f(a)da < 1

2
, ∀x2 ∈ X

}

then k < k′ ⇒ X∗
1 (k) ⊆ X∗

1 (k′)

For 0 < k < 1, X∗
1 (k) = ∅ since S1(x1, x1, k) = 0, ∀x1 ∈ X.
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1) Let us show that if X is bounded, then X∗
1 (k) = X for k high enough.

In R
n all the norms are equivalent, thus there exist γ1 > 0 and γ2 > 0 such that

γ1 ‖x‖eucl ≤ ‖x‖ ≤ γ2 ‖x‖eucl for every x ∈ R
n.

According to (8),
∫

Ω2(x1,x2,k)
f(a)da ≤

∫

B(x2;
‖x1−x2‖

k−1
)
f(a)da

and ‖x2 − a‖ < ‖x1−x2‖
k−1

⇒ ‖x2 − a‖eucl < δ
k−1

‖x1 − x2‖eucl where δ = γ2

γ1
.

Thus
∫

Ω2(x1,x2,k)
f(a)da ≤

∫

B(x2;
‖x1−x2‖

k−1
)
f(a)da ≤

∫

Beucl(x2; δ
k−1

‖x1−x2‖eucl)
f(a)da

≤ vol
(

Beucl(x2;
δ

k−1
‖x1 − x2‖eucl)

)

. maxK f ≤ const.
(

δ
k−1

‖x1 − x2‖eucl

)n
≤ const

(

1
k−1

)n

uniformly in x1, x2 (because X is bounded).

where limk→∞

(

1
k−1

)n
= 0

thus for k high enough
∫

Ω2(x1,x2,k)
f(a)da < 1

2
for all x1 ∈ X, x2 ∈ X, i.e. X∗

1 (k) = X.

2) We show now that X∗
1 (k) is not empty for k high enough, even if X is unbounded.

- According to (8), we know that a ∈ Ω2(x1, x2, k) ⇒ ‖x2 − a‖ < 1
k−1

‖x1 − x2‖,

i.e. Ω2(x1, x2, k) ⊂ B
(

x2;
‖x1−x2‖

k−1

)

.

- If a ∈ Ω2(x1, x2, k), ‖x1 − x2‖ ≤ ‖x1 − a‖+‖a − x2‖ < ‖x1 − a‖+ 1
k−1

‖x1 − x2‖

thus ‖x1 − a‖ ≥
(

1 − 1
k−1

)

‖x1 − x2‖ =
(

k−2
k−1

)

‖x1 − x2‖

It means that ‖x1 − a‖ <
(

k−2
k−1

)

‖x1 − x2‖ ⇒ a ∈ Ω1(x1, x2, k)

i.e. Ω1(x1, x2, k) ⊃ B
(

x1;
(k−2)‖x1−x2‖

k−1

)

if k > 2.

- Let us fix x1 ∈ X, and assume that k > 3.

There exists η > 0 such that
∫

B(x1;η)
f(a)da > 1

2

• If ‖x1 − x2‖ > 2η, then

(k−2)
k−1

‖x1 − x2‖ ≥ 1
2
‖x1 − x2‖ > η, thus v1(x1; x2) > 1

2
, i.e. candidate 2 loses the

election if ‖x1 − x2‖ > 2η.

• If ‖x1 − x2‖ ≤ 2η, then

v2(x1; x2) ≤ M.Cn

(

δ‖x1−x2‖
k−1

)n

≤ M.Cn

(

2δη

k−1

)n
< 1

2
if k is high enough, where

M = supa∈X |f(a)| and Cn > 0

i.e. candidate 2 loses the election if ‖x1 − x2‖ ≤ 2η, and k sufficiently high . ¨
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This proposition proves that an equilibrium does not always exist in our general

framework but existence is guaranteed in a broader range of cases than in the sym-

metrical model. In that sense, our model is a real generalization of the symmetrical

model.

Proposition 6 If the distribution f admits a Condorcet winner, then k∗ (f) = 1.

Proof. If there is a Condorcet winner x0, it means that , when k = 1:

v1(x0, x0) = 1
2

and v1(x0, x) = 0 for all x 6= x0.

If k > 1, it is clear that v1(x0, x0) = 1, and v1(x0, x) = 0 as well for x 6= x0.¨

If the policy space is unidimensional, we have k∗(f) = 1 since there is always a

Condorcet winner x0 in dimension 1. (x0 is defined by
∫ x0

−∞
f(a)da = 1

2
).

Let us assume moreover that f is a uniform distribution on an compact interval

X, say X = [0; 1]. Then we can easily show that X∗
1 =]1 − (1+k

4
); k+1

4
[ if 1 < k ≤ 3,

and X∗
1 = X if k > 3. It means that for a uniform distribution on an interval, we

have k∗∗(f) = 3.

Getting an explicit form for k∗ (f) and k∗∗ (f) remains an open question when

the dimension of the policy space is higher than 1.

3.3 A model with status quo

We examine an alternative model, where valence measures the capacity to efficiently

implement a policy change5. More precisely, we assume that there exists a status

quo q, with q ∈ R
n. If the elected candidate j applies a policy platform xj different

from the status quo q, this creates temporal disturbances, disorder, inconveniences,

even if finally xj is preferred by most voters. The utility of a voter i, if candidate j

is elected, can be specified the following way:

u(θj, xj, ai, q) = −‖xj − ai‖ −
1

θj

‖xj − q‖ (10)

where xj, θj are respectively the policy platform and the valence of candidate j, ai

is the bliss point of voter i, and q is the status quo. In Equation (10), ‖xj − ai‖ is

5We would like to thank an anonymous referee for suggesting this alternative specification.
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the classical downsian distance between the bliss point of the voter and the applied

policy, 1
θj
‖xj − q‖ measures the pure inconvenience coming from a policy change.

It increases with the importance of change ‖xj − q‖, but is lower if candidate j’s

valence θj is high, which means that he is able to implement efficiently a policy

change.

The support of candidate 2 becomes:

Ω2(x1, x2, θ1, θ2, q) = {a ∈ R
n; u(θ2, x2, a, q) > u(θ1, x1, a, q)}

=
{

a ∈ R
n; − ‖x2 − a‖ − 1

θ2
‖x2 − q‖ > −‖x1 − a‖ − 1

θ1
‖x1 − q‖

}

= {a ∈ R
n; ‖x1 − a‖ > ‖x2 − a‖ + b} = Ωad

2 (x1, x2, b)

where b = 1
θ2
‖x2 − q‖ − 1

θ1
‖x1 − q‖

Ω2(x1, x2, θ1, θ2, q) is then equal to the support Ωad
2 (x1, x2, b) of candidate 2 in the

additive case, with the additive valence bias b. A similar result is true for candidate

1. Proposition 1 becomes:

Proposition 7 (i) Ω2(x1, x2, θ1, θ2, q) = ∅ if b ≥ ‖x2 − x1‖

(ii) Ω2(x1, x2, θ1, θ2, q) and Ω2(x1, x2, θ1, θ2, q) are unbounded if −‖x2 − x1‖ <

b < ‖x2 − x1‖

(iii) Ω2(x1, x2, θ1, θ2, q) = R
n if b ≤ −‖x2 − x1‖

where b = 1
θ2
‖x2 − q‖ − 1

θ1
‖x1 − q‖

Proof. Straightforward, applying Proposition 1 to Ωad
2 (x1, x2, b). ¨

If we assume that candidate 1 has a valence advantage, i.e. that θ1 > θ2, then

we can define the set X∗
1 as in Equation (9). Proposition 4 is still valid in this model

with status quo, since v1(x2, x2) = 1 again.

4 Conclusion

Further research may deepen our understanding of the logic of valence advantages

and the role they play in elections. The multiplicative model yields a fresh look at

the existing literature on spatial models of voting. It highlights the role of the ex-

tremes. Since extreme voters are far from the center, they are mainly concerned with

13



the valence dimension. Even if extreme voters have very different position on the

policy space, they have almost identical preferences concerning candidates. On the

contrary, for more centrist voters, the impact of announced platforms dominates the

valence effect. It then appears that moving from the additive to the multiplicative

case has dramatic consequences on the behavior of the electorate.
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Appendix

Proof of Proposition 2.

a ∈ Ω2 ⇔ ‖x1 − a‖2 > k2 ‖x2 − a‖2

Recalling the property of the Euclidean inner product,

〈x1 − a, x1 − a〉 = ‖x1‖
2 − 2 〈x1, a〉 + ‖a‖2, we obtain:

‖x1‖
2 − 2 〈x1, a〉 + ‖a‖2 > k2(‖x2‖

2 − 2 〈x2, a〉 + ‖a‖2)

(

k2 − 1
)

‖a‖2 − 2
〈

a, k2x2 − x1

〉

< ‖x1‖
2 − k2 ‖x2‖

2

‖a‖2 − 2

〈

a,
k2x2 − x1

k2 − 1

〉

<
‖x1‖

2 − k2 ‖x2‖
2

k2 − 1
∥

∥

∥

∥

a − (
k2x2 − x1

k2 − 1
)

∥

∥

∥

∥

2

<
‖x1‖

2 − k2 ‖x2‖
2

k2 − 1
+

‖k2x2 − x1‖
2

(k2 − 1)2

i.e.

‖a − c‖2 < r2

Thus Ω2 is a ball of center c, radius r. Moreover we have

c =
k2x2 − x1

k2 − 1

and

r2 =
‖x1‖

2 − k2 ‖x2‖
2

k2 − 1
+

‖k2x2 − x1‖
2

(k2 − 1)2

=
1

(k2 − 1)2

[

(

‖x1‖
2 − k2 ‖x2‖

2) (k2 − 1) +
∥

∥k2x2

∥

∥

2
+ ‖x1‖

2 − 2k2 〈x1, x2〉
]

=
1

(k2 − 1)2

[

k2 ‖x1‖
2 + k2 ‖x2‖

2 − 2k2 〈x1, x2〉
]

=
k2

(k2 − 1)2
‖x1 − x2‖

2
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Finally:

c = −βx1 + (1 + β)x2 where β = 1
k2−1

> 0

r = k
k2−1

‖x1 − x2‖

Moreover, sin α = r
‖x1−c‖

=
k

k2−1
‖x2−x1‖

∥

∥

∥

k2x2−x1
k2−1

−x1

∥

∥

∥

=
k

k2−1
‖x2−x1‖

∥

∥

∥

k2x2−x1−(k2−1)x1
k2−1

∥

∥

∥

= k‖x2−x1‖
‖k2x2−k2x1‖

= k
k2 = 1.

k

This concludes the proof. ¨

Proof of Proposition 3.

- First, we prove that X∗
1 is a open set.

Clearly (x1, x2) 7→ S2(x1, x2, k) is a continuous function on the compact set X ×X.

x1 ∈ X∗
1 ⇔ ∀x2 ∈ X, S2(x1, x2, k) < 1

2

and as S2 must be uniformly continuous on the compact set X × X:

x1 ∈ X∗
1 ⇔ ∃γ > 0, ∀x2 ∈ X, S2(x1, x2, k) < 1

2
− γ

For any ε > 0, let x′
1 ∈ X, such that ‖x1 − x′

1‖ < ε

We want to show for all x2 ∈ X that S2(x
′
1, x2, k) < 1

2
, i.e. that

∫

Ω2(x′
1,x2,k)

f(a)da <

1
2

We have
∫

Ω2(x1,x2,k)
f(a)da < 1

2
− γ for every x2 ∈ X.

∫

Ω2(x′
1,x2,k)

f(a)da ≤
∫

Ω2(x1,x2,k)
f(a)da +

∫

Ω2(x′
1,x2,k)\Ω2(x1,x2,k)

f(a)da

< 1
2
− γ +

∫

Ω2(x′
1,x2,k)\Ω2(x1,x2,k)

f(a)da

We must show that
∫

Ω2(x′
1,x2,k)\Ω2(x1,x2,k)

f(a)da < γ for all x2 ∈ X, if ε is small

enough.

According to Proposition 2, Ω2(x
′
1, x2, k) and Ω2(x1, x2, k) are balls in R

n, i.e.

Ω2(x
′
1, x2, k) = B(c′, r′) and Ω2(x1, x2, k) = B(c, r).

∫

Ω2(x′
1,x2,k)\Ω2(x1,x2,k)

f(a)da ≤ M.vol (Ω2(x
′
1, x2, k) \ Ω2(x1, x2, k))

= M.vol(B(c′, r′) − B(c, r))

≤ M.vol(B(c′, r′) − B(c′, r)) + M.vol(B(c′, r) − B(c, r))

≤ M.const.(r′n − rn) + M.rn ‖c′ − c‖

≤ const (‖x′
1 − x2‖

n − ‖x1 − x2‖
n) + const.ε. ‖x1 − x2‖

n ≤ ε.const, which is

lower than γ, if ε is small enough.

Consequently, X∗
1 (k) is an open set.
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- Let us now turn to the convexity problem.

Consider x ∈ X∗
1 and y ∈ X∗

1 , and a point z ∈ [x, y]. We want to show that z ∈ X∗
1 ,

i.e. that S2(z, x2) < 1
2
, for any x2 ∈ X.

Let x2 ∈ X be given.

Ω2(z, x2) is a ball of center c0 = c(z, x2) = −βz + (1 + β)x2,

and of radius r0 = k
k2−1

‖z − x2‖ = 1
k
‖(1 + β)(z − x2)‖ = 1

k
‖z + βz − (1 + β)x2‖

Let x′
2 = 1

1+β
(−β(z − x) + (1 + β)x2) and x”2 = 1

1+β
(−β(z − y) + (1 + β)x2)

Ω2(x, x′
2) is a ball of center c(x, x′

2) = −βx+(1+β)x′
2 = −βx−β(z−x)+(1+β)x2

= −βz + (1 + β)x2 = c0

and radius r′ = k
k2−1

‖x − x′
2‖ = 1+β

k
‖x − x′

2‖ since β = 1
k2−1

r′ = 1
k
‖(1 + β)x + β(z − x) − (1 + β)x2‖ = 1

k
‖x + βz − (1 + β)x2‖

Ω2(y, x”2) is a ball of center c(y, x”2) = −βy + (1 + β)x”2

= −βy − β(z − y) + (1 + β)x2 = −βz + (1 + β)x2 = c0

and radius r” = k
k2−1

‖y − x”2‖ = 1+β

k
‖y − x”2‖

r” = 1
k
‖(1 + β)y + β(z − y) − (1 + β)x2‖ = 1

k
‖y + βz − (1 + β)x2‖

Ω2(z, x2), Ω2(x, x′
2) and Ω2(y, x”2) have the same center, and have radius r0, r′

and r” respectively.

t 7→ ‖t + βz − (1 + β)x2‖ is a convex function, so r0 ≤ max(r′, r”),

i.e. Ω2(z, x2) ⊆ Ω2(x, x′
2) or Ω2(z, x2) ⊆ Ω2(y, x”2).

thus S2(z, x2) ≤ max (S2(x, x′
2), S2(y, x”2)) < 1

2
.

This is true for any x2 ∈ X, so that z ∈ X∗
1 ¨
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