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An alternative approach of valence advantage in spatial competition

1 Introduction.

The Downsian model constitutes a benchmark for the analysis of electoral competition. It predicts a close race between the two candidates and minimal differentiation in chosen platforms at equilibrium (Downs, 1957). At equilibrium, both parties or candidates choose the median platform. However, the empirical analysis of elections shows that differentiation exists1 . To explain this fact, a first line of research introduces uncertainty in the position of the median voter (i.e. candidates have imperfect information on the voters' positions) as well as partisan preferences (i.e. candidates care not only about winning but also about defending a particular program) [START_REF] Ashworth | Valence Competition and Platform Divergence[END_REF] . Adding both uncertainty and partisan preferences for the candidates allows us to predict differentiation at equilibrium. An alternative line of research examines the impact of removing the hypothesis of symmetric candidates. Candidates can be differently evaluated, even if they adopt the same policy positions. Voters then evaluate the candidates not only on the "policy issues", but also according to characteristics that are unanimously positively or negatively evaluated. For example, all agents prefer candidates who are not corrupt , have more charisma, greater intelligence, superior character, or better handshaking skills. Stokes (1963) was the first to underline the importance of those non spatial aspects. He called them "valence issues" [START_REF] Ansolabehere | Valence politics and equilibrium in spatial election models[END_REF] . It is rather intuitive that the candidate with a valence disadvantage will lose the election if he chooses a platform identical to his opponent's. He thus has a clear incentive to choose a A common feature to these models is to assume that the utility of a voter increases by a fixed amount when he considers the position of the favored candidate i.e. valence advantage results in adding a constant amount of utility. Such an additive valence-advantage means that the utility is separable, i.e. that valence-issues have no link with the policy issues. This hypothesis is clearly quite restrictive, since we can validly think that candidates' qualities can interact with the evaluation by the agents of their policy positions. The degree of corruption of a candidate matters more if he proposes a high level of public spending. This justifies a multiplicative form for the valence-advantage. This paper investigates the consequences of moving from an additive form to a multiplicative form. The main result proves that the less favored candidate is supported by voters whose preferred platform is in an unbounded set in the additive case, but a bounded set in the multiplicative one. It is important to note that our result holds for any dimension of the policy space (while it is often assumed that the policy space is of dimension 1), and any distance (while much of the literature is restricted to the Euclidean distance).

A direct and striking consequence of this result for dimension 1 is that the electorates of both sides on the equilibrium spectrum support the most favored candidate. We get an "ends against the middle" split of the population. This is in sharp contrast with the additive case which predicts a split into two intervals. This result holds for the higher dimensions. For example in dimension 2, voters supporting the less favored candidates are located within a ball. This offers a new explanation for situations in which a candidate, or alternative, is supported by extreme voters from both the left and the right.

As in the additive case, the favored candidate is guaranteed to win the election if his valence advantage is above a threshold. No equilibrium in pure strategy exists if the valence advantage is below that threshold.

The paper is organized as follows : Section 2 presents the model and main assumptions and Section 3 presents the main results. We conclude in Section 4.

The model

A voter i is identified with his preferred platform, or bliss point, a i in the policy space R n . A candidate j chooses a policy platform x j ∈ R n . In the basic spatial model of electoral competition, a voter i votes for candidate j whose announced platform x j is the closest to a i . If candidate j is elected, the utility function of voter i is:

u(x j , a i ) = -x j -a i . (1) 
When valence advantages are introduced, each candidate has an intrinsic quality independent of the chosen platform. An additional parameter θ j > 0 thus accounts for candidate j valence. The higher θ j , the more appreciated candidate j.

When the valence advantage is modeled by adding a constant, the utility is written as the following:

u ad (θ j , x j , a i ) = -x j -a i + θ j (2) 
As explained, we introduce a multiplicative valence advantage. The utility function is now written:

u(θ j , x j , a i ) = - 1 θ j x j -a i (3) 
Note that x → x is any norm on R n . Most of our results don't depend on the choice of the norm. We define k = θ 1 θ 2 and assume, without loss of generality, that 0 < θ 2 < θ 1 , i.e. k > 1. Then candidate 1 gets a clear advantage.

Once candidates have announced their platforms x 1 and x 2 , the electorate splits

in three parts Ω 1 (x 1 , x 2 , k), Ω 2 (x 1 , x 2 , k) and I(x 1 , x 2 , k)
. Ω i is the set of voters who support candidate i and I is the set of voters who are indifferent between the two candidates. Formally, we have:

Ω 1 (x 1 , x 2 , k) = a ∈ R n ; 1 θ 1 x 1 -a < 1 θ 2 x 2 -a (4) = {a ∈ R n ; x 1 -a < k x 2 -a } Ω 2 (x 1 , x 2 , k) = a ∈ R n ; 1 θ 2 x 2 -a < 1 θ 1 x 1 -a (5) 
= {a ∈ R n ; k x 2 -a < x 1 -a } I(x 1 , x 2 , k) = {a ∈ R n ; k x 2 -a = x 1 -a }
Voters, i.e. bliss points, are distributed on R n , according to a density distribution function f . The function f is assumed to be bounded on R n , and we denote by X the support of f , i.e. f (x) = 0 for x / ∈ X. The proportion of voters who prefer candidate j to his opponent is then given by the function S j (x 1 , x 2 , k), where:

S j (x 1 , x 2 , k) = Ω j f (a)da. ( 6 
)
Note that the set

I = I(x 1 , x 2 , k) is of negligible importance, i.e. I f (a)da = 0.
In the additive case, we replace u(θ j , x j , a i ) by u ad (θ j , x j , a i ) = -x j -a i + θ j .

We set b = θ 1 -θ 2 > 0. We define the sets:

Ω ad 1 (x 1 , x 2 , b) = {a ∈ R n ; x 1 -a < b + x 2 -a } and Ω ad 2 (x 1 , x 2 , b) = {a ∈ R n ; x 1 -a > b + x 2 -a } Then, S ad j (x 1 , x 2 , k) = Ω ad j f (a)da.
Since the candidates are only office-motivated, we can then assume that the utility of candidate j is formally given by:

v j (x 1 , x 2 ) =          0 if S j (x 1 , x 2 , k) < 1/2 1 2 if S j (x 1 , x 2 , k) = 1/2 1 if S j (x 1 , x 2 , k) > 1/2 (7) 
The game of asymmetric electoral competition is played sequentially and its main elements are summarized by the couple (k, f ). The chronology of the game is the following: first the two candidates announce their platforms x 1 and x 2 ; secondly the electors vote for their preferred candidate. In the next section, we solve the game sequentially.

Main results

We first explore the electorate's split both in the additive and multiplicative cases, when the candidates have already announced their platforms. The first step of the game of asymmetric electoral competition, i.e. the existence of equilibria, is then analyzed in the second subsection.

The electorate's split in the additive and multiplicative cases

The multiplicative and the additive cases mainly differ in the split of the electorate between those who support candidate 1, the advantaged candidate, and those who support candidate 2. Technically, we explore the properties of the sets Ω 1 and Ω 2 . Our main proposition proves that a substantial difference exists for any norm and any dimension of the policy space (proposition 1). This result is particularly striking if we restrict to the Euclidean norm (proposition 2). We also provide an explicit comparison in the particular, but popular, case where the policy space is of dimension 1 (corollary 1).

Proposition 1 For every norm on R n , we have:

(i) The set Ω 2 (x 1 , x 2 , k) is a bounded open set in R n . It is non-empty iff x 1 = x 2 (ii) The set Ω ad 2 (x 1 , x 2 , b) is unbounded if b < x 2 -x 1 , and empty if b ≥ x 2 -x 1 . Proof. (i) If a ∈ Ω 2 (x 1 , x 2 , k), then k x 2 -a < x 1 -a = x 1 -x 2 + x 2 -a ≤ x 1 -x 2 + x 2 -a thus (k -1) x 2 -a < x 1 -x 2 i.e. If a ∈ Ω 2 (x 1 , x 2 , k), then x 2 -a < 1 k -1 x 1 -x 2 (8) 
Thus Ω 2 (x 1 , x 2 , k) is a bounded set. It is clearly an open set, according to (5).

(ii) If x 1 = x 2 , then Ω 2 (x 1 , x 2 , b
) is clearly empty. We assume now that x 1 = x 2 .

We set u = x 2 -x 1 x 2 -x 1 . -For a = x 2 + λu, with λ > 0, we have x 2 -a = λ since u = 1. Moreover:

x 1 -a = x 2 + λu -x 1 = (x 2 -x 1 ) 1 + λ x 2 -x 1 = x 2 -x 1 1 + λ x 2 -x 1 = x 2 -x 1 + λ x 1 -a -x 2 -a -b = x 2 -x 1 +λ-λ-b = x 2 -x 1 -b > 0 if b < x 2 -x 1 Thus x 1 -a > x 2 -a + b if a = x 2 + λu, for every λ > 0, when b < x 2 -x 1 . It shows that Ω ad 2 (x 1 , x 2 , b) is unbounded if b < x 2 -x 1 . -When b ≥ x 2 -x 1 , we have x 1 -a = x 1 -x 2 + x 2 -a ≤ x 1 -x 2 + x 2 -a ≤ b + x 2 -a thus Ω ad 2 (x 1 , x 2 , b) is empty.
Voters supporting the disadvantaged party have their bliss points included in a bounded set in the multiplicative case. Our next proposition shows how the set Ω 2 (x 1 , x 2 , k) can be constructed, in the case of an Euclidean norm.

Proposition 2 With the Euclidean norm, the set

Ω 2 (x 1 , x 2 , k) is a hyperball in R n centered at c(x 1 , x 2 , k) = k 2 k 2 -1 x 2 -1 k 2 -1 x 1 of radius r(x 1 , x 2 , k) = k k 2 -1 x 1 -x 2 . Let ∆ denote the line (x 1 , x 2 ). The set Ω 2 (x 1 , x 2 , k
) is a hyperball tangent to the cone of vertex x 1 , axis ∆, and angle 2α such that sin α = 1 k .

Proof See Appendix.

Figure 1:

Ω 2 (x 1 , x 2 , k)
The Downsian model as the limit of the asymmetric game It is natural to ask how the model behaves when parties tend toward symmetry, i.e. when k → 1 + .

We have Ω 2 = {a ∈ X; k x 2 -a < x 1 -a } -→ {a ∈ X; x 2 -a < x 1 -a }, as k → 1 + , i.e. the set Ω 2 tends to the half-space delimited by the median hypersurface4 between x 1 and x 2 as in the symmetrical model.

Corollary 1 In a one dimensional setting,

Ω 2 (x 1 , x 2 , k) =] kx 2 +x 1 k+1 ; kx 2 -x 1 k-1 [ if x 1 < x
We can observe that Ω 1 = R \ Ω2 is a non convex set. It is a situation of "ends against the middle". Candidate 1 gets support of voters located at both ends of the electoral spectrum (see Figure 2). 

Analysis of the game of asymmetric spatial competition

Before analyzing the game, some further notations are required. We define the set X * 1 player 1's strategies that guarantee him or her, to win the election.

X * 1 = {x 1 ∈ X; ∀x 2 ∈ X, v 1 (x 1 , x 2 , k) = 1} (9) = x 1 ∈ X; ∀x 2 ∈ X, S 1 (x 1 , x 2 , k) > 1 2
We can define similarly X * ad 1 in the additive case.

Proposition 3 With the Euclidean norm, if X is a compact set, then X * 1 is an open, convex set.

Proof. See Appendix.

We now turn to the analysis of Nash equilibria: Proposition 4 For every norm on R n , in both multiplicative and additive cases, one of the following two assertions holds:

-The set X * 1 is not empty and for any

x 2 ∈ X, (x 1 , x 2 ) is a Nash equilibrium if and only if x 1 ∈ X * 1 . -The set X *
1 is empty and there exists no Nash equilibrium in pure strategy.

Proof. We have to show that (

x 1 , x 2 ) is a Nash equilibrium iff x 1 ∈ X * 1 . If (x 1 , x 2 ) is a Nash equilibrium, then v 1 (x 1 , x 2 ) ≥ v 1 (x 2 , x 2 ) = 1, thus v 1 (x 1 , x 2 ) = 1 Then 0 = v 2 (x 1 , x 2 ) ≥ v 2 (x 1 , x ′ 2 ) for all x ′ 2 ∈ X As v 1 = 1 -v 2 , it means that 1 = v 1 (x 1 , x 2 ) ≤ v 1 (x 1 , x ′ 2 ) for all x ′ 2 ∈ X i.e. v 1 (x 1 , x ′ 2 ) = 1 for all x ′ 2 ∈ X i.e. x 1 ∈ X * 1 . Conversely, if x 1 ∈ X * 1 and x 2 ∈ X, we have v 1 (x 1 , x 2 ) = 1 ≥ v 1 (x ′ 1 , x 2 ) for all x ′ 1 ∈ X v 2 (x 1 , x 2 ) = 0 ≥ v 2 (x 1 , x ′
2 ) for all x ′ 2 ∈ X which proves that (x 1 , x 2 ) is a Nash equilibrium.

Proposition 5 For every continuous distribution function f on the set X, there

exist positive numbers k * (f ), k * * (f ), with 1 ≤ k * (f ) ≤ k * * (f ) and k * (f ) < +∞ such that: (i) X * 1 (k) = ∅ if k < k * (f ) (ii) X * 1 (k) = ∅ and X * 1 (k) = X if k * (f ) < k < k * * (f ) (iii) X * 1 (k) = X if k > k * * (f ) . Moreover, k * * (f ) < +∞ if and only if X is bounded. Proof -Assume that 0 < k < k ′ . If a ∈ Ω 2 (x 1 , x 2 , k ′ ) then x 1 -a > k ′ x 2 -a ≥ k x 2 -a thus a ∈ Ω 2 (x 1 , x 2 , k) Hence if k < k ′ , then Ω 2 (x 1 , x 2 , k ′ ) ⊆ Ω 2 (x 1 , x 2 , k) Since X * 1 (k) = x 1 ∈ X; Ω 2 (x 1 ,x 2 ,k) f (a)da < 1 2 , ∀x 2 ∈ X then k < k ′ ⇒ X * 1 (k) ⊆ X * 1 (k ′ ) For 0 < k < 1, X * 1 (k) = ∅ since S 1 (x 1 , x 1 , k) = 0, ∀x 1 ∈ X.
1) Let us show that if X is bounded, then X * 1 (k) = X for k high enough. In R n all the norms are equivalent, thus there exist γ 1 > 0 and γ 2 > 0 such that

γ 1 x eucl ≤ x ≤ γ 2 x eucl for every x ∈ R n .
According to (8),

Ω 2 (x 1 ,x 2 ,k) f (a)da ≤ B(x 2 ; x 1 -x 2 k-1 ) f (a)da and x 2 -a < x 1 -x 2 k-1 ⇒ x 2 -a eucl < δ k-1 x 1 -x 2 eucl where δ = γ 2 γ 1 . Thus Ω 2 (x 1 ,x 2 ,k) f (a)da ≤ B(x 2 ; x 1 -x 2 k-1 ) f (a)da ≤ B eucl (x 2 ; δ k-1 x 1 -x 2 eucl ) f (a)da ≤ vol B eucl (x 2 ; δ k-1 x 1 -x 2 eucl ) . max K f ≤ const. δ k-1 x 1 -x 2 eucl n ≤ const 1 k-1 n uniformly in x 1 , x 2 (because X is bounded).
where lim k→∞

1 k-1 n = 0 thus for k high enough Ω 2 (x 1 ,x 2 ,k) f (a)da < 1 2 for all x 1 ∈ X, x 2 ∈ X, i.e. X * 1 (k) = X. 2) We show now that X * 1 (k) is not empty for k high enough, even if X is unbounded. -According to (8), we know that a ∈ Ω 2 (x 1 , x 2 , k) ⇒ x 2 -a < 1 k-1 x 1 -x 2 , i.e. Ω 2 (x 1 , x 2 , k) ⊂ B x 2 ; x 1 -x 2 k-1 . -If a ∈ Ω 2 (x 1 , x 2 , k), x 1 -x 2 ≤ x 1 -a + a -x 2 < x 1 -a + 1 k-1 x 1 -x 2 thus x 1 -a ≥ 1 -1 k-1 x 1 -x 2 = k-2 k-1 x 1 -x 2 It means that x 1 -a < k-2 k-1 x 1 -x 2 ⇒ a ∈ Ω 1 (x 1 , x 2 , k) i.e. Ω 1 (x 1 , x 2 , k) ⊃ B x 1 ; (k-2) x 1 -x 2 k-1 if k > 2.
-Let us fix x 1 ∈ X, and assume that k > 3.

There exists η > 0 such that B(x This proposition proves that an equilibrium does not always exist in our general framework but existence is guaranteed in a broader range of cases than in the symmetrical model. In that sense, our model is a real generalization of the symmetrical model.

1 ;η) f (a)da > 1 2 • If x 1 -x 2 > 2η, then (k-2) k-1 x 1 -x 2 ≥ 1 2 x 1 -x 2 > η, thus v 1 (x 1 ; x 2 ) > 1 2 , i.e. candidate 2 loses the election if x 1 -x 2 > 2η. • If x 1 -x 2 ≤ 2η, then v 2 (x 1 ; x 2 ) ≤ M.C n δ x 1 -x 2 k-1 n ≤ M.C n 2δη k-1 n < 1 2 if k is high
Proposition 6 If the distribution f admits a Condorcet winner, then k * (f ) = 1.

Proof. If there is a Condorcet winner x 0 , it means that , when k = 1:

v 1 (x 0 , x 0 ) = 1
2 and v 1 (x 0 , x) = 0 for all x = x 0 . If k > 1, it is clear that v 1 (x 0 , x 0 ) = 1, and v 1 (x 0 , x) = 0 as well for x = x 0 .

If the policy space is unidimensional, we have k * (f ) = 1 since there is always a Condorcet winner x 0 in dimension 1. (x 0 is defined by

x 0 -∞ f (a)da = 1
2 ). Let us assume moreover that f is a uniform distribution on an compact interval X, say X = [0; 1]. Then we can easily show that X

* 1 =]1 -( 1+k 4 ); k+1 4 [ if 1 < k ≤ 3, and X * 1 = X if k > 3.
It means that for a uniform distribution on an interval, we have k * * (f ) = 3.

Getting an explicit form for k * (f ) and k * * (f ) remains an open question when the dimension of the policy space is higher than 1.

A model with status quo

We examine an alternative model, where valence measures the capacity to efficiently implement a policy change [START_REF] Carrillo | Platform Divergence, Political Efficiency and the Median Voter Theorem[END_REF] . More precisely, we assume that there exists a status quo q, with q ∈ R n . If the elected candidate j applies a policy platform x j different from the status quo q, this creates temporal disturbances, disorder, inconveniences, even if finally x j is preferred by most voters. The utility of a voter i, if candidate j is elected, can be specified the following way:

u(θ j , x j , a i , q) = -x j -a i - 1 θ j x j -q (10) 
where x j , θ j are respectively the policy platform and the valence of candidate j, a i is the bliss point of voter i, and q is the status quo. In Equation ( 10), x j -a i is [START_REF] Carrillo | Platform Divergence, Political Efficiency and the Median Voter Theorem[END_REF] We would like to thank an anonymous referee for suggesting this alternative specification.

the classical downsian distance between the bliss point of the voter and the applied policy, 1 θ j x j -q measures the pure inconvenience coming from a policy change. It increases with the importance of change x j -q , but is lower if candidate j's valence θ j is high, which means that he is able to implement efficiently a policy change.

The support of candidate 2 becomes:

Ω 2 (x 1 , x 2 , θ 1 , θ 2 , q) = {a ∈ R n ; u(θ 2 , x 2 , a, q) > u(θ 1 , x 1 , a, q)} = a ∈ R n ; -x 2 -a -1 θ 2 x 2 -q > -x 1 -a -1 θ 1 x 1 -q = {a ∈ R n ; x 1 -a > x 2 -a + b} = Ω ad 2 (x 1 , x 2 , b
) where b = 1 θ 2 x 2 -q -1 θ 1 x 1 -q Ω 2 (x 1 , x 2 , θ 1 , θ 2 , q) is then equal to the support Ω ad 2 (x 1 , x 2 , b) of candidate 2 in the additive case, with the additive valence bias b. A similar result is true for candidate 1. Proposition 1 becomes:

Proposition 7 (i) Ω 2 (x 1 , x 2 , θ 1 , θ 2 , q) = ∅ if b ≥ x 2 -x 1 (ii) Ω 2 (x 1 , x 2 , θ 1 , θ 2 , q) and Ω 2 (x 1 , x 2 , θ 1 , θ 2 , q) are unbounded if -x 2 -x 1 < b < x 2 -x 1 (iii) Ω 2 (x 1 , x 2 , θ 1 , θ 2 , q) = R n if b ≤ -x 2 -x 1
where b = 1 θ 2 x 2 -q -1 θ 1 x 1 -q Proof. Straightforward, applying Proposition 1 to Ω ad 2 (x 1 , x 2 , b).

If we assume that candidate 1 has a valence advantage, i.e. that θ 1 > θ 2 , then we can define the set X * 1 as in Equation ( 9). Proposition 4 is still valid in this model with status quo, since v 1 (x 2 , x 2 ) = 1 again.

Conclusion

Further research may deepen our understanding of the logic of valence advantages and the role they play in elections. The multiplicative model yields a fresh look at the existing literature on spatial models of voting. It highlights the role of the extremes. Since extreme voters are far from the center, they are mainly concerned with the valence dimension. Even if extreme voters have very different position on the policy space, they have almost identical preferences concerning candidates. On the contrary, for more centrist voters, the impact of announced platforms dominates the valence effect. It then appears that moving from the additive to the multiplicative case has dramatic consequences on the behavior of the electorate.
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  enough, where M = sup a∈X |f (a)| and C n > 0 i.e. candidate 2 loses the election if x 1 -x 2 ≤ 2η, and k sufficiently high .

See Poole and Rosenthal, 1984. 

Among others, see[START_REF] Wittman | Candidate with policy preferences: A dynamic model[END_REF] 1990, and Osborne 1995 for a survey

The origin of the term "valence" deserves comment. Stokes indicates that he borrowed the term from the German psychologist Kurt Lewin. In psychology indeed, valence refers to the attraction or repulsion for an object. Note that psychology itself borrowed this notion from chemistry, where valence measures the potential number of chemical links of an atom.

The median hypersurface of x 1 and x 2 is the set of points in IR n that are equidistant from x 1 and x 2 .

Appendix

Proof of Proposition 2.

Recalling the property of the Euclidean inner product, x 1 -a, x 1 -a = x 1 2 -2 x 1 , a + a 2 , we obtain:

Thus Ω 2 is a ball of center c, radius r. Moreover we have

Finally:

k This concludes the proof.

Proof of Proposition 3.

-First, we prove that

and as S 2 must be uniformly continuous on the compact set X × X:

We have Ω 2 (x 1 ,x 2 ,k) f (a)da < 1 2 -γ for every x 2 ∈ X.

-Let us now turn to the convexity problem.

Consider x ∈ X * 1 and y ∈ X * 1 , and a point z ∈ [x, y]. We want to show that z ∈ X * 1 , i.e. that S 2 (z, x 2 ) < 1 2 , for any x 2 ∈ X. Let x 2 ∈ X be given.

and of radius

2 ) and Ω 2 (y, x" 2 ) have the same center, and have radius r 0 , r ′ and r" respectively. t → t + βz -(1 + β)x 2 is a convex function, so r 0 ≤ max(r ′ , r"), i.e. Ω 2 (z, x 2 ) ⊆ Ω 2 (x, x ′ 2 ) or Ω 2 (z, x 2 ) ⊆ Ω 2 (y, x" 2 ). thus S 2 (z, x 2 ) ≤ max (S 2 (x, x ′ 2 ), S 2 (y, x" 2 )) < 1 2 . This is true for any x 2 ∈ X, so that z ∈ X * 1