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Abstract

Many-body physics can be considered as a quantum field theory (QFT) where the vacuum is
replaced by a general quantum state. In quantum field theory, the vacuum expectation value of a
normal product of creation and annihilation operators is always zero. This is no longer the case if the
vacuum is replaced by a general state. As a consequence, the combinatorics of many-body physics is
more complex than that of quantum field theory and the general theory has made very slow progress.
In this work, an analysis of the Hopf algebraic structure of many-body physics is used to derive the
structure of Green functions in terms of connected and one-particle irreducible Greeen functions.

1 Introduction

In quantum field theory (QFT), the initial state is most often the vacuum. Many quantum field concepts,
such as Feynman diagrams, the Dyson equation and the Bethe-Salpeter equation rest on the special
properties of the vacuum. These desirable concepts extend to special states called quasi-free states
[1, 2, 3].

For general states, it is not possible to write the Green function in terms of standard Feynman
diagrams and the structure of the Green functions is more complex. For example, the Dyson and Bethe-
Salpeter equations do not hold. The Dyson equation describes the structure of the two-point interacting
Green function. Its extension to non-quasi-free states was discovered by Hall [4]. However, nothing is
known about the structure of 2n-point interacting Green functions in general. The determination of this
structure is the main purpose of the present article.

We stress that the problem of the calculation of Green functions for initial states that are not quasi-
free has important applications. For instance, many highly-correlated materials contain transition metals
where states of the 3d shell are degenerate. The consequence of this degeneracy is that a small external
perturbation can create a very strong change in the state of the system. For instance, a small external
magnetic field induces a strong variation in resistance (giant magnetoresistance), that is used to build
high-density storage disks. The knowledge of the Green functions would enable us to calculate accurately
the properties of such materials.
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In the present article, we investigate the structure of Green functions with Hopf algebraic methods.
Hopf algebras have been implicitly used for a long time in quantum field theory [5], but their explicit intro-
duction by Kreimer and Connes at the level of trees and Feynman diagrams [6, 7] sparked a reformulation
of many quantum field constructions (renormalization [8, 9], Wick’s theorem [10], quantization [11, 12],
structure of Green functions [13, 14]). The result of these efforts is a reasonably complete presentation
of QFT in terms of Hopf algebraic concepts [15].

Hopf algebras, which are powerful tools to solve combinatorial problems [16], could be expected to
help also in the presence of a general state. Indeed, the use of Hopf algebraic methods resulted in the
determination of the equation of motion of the Green functions [17] and the description of the relations
between general and connected Green functions in the presence of a general state [15]. The relation
between connected and one-particle irreducible (1PI) Green functions is more difficult because it depends
on the very definition of when a diagram is irreducible. In this paper, we show that a rather natural
definition leads to a complete description of connected Green functions in terms of 1PI Green functions.

The paper starts with a short introduction to many-body theory and Hopf algebras, followed by the
definition of quantum field forms and their convolution logarithm. Then, the relation between forms and
connected forms will be defined, providing the classical relation between general Green functions and
connected Green functions. To discuss 1PI functions, we need to generalize a recent work by Mestre and
Oeckl [13, 14]. Then, a rather natural definition of 1PI functions will be proposed and the Mestre-Oeckl
approach will be used to write a connected Green function in terms of these 1PI functions. In the process,
universal properties of symmetric functions with respect to Hopf algebra derivations are put forward.

2 Many-body theory

Many-body theory is essentially QFT applied to chemical and solid-state problems. Although the basic
tools are the same (quantum fields, Green functions), the point of view and the problems are different in
practice. The main difference is probably the fact that many-body physics considers explicitly the presence
of N electrons in the system and hardly mentions the vacuum (the state without particles), while, most
often, definitions of QFT are based on the vacuum and the transition between many-particles states are
treated in terms of the vacuum through the LSZ reduction formulas [18]. Moreover, many-body theory
is mainly interested in bound states while QFT is fond of scattering experiments.

For these reasons, it may be useful to give a short introduction to many-body theory at the use of
readers familiars with the concepts and tools of QFT or of Hopf algebras but unaware of the particular
features of solid-state physics. This is the purpose of the present section, in which we also settle the
notations.

2.1 Field operators

The quantum fields are operator-valued functions or distributions acting on a Fock space [19]. In this
section, we describe the construction of the Fock space, the creation and annihilation operators and the
quantum fields. We start from a self-adjoint operator h acting on a Hilbert space H and, for notational
convenience, we assume that h has a pure point spectrum, so that there is an orthonormal basis |ei〉 (with
i ∈ I) of H consisting of eigenvectors of h. In many applications, the Hilbert space H is a function space
and the eigenvectors are functions φn(r) (where r is a point in three-dimensional space).

The tensor product of Hilbert spaces is well defined (see Ref. [20] p. 49) and the symmetric Fock space
over H is the Hilbert space S(H) =

⊕∞
N=0 S

N (H), where SN (H) is the N -fold symmetric tensor product
of H. An orthogonal basis of the vector space SN (H) is provided by the set of vectors

|ei1〉 ∨ · · · ∨ |eiN
〉 =

1√
N !

∑

σ

|eiσ(1)
〉 ⊗ · · · ⊗ |eiσ(N)

〉, (1)

where σ runs over the permutations of N elements and where (i1, . . . , iN) runs over the subset of IN

such that i1 ≤ · · · ≤ iN . In this formula, the symbol ∨ denotes the symmetric product and 1/
√
N ! is a

normalization factor.
In many-body theory, SN (H) is called the N -particle space of the system and its elements are the N -

particle states. In particular, S0(H) is a one-dimensional vector space denoted by C1 in the mathematical
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literature. In many-body physics and quantum field theory, this unit 1 of the tensor product is denoted
by |0〉, this is the vacuum of the theory (i.e. the state without particle).

The creation operator a†n is defined as the linear map from S(H) to itself such that, for any basis
vector |u〉 of S(H), a†n|u〉 = c(u) |en〉 ∨ |u〉, where c(u) is a normalization factor (see for example [21]).
It is called a creation operator because it maps SN (H) to SN+1(H): it adds a new particle to a N -
particle state. Its adjoint an is called an annihilation operator. The normalization factor ensures that
the commutation relation am ◦ a†n − a†n ◦ am = δnm holds, where ◦ denotes the composition of operators.
The scalar quantum field is the self-adjoint operator ϕn = an +a†n. A self-adjoint field operator describes
a neutral particle, charged scalar or fermion field operators are not self-adjoint. It is often necessary to
define the quantum field with respect to a vector |v〉, which is

ϕ(v) =
∑

n

〈v|en〉an + 〈v|en〉∗a†n.

The corresponding quantum field of many-body theory is the (self-adjoint) operator-valued distribu-
tion on the three-dimensional space:

ϕS(r) =
∑

n∈I

φn(r)an + φ∗n(r)a†n.

The above formalism is used to describe scalar particles or photons. Electrons are described similarly
except for the fact that the Fock space is now the exterior algebra Λ(H). The creation and annihilation
operators satisfy am ◦ a†n + a†n ◦ am = δnm and the field operators are ψS(r) =

∑

n∈I φn(r)an and

ψ†
S(r) =

∑

n∈I φ
∗
n(r)a†n.

2.2 Quantum mechanics and many-body theory

The electronic Hamiltonian for atoms and molecules takes the form

HN =

N
∑

i=1

h(ri) +

N−1
∑

i=1

N
∑

j=i+1

Vee(ri − rj),

where N is the number of electrons in the molecule, h(r) = −∆/2m+ V (r) describes the kinetic energy
of the electrons and their interaction with the atomic nuclei (in the Born-Oppenheimer approximation)
and Vee describes the Coulomb interaction between electrons.

The basic idea of many-body theory is to replace this family of Hamiltonians (one for each N) by a
single Hamiltonian written in terms of field operators and acting on the Fock space. It can be shown [22]
that H = H0 +H1 with

H0 =

∫

drψ†
S(r)h(r)ψS(r),

H1 =
1

2

∫

drdr′ψ†
S(r)ψ†

S(r′)Vee(r − r′)ψS(r′)ψS(r),

satisfies this requirement. In other words, the solutions |Ψ〉 of the Schrödinger equation H |Ψ〉 = E|Ψ〉
on the space ΛN(H) are the same as the solutions of HN |Ψ〉 = E|Ψ〉. The Hamiltonian H0 is called a
one-body Hamiltonian because it contains two field operators: it corresponds to the part

∑

i h(ri) of HN

where the Hamiltonian h is applied to each particle independently. The Hamiltonian H1 is a two-body
Hamiltonian because it contains four field operators: it corresponds to the part

∑

ij Vee(ri − rj) of HN

that couples pairs of particles i and j.
It might seem counterproductive to replace the well-defined Hamiltonian HN by the operatorH , using

quantum field operators that rest on a very shaky ground from a mathematical point of view. However,
practical applications never require the full eigenstates of the N -body Hamiltonian, especially in the solid
where N is very large. We need to know only physical properties such as the electron density or the
response to an external perturbation. These properties can be efficiently calculated from Green functions
obtained by the quantum field approach. In that respect, non-perturbative methods of quantum field
theory have proved particularly powerful.

In many-body theory, although we often do not need to evaluate the eigenstates of H explicitly, a
formal method to describe these eigenstates is still needed. This method is described in the next section.
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2.3 Adiabatic limit

The adiabatic limit is a very general way of solving the Schrödinger equation for a system described by
the Hamiltonian H = H0 +H1 where the eigenstates of H0 are known but not those of H . The basic idea
is quite simple. We define a time-dependent Hamiltonian H(t) = H0 + e−ǫ|t|H1. When ǫ is small, this
H(t) means physically that the interaction is very slowly switched on from t = −∞ where H(−∞) = H0

to t = 0 where H(0) = H . It is hoped that, if ǫ is small enough, then an eigenstate of H0 is transformed
into an eigenstate of H .

To implement this picture, the time-dependent Schrödinger equation i∂|ΨS(t)〉/∂t = H(t)|ΨS(t)〉
is solved. However, the solution |ΨS(t)〉 is not convenient because it has no limit when t → −∞.
Therefore, we define |Ψ(t)〉 = eiH0t|ΨS(t)〉 that satisfies i∂|Ψ(t)〉/∂t = Hint(t)|Ψ(t)〉, with Hint =
eiH0tH1e

−iH0te−ǫ|t|. Now Hint(−∞) = 0 and |Ψ(−∞)〉 makes sense. Using Hint, we can start from
the ground state |Φ0〉 of H0 and solve the time-dependent Schrödinger equation with the boundary con-
dition |Ψ(−∞)〉 = |Φ0〉. When no eigenvalue crossing takes place, |Φ0〉 should be transformed into the
ground state |Ψ(0)〉 of H .

Instead of calculating directly |Ψ(t)〉 it is convenient to define the unitary operator U(t) as the solution
of i∂U(t)/∂t = Hint(t)U(t), with the boundary condition U(−∞) = 1. Thus, |Ψ(t)〉 = U(t)|Φ0〉. Note
that U(t) depends on ǫ, as Hint(t). But is limǫ→0 U(0)|Φ0〉 an eigenstate of H? It would if the limit
existed, but it does not. However, Gell-Mann and Low [23] discovered in 1951 that

|ΨGL〉 = lim
ǫ→0

U(0)|Φ0〉
〈Φ0|U(0)|Φ0〉

exists and is an eigenstate of H . A mathematical proof of this fact for reasonable Hamiltonians came
much later [24]. Notice that the above scheme works when the ground state of H0 is non degenerate.
When it is degenerate, the problem is more subtle and the limit ǫ→ 0 holds only when |Φ0〉 is well chosen
[25].

2.4 Green functions

We now come to the heart of many-body theory: the calculation of Green functions. Green functions are
important because they allow for the calculation of practically all relevant physical observables: energy,
charge density, transport coefficients, current density, dielectric constants etc. If we could calculate Green
functions exactly, we would know all interesting properties of matter. Of course, we cannot calculate
exact Green functions for realistic materials, but non-perturbative approximations are now used with
great success (e.g. GW approximation, Bethe-Salpeter equation).

When the dynamics of the particles is described by a one-body Hamiltonian H0, the n-point Green
function for scalar particles is defined by

G0
n(x1, . . . , sn) = 〈Φ0|T

(

ϕ(x1) . . . ϕ(xn)
)

|Φ0〉,

where x = (t, r), T is the time-ordering operator and ϕ(x) is related to ϕS(r) by

ϕ(x) = eiH0tϕS(r)e−iH0t =
∑

n∈I

e−iǫntφn(r)an + eiǫntφ∗n(r)a†n,

where the φn(r) are eigenvectors of H0 with associated eigenvalues ǫn. The time-ordering operator orders
the quantum fields ϕ(x1), . . . , ϕ(xn) so that the field ϕ(xi) is on the left of ϕ(xj) if ti is greater (i.e.
later) than tj . For example T

(

ϕ(x1)ϕ(x2)
)

= ϕ(x1)ϕ(x2) if t1 > t2 and T
(

ϕ(x1)ϕ(x2)
)

= ϕ(x2)ϕ(x1) if
t1 < t2.

When the dynamics of the particles is described by a HamiltonianH = H0+H1, whereH0 is one-body,
the expression for the Green function becomes [22, 21]

Gn(x1, . . . , sn) =
〈Φ0|T

(

ϕ(x1) . . . ϕ(xn)e−i
∫

Hint(t)dt
)

|Φ0〉
〈Φ0|T

(

e−i
∫

Hint(t)dt
)

|Φ0〉
,
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where Hint(t) = eiH0tH1e
−iH0te−ǫ|t|. This generalizes to non-scalar particles and, in the example of the

non-relativistic electrons,

Hint(t) = e−ǫ|t| 1

2

∫

drdr′ψ†(t, r)ψ†(t, r′)Vee(r − r′)ψ(t, r′)ψ(t, r).

We are now ready to state the main difference between quantum field theory and many-body theory.
In quantum field theory, the initial state |Φ0〉 is the vacuum |0〉. This implies the classical expansion of
Green functions in terms of Feynman propagators and, ultimately, of Feynman diagrams. In many-body
theory, the decomposition of Green function into sums of Feynman diagrams is restricted to very specific
states |Φ0〉 called quasi-free states. For the other states the structure of the Green function is more
complex. Let us give a simple example. We can define the quantity D4(x1, x2, x3, x4) by

G0
4(x1, x2, x3, x4) = G0

2(x1, x2)G
0
2(x3, x4) +G0

2(x1, x3)G
0
2(x2, x4) +G0

2(x1, x4)G
0
2(x2, x3)

+D4(x1, x2, x3, x4).

When the initial state is the vacuum or a quasi-free state, the term D4 is zero. For a general initial state,
it is not.

For a fermionic system, a term D4 can be defined similarly. It is absent when the ground state of H0

can be written as a Slater determinant. It is present when the ground state of H0 is degenerate, as in open
shell systems1. In that case, |Φ0〉 can be written as a linear combination of Slater determinants and D4

describes the correlation between these determinants. The presence of several Slater determinants in the
intial state is rather catastrophic for many-body theory. Yaris and Taylor summarized the situation[27]:
“The inability to handle open-shell systems is a ubiquitous problem in many-body theory. It basically
arises when one cannot find a single-determinant unperturbed ground state which connects to the exact
ground state when the residual interaction is adiabatically switched on. When this situation holds, one
cannot properly define occupied and unoccupied single-particle states, Wick’s theorem does not hold, and
Dyson equations, Bethe-Salpeter equations, etc. do not exist.” To this list one can add that Feynman
diagrams and the Gell-Mann and Low formula are lost. In other words, most of the tools of quantum
field theory break down. Since the seminal work by Bloch and Horowitz in 1958 [28], many works were
devoted to the rebuilding of these tools. Morita discovered a modified version of the Gell-Mann and
Low theorem [29], Fujita defined generalized Feynman diagrams [30], Hall derived a Dyson equation for
degenerate systems [4]. Since then, progress was quite slow because of the combinatorial complexity of
the problem.

To illustrate this complexity, we first describe the generalized Feynman diagrams introduced by Fu-
jita [30] and Hall [4]. For bosonic and fermionic systems, D4 can be thought of as a sort of 4-point
Feynman propagator, as D2(x, y) = G0

2(x, y) is the 2-point Feynman propagator. We shall see that D4

is a kind of cumulant as in the decomposition of a distribution function into cumulants. Higher order
Green functions G0

2n give rise to higher order propagatorsD2n and the precise relation between them will
be described in the following. In standard quantum field theory, the Green function of the interacting
system can be written by adding all possible Feynman diagrams involving the two-point propagator D2.
When the initial state is not quasi-free, the Green function is written as the sum of all possible Feynman
diagrams involving 2-point, 4-point, and 2n-point propagators for arbitrary n. An example will be given
in figure 2 of this paper.

3 Hopf algebra

We do not provide the general definition of a Hopf algebra [31], but we consider only the special case
of the symmetric Hopf algebra S(V ) =

⊕

n

Sn(V ) =
⊕

n

V ⊗n/Sn, where V is a complex vector space

and where Sn, the symmetric group of order n, acts by permutation on the components of the tensor
power V ⊗n. The commutative product of S(V ) is denoted by concatenation. The counit is the linear

1For degenerate systems additional complications come from the fact that time-ordered products must be defined over
a closed time path [26] and the initial state must be chosen carefully. However, this does not change the combinatorial
aspects of the problem.
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map ε : S(V ) → C defined by ε(1) = 1, ε(u) = 0 if u ∈ Sn(V ) with n > 0. The coproduct is the
linear map ∆ : S(V ) → S(V ) ⊗ S(V ) determined by ∆1 = 1 ⊗ 1, ∆a = 1 ⊗ a + a ⊗ 1 for a ∈ V
and ∆(uv) = (∆u)(∆v), for u and v in S(V ). We employ the strenghtened Sweedler notation for the
coproduct [32]: ∆u = u(1) ⊗ u(2). Recall that there is an implicit summation in the notation, which does
not lead to ambiguities when handled correctly: the right hand side should be understood not as the mere
tensor product of two elements in S(V ) but as a sum of such elements (so that e.g. a(1)⊗a(2) = 1⊗a+a⊗1
for a ∈ V ). More generally, an expression such as u(1)v(1)⊗u(2)v(2), which stands for ∆(u) ·∆(v) = ∆(uv),
contains an implicit double summation and should be understood as: (u(1) ⊗ u(2)) · (v(1) ⊗ v(2)), and
similarly for expressions of higher orders.

The iterated coproducts ∆k are defined by ∆0 = id, ∆1 = ∆ and ∆k+1 = (id⊗k ⊗∆)∆k. Their action
on an element u of S(V ) is denoted by ∆ku = u(1)⊗· · ·⊗u(k+1). For any u ∈ S(V ), the reduced coproduct
is the map ∆ : S(V ) → S(V )⊗S(V ) such that ∆u = ∆u−1⊗u−u⊗1. The iterated reduced coproducts
∆k are defined by ∆0 = id, ∆1 = ∆ and ∆k+1 = (id⊗k ⊗ ∆)∆k. Their action on an element u of S(V )
is denoted by ∆ku = u(1) ⊗ · · · ⊗ u(k+1). The coproduct and the reduced coproduct are cocommutative,
that is:

∆(u) = u(1) ⊗ u(2) = u(2) ⊗ u(1), ∆(u) = u(1) ⊗ u(2) = u(2) ⊗ u(1).

The coproduct is an algebra morphism, but the reduced coproduct is not. Its relation with the product
is described by the following simple and useful lemma.

Lemma 3.1. If a ∈ V and u ∈ S(V ), then

∆(au) = a⊗ u+ u⊗ a+ au(1) ⊗ u(2) + u(1) ⊗ au(2),

and, for k > 1,

∆k(au) = a⊗ ∆k−1u+ au(1) ⊗ ∆k−1u(2) + u(1) ⊗ ∆k−1(au(2)).

More explicitly, for k > 0,

∆k(au) =

k+1
∑

i=1

u(1) ⊗ · · · ⊗ u(i−1) ⊗ a⊗ u(i) ⊗ · · · ⊗ u(k)

+

k+1
∑

i=1

u(1) ⊗ · · · ⊗ u(i−1) ⊗ au(i) ⊗ u(i+1) ⊗ · · · ⊗ u(k+1),

where the terms i = 1 and i = k + 1 are a ⊗ ∆ku and ∆ku ⊗ a in the first sum and (a ⊗ 1⊗k)∆ku and
(1⊗k ⊗ a)∆ku in the second term.

For an arbitrary u ∈ Sn(V ), n > 0 and v ∈ S(V ), we also have:

∆k(uv) = u(1)v(1) ⊗ · · · ⊗ u(k)v(k)

=
∑

1≤p≤k

∑

1≤i1<···<ip≤k

v(1) ⊗ · · · ⊗ u(i1)v(i1) ⊗ · · · ⊗ u(ip)v(ip) ⊗ · · · ⊗ v(k).

4 Green functions for quasi-free states

Let V be the vector space generated by the symbols ϕ(x), where x runs over points of Rd. In physical
terms, ϕ should be thought of in general as a bosonic free field operator, that is, as an operator-valued
distribution (think of the quantum fields φS(r)). Our forthcoming developments can be adapted easily to
fermionic systems, the adaptation amounting mathematically to replacing the symmetric algebra S(V )
by the exterior (or Grassmann) algebra Λ(V ), see [11]).

Defining the meaning of a time-ordered product of fields at the same point gives rise to major difficul-
ties and is the subject of renormalization [33]. Here, we take advantage of the fact that the combinatorics
of Green functions is in many respects a self-contained topic and leave aside these questions (renormal-
ization, operator product expansion). We will therefore treat powers of fields such as ϕ4(x) as formal
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expressions, that is as monomials belonging to the symmetric Hopf algebra S(V ) ⊃ S4(V ). Note that
ϕ0(x) = 1 is the unit of the algebra S(V ).2

4.1 Convolution

In this section we survey some Hopf algebraic concepts that provide a startling simplification of the
decomposition of the expectation value of time-ordered product in terms of Feynman diagrams. We
define a form as a linear map from S(V ) to C. A unital form is a form ρ such that ρ(1) = 1. In our
context, that is when ϕ(x) is the quantum field of QFT or many-body theory, unital forms are defined
from states of H0: if |Φ〉 is a normalized state and u ∈ S(V ), then ρ(u) = 〈Φ|T (u)|Φ〉 is a unital form
because it is obviously linear and ρ(1) = 〈Φ|1|Φ〉 = 1. The unital form corresponding to the vacuum is
denoted by ρ0, so that ρ0(u) = 〈0|T (u)|0〉.

To express ρ0(u) in Hopf algebraic terms, we first need a few definitions. The convolution product
of two forms ρ and σ is the form ρ ∗ σ defined by (ρ ∗ σ)(u) = ρ(u(1))σ(u(2)). Notice that, because of
the commutativity and cocommutativity of S(V ), σ ∗ ρ = ρ ∗ σ. The space of forms equipped with the
convolution product is a commutative group, denoted by S, whose unit is the counit ε.

The n-th convolution power of a form ρ is the form ρ∗n defined recursively by ρ∗0 = ε, ρ∗1 = ρ and
ρ∗(n+1) = ρ∗n ∗ ρ. The convolution exponential of a form ρ is the form e∗ρ defined by

e∗ρ =

∞
∑

n=0

ρ∗n

n!
.

The convolution logarithm log∗ ρ of the form ρ is the form defined by

log∗ ρ =

∞
∑

n=1

(−1)n+1

n
(ρ− ǫ)∗n.

Note that, if ρ is a unital form, log∗ ρ satisfies log∗ ρ(1) = 0. A form σ such that σ(1) = 0 is called
an infinitesimal form because it is the logarithm of a unital form. Note that, if σ = log∗ ρ, then
e∗σ = ρ. In other words, convolution exponential and convolution logarithm are inverse functions of
each other. At last, note that, if α and β are two forms with convolution logarithms a and b, then
α ∗ β = e∗a ∗ e∗b = e∗(a+b).

4.2 Expansion in Feynman diagrams

In standard quantum field theory, Wick’s theorem states that, if u = ϕk1(x1)...ϕ
kn(xn), < 0|T (u)|0 > is

calculated as the sum of all pairings of k1 times the point x1, . . . , kn times the point xn. A pairing is
the choice of a pair of different points represented graphically as a line and analytically as a Feynman
propagator. Graphically, ρ0(u) = 〈0|T (u)|0〉 is therefore represented by the sum of all the graphs with n
vertices labelled by x1, . . . , xn such that ki edges are incident to the vertex labelled by xi, for i = 1, . . . , n.
Each graph is weighted by a proper combinatorial factor.

To express ρ0(u) in Hopf algebraic terms, we define the infinitesimal form τ by

τ(ϕ(x1)ϕ(x2)) := DF (x2 − x1) if x1 6= x2,

and
τ(ϕ(x1)...ϕ(xn)) := 0, if n 6= 2 or n = 2 and x1 = x2.

The form τ is called the Feynman form. The function DF is defined by

DF (x) =

∫

d4p

(2π)4
i

p2 −m2 + iε
e−i(p·x).

We can now restate Wick’s theorem algebraically:
2In another paper [15], an algebra different from S(V ) was used, where ϕ0(x) was not the unit of the algebra, in order to

obtain some desirable coalgebraic properties. That alternative construction considers the field products ϕn(x) as the basis
of a Hopf algebraic fibre at x. However such a point of view is not required in the present paper.
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Theorem 4.1. ([11, 15]) The unital form ρ0 is the convolution exponential of the Feynman form :

ρ0 = e∗τ .

This theorem extends to the case of quasi-free states [34], the only change is that τ is now defined by

τ(ϕ(x1)ϕ(x2)) := D2(x1, x2) if x1 6= x2,

and

τ(ϕ(x1)...ϕ(xn)) := 0, if n 6= 2 or n = 2 and x1 = x2,

where D2(x1, x2) = 〈Φ|T
(

ϕ(x1)ϕ(x2)
)

|Φ〉.

5 Green functions for general states

For many-body physics, the previous theorem generalizes. Most often the relevant object to deal with in
perturbative expansions is actually not the unital form ρ built from the ground state |Φ〉 (or, abstractly,
the group S) but its convolution logarithm r (resp. the corresponding commutative Lie algebra L). The
infinitesimal form r is called the cumulant form. As we shall see in section 6.2, this is exactly what we
need to calculate the Green functions of many-body physics.

The theorem (4.1) of the previous section generalizes to the following trivial theorem.

Theorem 5.1. The unital form ρ is the convolution exponential of its cumulant form :

ρ = e∗r.

Although our approach is not the usual one, writing ρ as e∗r is in fact quite common in physics.
The notion of cumulant form is related to the cumulant expansion, and expresses the generalized Wick
theorem used for solving the Anderson model [35]. Moreover, it is a way to isolate the singularities of
the forms because, under a condition of positivity which is always satisfied in quantum field theory and
under a rather weak continuity condition, it can be shown that r(ϕ(x1) . . . ϕ(xn)) is a smooth function
of x1, . . . , xn, except possibly for n = 2 [36] (see also [37] for a related result).

Finally, an observation that will prove essential in our forthcoming developments: all our previous
reasonings suggest that a unital form ρ = e∗r should be dealt with in many-body physics by means of
generalized propagators in the same way as vacuum expectations of time-ordered products of free fields are
dealt with by means of 2-points Green functions and Feynman propagators in the usual picture of QFT.
However, whereas the Feynman propagator, which is associated to the unique non trivial component of τ
(recall that τ = 0 on Si(V ) for any i 6= 2), is described graphically by a line linking two vertices, we may
have now r(ϕ(x1) . . . ϕ(xn)) 6= 0 with n 6= 2. Accordingly, we shall represent graphically the “n-point
propagator” Dn(x1, . . . , xn) = r(ϕ(x1) . . . ϕ(xn))3 by a white dot with n edges linked to the n vertices
x1, ..., xn, as shown in figure 1.

D3(x, y, z) =
x y

z

Figure 1: The generalized propagator D3(x, y, z) = r
(

ϕ(x), ϕ(y), ϕ(z)
)

As we already mentioned, we can also consider ρ = e∗r as a generalization of Wick’s theorem when
the latter is stated algebraically. The same observation holds for graphical statements of the theorem:
we saw that, in standard quantum field theory, Wick’s theorem states that, if u = ϕk1(x1)...ϕ

kn(xn),
〈0|T (u)|0〉 is calculated as the sum of all pairings of k1 times the point x1, . . . , kn times the point xn. In

3The definition of Dn generalizes the definition of D4 in section 2.4 –this should be clear from our forthcoming develop-
ments.
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the many-body context e∗τ (u) is replaced by e∗r(u). This amounts to say that we write e∗r(u) as the sum
of all ways to partition the multiset made of k1 times point x1, . . . kn times point xn into sub-multisets
of any multiplicity (i.e. not only pairs and not only different points). See figure 2 for an example. The
n-point propagators are then a convenient way to represent these sub-multisets.

To conclude this section, we state three easy but important lemmas

Lemma 5.1. If a ∈ V and E = eλa, then for any form ρ with logarithm r, we have ρ(E) = er(E).

Lemma 5.2. If a ∈ V and u ∈ S(V ), then, for any linear map r : S(V ) → C such that r(1) = 0,

e∗r(au) =
∑

r(au(1))e
∗r(u(2)).

More generally,

Lemma 5.3. For any u ∈ ker ǫ and any v in S(V ),

e∗r(uv) =

∞
∑

k=1

1

k!
r(u(1)v(1)) . . . r(u(k)v(k))e

∗r(v(k+1)). (2)

Proof. The first lemma is a simple consequence of the fact that E is group-like (that is, ∆(E) = E ⊗E).
The second lemma was shown in [15], it follows from the cocommutativity of the coproduct and the fact
that a is a primitive element (that is, ∆(a) = 1 ⊗ a + a ⊗ 1). The third lemma follows from the last
identity in Lemma 3.1, from the properties of the binomial coefficients, and from the cocommutativity of
the coproduct.

The first lemma is often used with a =
∫

j(x)ϕ(x)dx (up to a suitable extension of the definition of
V when the function j(x) has not a finite support). In that case, it relates the generating function of the
moments of ρ to that of the moments of r. The second and third lemmas provide powerful tools for the
recursive proof of the properties of e∗r. Notice in particular that, using the last Lemma with v = 1:

ρ(an) =
n
∑

k=1

1

k!

∑

i1+···+ik=n

n!

i1! . . . ik!
r(ai1 ) . . . r(aik ), (3)

where, for p = 1, . . . , k, ip > 0. A formula with less terms can be given using the Faà di Bruno coefficients:

ρ(an) =
∑

α

n!r(a1)α1 . . . r(an)αn

α1!(1!)α1α2!(2!)α2 . . . αn!(n!)αn
,

where (α1, . . . , αn) are nonnegative integers such that
∑

i iαi = n. For the partition represented by α, n
is cut into k =

∑

i αi parts. For example, ρ(a) = r(a), ρ(a2) = r(a2)+r(a)2, ρ(a3) = r(a3)+3r(a)r(a2)+
r(a)3.

6 Connected forms

In quantum field theory, an important simplification comes from the fact that only connected diagrams
are relevant. We first define the notion of a connected form by analogy with that of a connected diagram.
A monomial of S(V ) can always be written u = ϕn1(x1) . . . ϕ

nk(xk), where all points xi are distinct.
Now, for any form ρ with convolution logarithm r, we first expand ρ(u) in terms of r.

Proposition 6.1. We have

ρ(u) = e∗r(u) =
∑

l∈N

1

l!

∑

n1
i +...+nl

i=ni

i=1...k

k
∏

i=1

ni!

n1
i ! . . . n

l
i!

× r(ϕn1
1 (x1) . . . ϕ

n1
k(xk))...r(ϕnl

1 (x1) . . . ϕ
nl

k(xk)),

where, for i = 1, . . . , k, the sum is over all the l-tuples of nonnegative integers (n1
i , . . . , n

l
i) such that

n1
i + · · · + nl

i = ni.
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Although a straightforward application of the Hopf algebra formalism, the result is important since it
will allow us to compute the multiplicity of a graph –or symmetry factor– in the Feynman diagrammatic
perturbative expansion of amplitudes. We refer for example to the expansion of the connected Green
functions for ϕ3 theory with an arbitrary ground state in the present section of the article.

Let us consider a term t := r(ϕn1
1 (x1) . . . ϕ

n1
k(xk))...r(ϕnl

1 (x1) . . . ϕ
nl

k(xk)) of e∗r(u). We say that xi
∼=t

xj , 1 ≤ i, j ≤ k if there exists m ≤ l with nm
i ·nm

j 6= 0. The transitive closure ≡t of the binary relation ∼=t

defines the connectedness of t: t is said to have n connected components if there are n equivalence classes
associated to the equivalence relation ≡t. The connected component of xi in t is defined similarly as the
product of all the r(ϕnm

1 (x1) . . . ϕ
nm

k (xk)) with nm
j 6= 0 for at least one coefficient j with xi ≡t xj . When

n = 1 (resp. n 6= 1), we also say that the term t is connected (resp. disconnected). Let us take a simple
example. For u = ϕ(x)ϕ2(y), we have ρ(u) = r(ϕ(x))r(ϕ2(y))+r(ϕ(x))r(ϕ(y))2 +2r(ϕ(x)ϕ(y))r(ϕ(y))+
r(ϕ(x)ϕ2(y)), where the first two terms are disconnected (they actually have two connected components).
The connected components of y in the four terms are respectively r(ϕ2(y)), r(ϕ(y))2, r(ϕ(x)ϕ(y))r(ϕ(y))
and r(ϕ(x)ϕ2(y)). The definition of connected form is actually best formulated in algebraic terms: this
is the purpose of the next section.

6.1 Another coproduct on S(V )

As we have just seen, a pedestrian definition of connected forms makes an essential use of the fact that
some points xi are equal or distinct. We need to define a new coproduct, the disconnecting coproduct
δ : S(V ) → S(V ) ⊗ S(V ) that reflects this distinction.

So we write a monomial of S(V ) as u = ϕn1(x1) . . . ϕ
nk(xk), where all points xi are distinct, and

we define the coproduct of u as follows: δϕn(x) = 1 ⊗ ϕn(x) + ϕn(x) ⊗ 1 if k = 1, and δu =
δ(ϕn1(x1))δ(ϕ

n2 (x2)) . . . δ(ϕ
nk(xk)) if k > 1. Notice that this coproduct is coassociative and cocom-

mutative but is not an algebra morphism, because δ(ϕ2(x)) 6= (δ(ϕ(x)))2 . Since δ is coassociative and
cocommutative, we may still define an associative, commutative and unital product ∗̂, the disconnecting
convolution product , on Lin(S(V ),C):

∀(f, g) ∈ End(S(V )), f ∗̂g := π ◦ (f ⊗ g) ◦ δ.

The unit of ∗̂ is the same as the unit of ∗ (the projection map ε from S(V ) to C ⊂ S(V )). To distinguish
between the two products ∗ and ∗̂, we write the operations involving ∗̂ with a subscript ∗̂: for example,
we write log∗̂, and so on.

The relation between δ and ∆ is investigated in [15]. The reduced coproduct δ and the iterated
coproduct δk are defined as in section 3. The enhanced Sweedler notation for the disconnecting coproduct
is δu = u{1} ⊗ u{2} and δu = u{1} ⊗ u{2}.

The new coproduct δ enables us to give an algebraic definition of the connected form ρc corresponding
to the unital form ρ:

ρc = log∗̂(ρ)

that is,

∀u ∈ S(V ), ρc(u) =
∞
∑

n=1

(−1)n+1

n
(ρ− ε)(u{1}). . .(ρ− ε)(u{n}).

Pedantically, the set of connected forms is defined as the image of the group of forms under the map log∗̂.
The two sets are in bijective correspondence and, reciprocally, we can express any form ρ in terms of ρc

by
ρ = e∗̂ρc

or:

∀u ∈ S(V ), ρ(u) = ε(u) +

∞
∑

n=1

1

n!
ρc(u{1}) . . . ρc(u{n}).

For example, ρc(ϕ
n(x)) = ρ(ϕn(x)) for n > 0 and ρc(ϕ

m(x)ϕn(y)) = ρ(ϕm(x)ϕn(y))−ρ(ϕm(x))ρ(ϕn(y))
for m > 0 and n > 0. The connected form ρc is an infinitesimal form (that is, ρc(1) = 0). For u as above,
ρc(u) is defined as the sum of the connected terms of ρ(u). This terminology is due to the fact that we
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can define Feynman diagrams to represent ρ(u), and that ρc(u) is obtained by summing the connected
Feynman diagrams present in ρ(u).

Note that the relation ρ = e∗̂ρc is the analogue of the relation Z(j) = eW (j) between the partition
function and the free energy.

6.2 Example of the ϕ3 theory

As we saw in section 2.4, the two-point Green function for a system described by the interaction Hamil-
tonian density u = ϕ3(x) is given by the expression:

G(x, y) =
〈0|T (ϕ(x)ϕ(y)e−iu)|0〉

〈0|T (e−iu)|0〉 .

We recall that the denominator cancels the divergence of the adiabatic switching of the interaction. In
graphical terms, the denominator 〈0|T (e−iu)|0〉 is the sum of all the vacuum Feynman diagrams (i.e. the
diagrams that are linked neither to x nor to y).

Another way to obtain a convergent expression is to use the connected Green function Gc(x, y) which
is the sum of all the connected diagrams in G(x, y).

For a general form, the factorization of the adiabatic divergence is more complex [29, 25, 38] and it
holds only for specific initial states |Φ〉 and by using a modified definition of the time-ordered product
called the Keldysh approach [26], which will not be considered here. For notational convenience, we do
not write the denominator in the definition of the Green functions for a general form and we put

G(x, y) = ρ
(

ϕ(x)ϕ(y)e−i
∫

∞
−∞

Hint(t)
)

. (4)

The connected Green function is defined as

Gc(x, y) = ρc

(

ϕ(x)ϕ(y)e−i
∫ ∞
−∞

Hint(t)
)

.

The term
∫∞

−∞
Hint(t) can usually be written

∫

dxP (x), where P (x) is a polynomial in ϕ(x). Therefore,

G(x, y) = ρ
(

ϕ(x)ϕ(y)
)

+

∞
∑

n=1

(−i)n

n!

∫

dx1 . . . dxnρ
(

ϕ(x)ϕ(y)P (x1) . . . P (xn)
)

.

For example, in the ϕ3 theory, we have P (x) = ϕ3(x)/3! and the first terms of the total Green function
are

G(x, y) = ρ
(

ϕ(x)ϕ(y)
)

− i

6

∫

dx1ρ
(

ϕ(x)ϕ(y)ϕ3(x1)
)

− 1

72

∫

dx1dx2ρ
(

ϕ(x)ϕ(y)ϕ3(x1)ϕ
3(x2)

)

+ . . .

For notational convenience, we assume that Dn(x1, . . . , xn) = r(ϕ(x1) . . . ϕ(xn)) = 0 if n is odd. The
connected Green function Gc(x, y) is obtained by keeping the connected terms of the total Green function.

In standard quantum field theory, the expansion to the second order gives us

Gc(x, y) = D2(x, y) −
1

2

∫

dz dw D2(x, z) D2(y, w) D2(z, w)2 + . . . (5)
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For a general form, the expansion to the second order gives a more complex result:

Gc(x, y) = D2(x, y) −
∫

dz dw
( 1

72
D8(x, y, z, z, z, w,w,w) +

1

12
D2(x, z) D6(y, z, z, w,w,w)

+
1

12
D6(x, z, z, w,w,w) D2(y, z) +

1

12
D6(x, y, z, w,w,w) D2(z, z)

+
1

8
D6(x, y, z, z, w,w) D2(z, w) +

1

12
D4(x, y, z, z) D4(z, w,w,w)

+
1

8
D4(x, y, z, w) D4(z, z, w,w) +

1

4
D4(x, z, z, w) D4(y, z, w,w)

+
1

6
D2(x, z) D2(y, z) D4(z, w,w,w) +

1

4
D2(x, z) D2(y, w) D4(z, z, w,w)

+
1

2
D2(x, z) D4(y, z, w,w) D2(z, w) +

1

4
D2(x, z) D4(y, z, z, w) D2(w,w)

+
1

2
D4(x, z, w,w) D2(y, z) D2(z, w) +

1

4
D4(x, z, z, w) D2(y, z) D2(w,w)

+
1

4
D4(x, y, w,w) D2(z, z) D2(z, w) +

1

8
D4(x, y, z, w) D2(z, z) D2(w,w)

+
1

4
D4(x, y, z, w) D2(z, w)2 +

1

2
D2(x, z) D2(y, z) D2(z, w) D2(w,w)

+
1

2
D2(x, z) D2(y, w) D2(z, w)2

)

+ . . . (6)

These terms can be given the diagrammatic representation of figure 2.

Gc(x, y) =
x y

+ + + + + +

+ + + + + + +

+ + + + + + + . . .

Figure 2: The first few terms of Gc(x, y)

It is clear from a comparison of equations (5) and (6) that the use of a form ρ which does not come
from a quasi-free state increases significantly the combinatorial complexity. As a consequence, very little
was known about the structure of the connected Green functions in the general case.

7 Symmetric functions and derivations

In [13, 14], Mestre and Oeckl put forward a powerful Hopf algebraic tool to generate 1PI diagrams. The
forthcoming developments of the present article aim at extending their work to many-body physics, and
at describing in this general setting the decomposition of connected Green functions into one-particle
Green functions.

In order to do so, we put forward new insights on the behavior of symmetric functions in the Hopf
algebraic setting. Namely, we prove that the algebra of symmetric functions has universal properties
with respect to derivations acting on commutative Hopf algebras. We will show later that this formalism
encodes nicely the properties of the generalized n-point propagators associated to arbitrary states, as
described above. We do not seek the outmost generality in our constructions, but mention that they can
be easily extended to more general (e.g. noncommutative) situations.
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7.1 The Hopf algebra of symmetric functions

Let X = {x1 . . . xn . . . } be a countable alphabet, and C[[X ]] the algebra of formal power series over X .
The group S∞ = lim

→
Sn acts on C[[X ]] by permutation of the letters of X ; the algebra of symmetric

functions Sym is the subalgebra of S∞-invariant series in C[[X ]].

The algebra Sym is (up to completion with respect to the filtration induced by the grading of sym-
metric polynomials by their degree) a free commutative algebra over various families of generators. For
our purposes, the most interesting ones are the families of power sums symmetric functions and complete
symmetric functions associated respectively to the series

P• :=
∑

k∈N

Pk := 1 +
∑

i∈N

xi

1 − xi

and

C• :=
∑

k∈N

Sk :=
∏

i∈N

1

1 − xi

In view of our forthcoming computations, it is actually convenient to work with an extension of Sym,
qSym: we write Qk for Pk

k
, k ≥ 1, Q0 := q and Q• :=

∑

k∈N

Qk, where q stands for an additional free

variable. The series are related by: C• = expQ•−Q0 . We write S• for the q-series S• := expQ0 ·C• =
expQ•

The algebra qSym carries a natural notion of grading (by the degrees of symmetric polynomials, with
deg(Qn) = n), but it is convenient, for our purposes, and for reasons that will become clear later, to
introduce an extra “auxiliary” grading by considering the family of the Qk as a family of generators of
Sym of auxiliary degree 1. This is best explained through an example: Q2

0Q3Q5Q9 is of degree 17 and of
auxiliary degree 5. The auxiliary degree is indicated with a superscript (whereas the degree is indicated
by a subscript), so that, for example, the component of degree n and auxiliary degree k in S• is given by:

Sk
n =

∑

α

Qα0
0

α0!
· Q

α1
1

α1!
...
Qαn

n

αn!

where the sum runs over all (n + 1)-tuples of integers α = (α0, ..., αn) with α0 + · · · + αn = k and
α1 + 2α2 + · · · + nαn = n. Notice that we distinguish carefully between Sk

n and Sk
n, the latter standing

for the k-th power of Sn. The following examples will be useful in the sequel: S0
n = δn,01, Sk

0 = Qk
0/k!,

S1
n = Qn, Sk

1 = Qk−1
0 Q1/(k − 1)!, S2

2 = Q0Q2 +Q2
1/2.

Generating series are a useful tool to handle computations with the Qk
n and the Sk

n. Consider for
example the series S•(a+ b) := exp((a+ b)Q•): its expansion as a series in the variables a and b yields:

Proposition 7.1. We have, for all k, l > 0:

(

k + l

k

)

Sk+l
n =

n
∑

m=0

Sk
mSl

n−m.

In particular

Sk
n =

1

k

n
∑

m=0

QmSk−1
n−m.

The Hopf algebraic properties of symmetric functions were exploited recently with great profit by
Fauser and coll. [39, 40]. Similarly, we put a simple Hopf algebraic structure on qSym uniquely defined
by requiring the power sums symmetric functions (i.e. Qn for n > 0) to form, together with Q0, a series
of primitive elements or, equivalently, by requiring the series S• to be a group-like element. In particular,
the coproduct is compatible with the two graduations. When expliciting this property with the Sk

n, we
get:
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Proposition 7.2. The coproduct of Sk
n is

∆Sk
n =

n
∑

m=0

k
∑

i=0

Si
m ⊗ Sk−i

n−m,

and its iterated coproduct is

∆p−1Sk
n =

∑

n1+···+np=n
k1+···+kp=k

Sk1
n1

⊗ · · · ⊗ Skp
np
,

Note that propositions 7.1 and 7.2 still hold if the variables Qn do not commute.

7.2 On Hopf algebra derivations

Let H =
⊕

n∈N

Hn be an arbitrary connected graded commutative Hopf algebra and A0, A1, ..., An, ... a

series of degree n derivations on H . That is, for any p, the restriction of An to Hp is a linear map from
Hp to Hp+n, and An satisfies the Leibniz rule: for any h, l in H , An(h · l) = An(h) · l + h · An(l). We
also assume that the An commute, so that the An generate a commutative subalgebra D of End(H) (for
the composition of maps). There is therefore, since qSym is free over the Qn, a universal algebra map
β from qSym to End(H) obtained by mapping Qn to An. We write L• for the image of S• under this
map, and Lk

n for the image of Sk
n. Note that, for any p, Lk

n maps Hp to Hp+n. Of course, the identities
that hold in qSym for the Qn and the Sk

n also hold in End(H) for the An and the Lk
n. More surprisingly

however, the coalgebra structure of qSym reflects the action of D on H . We refer to [41, 42] for similar
phenomena occuring in the study of Lie idempotents and renormalization in perturbative QFT.

Proposition 7.3. We have, for any X ∈ qSym and any h, h′ ∈ H:

β(X)(hh′) = β(X(1))(h)β(X(2))(h
′)

where X(1) ⊗X(2) stands, as usual, for the coproduct of X in qSym.

The identity can be generalized by a straightforward recursion to compute β(X)(h1...hn). Notice first
that the identity in the Proposition is obvious when X is a Qn, since β(Qn) = An is, by hypothesis, a
derivation. Now, assume that for X and Y in qSym and arbitrary h, h′, l, l′ ∈ H the above formula holds,
that is:

β(X)(hh′) = β(X(1))(h)β(X(2))(h
′), β(Y )(ll′) = β(Y(1))(l)β(Y(2))(l

′).

It follows that:
β(Y ) ◦ β(X)(hh′) = β(Y )(β(X(1))(h)β(X(2))(h

′)

= β(Y(1)) ◦ β(X(1))(h) · β(Y(2)) ◦ β(X(2))(h
′)

= β((Y X)(1))(h)β((Y X)(2))(h
′).

In other terms, if two elements in qSym satisfy the identity in the Proposition, their product also satisfies
the identity. Since the Qn satisfy the identity, and since their products span qSym, the Proposition
follows.

Let us consider the particular example H = S(U), with U an arbitrary C-vector space. In that
particular case, derivations D of H are in bijection with linear maps from U to S(U): indeed, since
D(xy) = D(x)y + xD(y), for x ∈ H and y ∈ U , the knowledge of the restriction of D to U determines
entirely recursively D as a derivation. So, for m ∈ N∗, let Am−1 be an arbitrary map from U to Sm(U),
say Am−1(u) = um−1,1 . . . um−1,m (with a enhanced Sweedler-type notation). If the Am−1 commute as
elements of End(H), then we get:

Lk
n(u) =

1

k

n+1
∑

m=1

Lk−1
n−m+1Am−1(u) =

1

k

n+1
∑

m=1

∑

n1+···+nm=n−m
k1+···+km=k−1

Lk1
n1

(um−1,1) ∨ · · · ∨ Lkm
nm

(um1,m).

This is a generalization of lemma 13 in [13] and of proposition 15 in [14] where the Authors, Mestre and
Oeckl, studied the case where An = 0 for n 6= 0, 1. Take care that our notation is different from theirs.
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8 One-particle irreducible decompositions

We consider now the derivation of an explicit decomposition of a connected Green function into 1PI
Green functions for a general state.

8.1 Definition of the derivations Am.

In view of applications to QFT, we consider the particular case U = S(V ). Two products arise therefore
in S(U) = S(S(V )): the commutative product in S(V ), denoted by · or by juxtaposition as usual, and
the commutative product in S(U), denoted from now on by ∨ to avoid any confusion. To a unital form ρ
we associate its convolution logarithm r and, for ϕ(x1) . . . ϕ(xm) ∈ U , we recall that Dm(x1, . . . , xm) =
r(ϕ(x1) . . . ϕ(xm)), so that the generalized propagators Dm are symmetric functions of their arguments.

Recall that V is spanned by the symbols ϕ(x), where x runs over the points in Rd. We choose
an arbitrary total order on the points in Rd, for example the lexicographical order on the d-tuples of
coordinates. The operators Am−1 : U → Sm(U) (and the corresponding derivations Am−1 : Sk(U) −→
Sk+m−1(U)) are then defined by

Am−1(u) =
∑

x1<...<xm

Dm(x1, . . . , xm)
∂u{1}

∂ϕ(x1)
∨ · · · ∨ ∂u{m}

∂ϕ(xm)

=
1

m!

(

∑

x1,...,xm

Dm(x1, . . . , xm)
∂u{1}

∂ϕ(x1)
∨ · · · ∨ ∂u{m}

∂ϕ(xm)

)

.

Notice that, by definition of δ, the terms with xi = xj in the last summation vanish. The task of checking
that the Ai commute is left to the reader: the property follows from the Schwarz commutation rules for
derivatives and from the definition of the disconnecting coproduct δ.

The map Qm 7→ Am enables us to define Lk
n. For example L0

0(u) = u, L1
m(u) = Am(u) and

L2
0(u) =

1

2

∑

x1,x2

D1(x1)D1(x2)
∂2u

∂ϕ(x1)∂ϕ(x2)
,

L2
1(u) =

∑

x1,x2,x3

D2(x1, x2)D1(x3)
∂u{1}

∂ϕ(x1)
∨ ∂2u{2}

∂ϕ(x2)∂ϕ(x3)
,

L2
2(u) =

1

2

∑

x1,x2,x3,x4

D2(x1, x2)D2(x3, x4)
∂u{1}

∂ϕ(x1)
∨ ∂2u{2}

∂ϕ(x2)∂ϕ(x3)
∨ ∂u{3}

∂ϕ(x4)

+
1

2

∑

x1,x2,x3,x4

D3(x1, x2, x3)D1(x4)
∂u{1}

∂ϕ(x1)
∨ ∂u{2}

∂ϕ(x2)
∨ ∂2u{3}

∂ϕ(x3)∂ϕ(x4)
,

L3
1(u) =

1

2

∑

x1,x2,x3,x4

D1(x1)D1(x2)D2(x3, x4)
∂2u{1}

∂ϕ(x1)∂ϕ(x3)
∨ ∂2u{2}

∂ϕ(x2)∂ϕ(x4)

+
1

2

∑

x1,x2,x3,x4

D1(x1)D1(x2)D2(x3, x4)
∂3u{1}

∂ϕ(x1)∂ϕ(x2)∂ϕ(x3)
∨ ∂u{2}

∂ϕ(x4)
.

8.2 A tree interpretation

The operator Lk
n can be written as a sum over all the bipartite trees with k white vertices and n + 1

black vertices. This description in terms of trees is important because, in standard QFT, a connected
Green function can also be described as a tree of 1PI Green functions –a description we want to extend
to many-body physics. To give a more precise relation between Lk

n and bipartite trees, we consider the
expression for Lk

n in terms of partitions α:

Lk
n =

∑ Aα0
0

α0!
. . .

Aαn
n

αn!
,
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where the sum runs over the sequences α of nonnegative integers with α0+. . . αn = k and α1+...+n·αn =
n. The monomial corresponding to a given α is represented by the sum of all bipartite trees with k white
vertices and n+ 1 black vertices, such that αi white vertices have valency i+ 1, for i = 1, . . . , n.

The terms of lowest degrees are

L0
0 = id = b,

L1
0 = A0 = b bc,

L2
0 =

1

2!
A2

0 = bc b bc,

L1
1 = A1 = b bc b,

L3
0 =

1

3!
A3

0 = bc bc

bc

b ,

L2
1 = A0A1 = b bc b bc,

L1
2 = A2 = b b

b

bc ,

L4
0 =

1

4!
A4

0 = bc bc

bc bc

b ,

L2
2 = A0A2 +

1

2
A2

1 = b

b
bc b bc+ b bc b bc b,

L3
1 =

1

2
A2

0A1 = bc b bc b bc+ bc

bc
b bc b,

L1
3 = A3 = b b

b b

bc ,

L5
0 =

1

5!
A5

0 =
bc

bc

bcbc

bc
b ,

L2
3 = A0A3 +A1A2 = b

b

b

bc b bc+ b

b
bc b bc b,

L3
2 =

1

2!
A2

0A2 +
1

2!
A0A

2
1 = bc

bc

b

b
bc b+ b

b
bc b

bc

bc

+ b bc b bc b bc+ b

b

bc

bc
b bc,

L4
1 =

1

3!
A3

0A1 = bc

bc

bc

b bc b+ bc

bc
b bc b bc,

L1
4 = A5 =

b

b

bb

b
bc .

To calculate the value of a tree of Lk
n: (i) Associate to each of the k + n edges a variable xi, with

i = 1, . . . , k+n. (ii) To each white vertex v, associate the factor Dm(xi1 , . . . , xim
), where m is the valency

of v and xi1 , . . . , xim
are the variables associated to the edges incident to v. (iii) There are n+ 1 black

vertices. Split u into n+ 1 parts by δnu = u{1} ⊗ · · · ⊗ u{n+1}. Number the black vertices from 1 to n+ 1
and to vertex ℓ associate the factor

∂mu{ℓ}

∂ϕ(xi1 ) . . . ∂ϕ(xiℓ
)
,

where xi1 , . . . , xiℓ
are the variables associated to the edges incident to the black vertex number ℓ. (iv)

Multiply the factors corresponding to the black vertices with the product ∨ in S(U). (v) Divide the
resulting value by the order of the symmetry group of the tree.

8.3 The 1PI components of forms

The last step before we can write a connected form in terms of 1PI forms is to give a reasonable definition
of what is the 1PI component of a form, similarly to the definition of the connected components of forms.
Several definitions are possible. The simplest one was proposed by Hall [4] and yields detailed structural
results [43]. Here we consider a definition which is strictly more general than Hall’s and that leads to an
interesting structure. In a graph, it is easy to describe what we mean by cutting a line or a set of lines;
this approach leads, in the classical QFT (with 2-point Feynman propagators) to the definition of 1PI
Feynman diagrams as connected diagrams that are still connected when an arbitrary propagator line is
cut. We propose to generalize the notion by replacing the Feynman form (that is, the classical case where
only 2-point Feynman propagators are considered) by an arbitrary unital form.
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Our approach is rooted in the Hopf algebraic picture of QFT. Notice however that our constructions
could be translated mutatis mutandis in the langage of functional derivatives. For example, the derivatives

∂
∂ϕ(x) that we have used in the definition of the operators Ai were defined as usual derivatives (in the

polynomial algebra over the symbols ϕ(x)) but could be understood alternatively as functional derivatives.
The same observation holds for our forthcoming constructions.

In proposition 6.1, for any u = ϕn1(x1)...ϕ
nk(xk), we have expanded ρ(u) as a linear combination

of terms such as r(ϕn1
1 (x1) . . . ϕ

n1
k(xk))...r(ϕnl

1 (x1) . . . ϕ
nl

k(xk)). Let us consider a connected term t :=

r(ϕn1
1 (x1) . . . ϕ

n1
k(xk))...r(ϕnl

1 (x1) . . . ϕ
nl

k(xk)) in e∗r(u).

Definition 8.1. The term t is said to be one-particle-irreducible (1PI) if and only if, there are no

i ∈ {1, ..., l} and {i1, ..., ip} ⊂ {1, ..., k} such that ϕni
1(x1) . . . ϕ

ni
k(xk) = ϕ(xi1 ) . . . ϕ(xik

) and such that,
furthermore, in the remaining part of t,

r(ϕn1
1 (x1) . . . ϕ

n1
k(xk))...r(ϕni−1

1 (x1) . . . ϕ
ni−1

k (xk))r(ϕni+1
1 (x1) . . . ϕ

ni+1
k (xk))...r(ϕnl

1 (x1) . . . ϕ
nl

k(xk))

the connected components of xi1 , ..., xip
are either empty or pairwise disjoint.

For example, r(ϕ(x1)ϕ(x2))
2 (a loop constructed out of two two-point propagators) is 1PI (in our sit-

uation, and also in the usual picture), and so is r(ϕ(x1)ϕ(x2))r(ϕ(x1)ϕ(x3))r(ϕ(x1)ϕ(x2)ϕ(x3)), whereas
r(ϕ(x1)ϕ(x2))r(ϕ(x1)ϕ(x3))r(ϕ(x1)ϕ(x2)ϕ(x4)) or r(ϕ(x1)ϕ(x2))r(ϕ(x1)ϕ

2(x3))r(ϕ(x2)ϕ
2(x4)) are not.

Definition 8.2. The 1PI component ρI of a form is the sum of all the 1PI terms in the connected
component of ρ.

Recall that forms, their connected components, and also their 1PI components are linear maps from
U = S(V ) to C. However, any such linear map l can be uniquely extended to a multiplicative map,
still written l from S(U) to C (that is, to a character of the algebra S(U), in the algebraic terminology).
Concretely, for u1, ..., un ∈ U, l(u1 ∨ · · · ∨ un) := l(u1)...l(un). In particular, the connected and 1PI
components of forms can be viewed as characters of the algebra S(U), so that, for example, an expression
such as ρc ◦Am makes sense as the composition of a derivation of S(U) and a map from S(U) to C.

Let us consider a simple example to illustrate these ideas, namely the structure equation linking
connected and 1PI components of forms in the most common picture of pQFT: an interacting theory
–say ϕ3– with Feynman diagrams built of 3-valent interaction vertices and 2-point propagators. A general
Feynman diagram can be described as 1PI diagrams connected by n ∈ N Feynman propagators satisfying
the property that cutting any of these propagators make the original diagram disconnected. Taking
into account the symmetry factor n! arising from the fact that these Feynman propagators can be cut
successively in an arbitrary order results into a structure equation relating the connected and 1PI Green
functions. In Hopf algebraic terms:

ρc = ρI ◦ exp(F )

where F is the derivation of S(U) associated to the Feynman propagator:

∀u1, ..., un ∈ U = S(V ), F (u1∨· · ·∨un) =
∑

x 6=y

∑

i≤n

D2(x, y)u1∨· · ·∨ui−1∨(
δui,{1}

δϕ(x)
∨δui,{2}

δϕ(y)
)∨ui+1∨· · ·∨un,

with D2 the (quasi-)free 2-point Green function.

In the general case, replacing Feynman propagators D2 by arbitrary propagators Dn, doesn’t change
the general principles of the proof. An arbitrary Feynman diagram for an interacting theory as the ones
considered previously in the present section can still be cut into 1PI pieces connected by a family of n-
point propagators, n ∈ N , in such a way that removing any of these n-point propagators splits the original
diagram into n connected pieces. For a given n, the associated symmetry factor is pn!, where pn is the
number of n-point propagators in the family. These observations result in a family of structure identities
for 1PI diagrams at all orders, and a master identity that should be understood as the fundamental
theorem for the perturbative approach to interacting theories.
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Theorem 8.1. (Master identity for interacting theories) For an arbitrary form ρ, we have

ρc = ρI ◦ L• = ρI ◦ exp

(

∑

n∈N

An

)

,

and

ρI = ρc ◦ exp

(

−
∑

n∈N

An

)

.

We remark that the effect of A0 is just a shift of the fields: for instance eA0(ϕn(x)) = (ϕ(x)+D1(x))
n.

For u = ϕn1(x1) . . . ϕ
np(xp), we have Am(u) = 0 if m ≥ p because Am splits u into m+ 1 pieces and the

coordinates xi of these pieces must all be different. More generally, Lk
n(u) vanishes if n ≥ p. Because of

the trivial effect of A0 we put A0 = 0 and we get

ρc(u) = ρI(u) +

p−1
∑

n=1

n1+···+np
∑

k=1

ρI(L
k
n(u)).

In particular, ρc(ϕ
n(x)) = ρI(ϕ

n(x)) and, for x 6= y,

ρc(ϕ
n(x)ϕm(y)) = ρI(ϕ

n(x)ϕm(y)) +mnD2(x, y)ρI(ϕ
n−1(x))ρI(ϕ

m−1(y)).

The first equation of theorem 8.1 describes the connected Green functions in terms of 1PI Green functions.
It is a generalization to general states of the standard QFT result and of a theorem by Mestre and Oeckl
[14]. The second equation is new even in the QFT context: it describes the 1PI Green functions as a
linear combination of products of connected Green functions. In QFT, 1PI Green functions are expressed
in terms of amputated connected Green functions. Here, we do not amputate the Green functions (this is
not allowed for a general state because parts of the Green functions belong to the kernel of the differential
operator used in the equation of motion of the free field).

The consequences of these identities for the QFT of interacting systems, and the fine study of con-
nected and 1PI amplitudes are postponed to further work.

9 Conclusion

In this paper, we developed mathematical tools to extend the relation between connected Green functions
and 1PI Green functions from the case of a quasi-free ground state to the case of a general state. Our main
result is the Master identity of theorem 8.1. This work can be extended in two directions. On the physical
side, the Master identity can be used to derive resummation theorems that generalize Friedberg’s formulas
[44]. On the mathematical side, many of our results can be extended to the case of non commuting
variables.
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le cas dégénéré. Nucl. Phys., 8:91–105, 1958.

[29] T. Morita. Perturbation theory for degenerate problems of many-fermion systems. Prog. Theor.
Phys., 29:351–69, 1963.

[30] S. Fujita. Introduction to Non Equilibrium Quantum Statistical Mechanics. Saunders, Philadelphia,
1966.

[31] S. Majid. Foundations of Quantum Group Theory. Cambridge University Press, Cambridge, 1995.

[32] M. E. Sweedler. Hopf Algebras. W. A. Benjamin, New York, 1969.

[33] J.C. Collins. Renormalization. Cambridge University Press, Cambridge, 1984.

[34] H. Scutaru. Transition probabilities between quasifree states. J. Math. Phys., 39:6403–15, 1998.

[35] V. A. Moskalenko, P. Entel, D. F. Digor, L. A. Dohotaru, and R. Citro. A novel diagrammatic
technique for the single-site Anderson model. Theor. Math. Phys., to be published, arXiv:cond-
math/0701299.

[36] S. Hollands and W. Ruan. The state space of perturbative quantum field theory in curved spacetimes.
Ann. Inst. Henri Poincaré, 3:635–57, 2003.
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