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Skew codes of prescribed distance or rank

L. Chaussade∗, P. Loidreau†and F. Ulmer ‡

March 17, 2008

Abstract

In this paper we propose two methods to produce block codes of prescribed rank
or distance. Following [4, 5] we work with skew polynomial rings of automorphism
type and the codes we investigate are ideals in quotients of this ring. There is a
strong connection with linear difference operators and with linearized polynomials
(or q-polynomials) reviewed in the first section.

1 Galois theory of difference equations over finite fields

A finite difference field (Fq, θ) is a field together with an automorphism θ. A difference (or
recurrence) equation over (Fq, θ) is an equation of the form

L(y) = an θn(y) + . . . + a1θ(y) + a0 y = 0

Let q = pr and θ(x) = xpi

with i in {0, ..., r − 2}. A finite difference field (Fqs , Θ) is a

difference field extension of (Fq, θ) if Fq ⊆ Fqs and Θ defined by Θ(x) = xpi

is an extension
of θ to an automorphism of Fqs . Note that even if there are several ways to extend a field
automorphism, we keep the expression θ for the extension Θ. A solution of the difference
equation L(y) = 0 is an element β in a finite difference field extension of (Fq, θ) such that
L(β) = 0. We call (Fq)

θ the field of constants. The solution space of the difference equation
L(y) = 0 is a vector space over (Fq)

θ of dimension ≤ n. There is a difference Galois theory
of difference rings [2, 14] where the existence of a difference splitting ring (of Picard-
Vessiot ring) is proven under the assumption that the field of constants is algebraically
closed. In our special situation of a finite coefficient field we do not want to work with an
algebraically closed field of constants and we will show that if a0 6= 0, then a finite PV-field
always exists. In connection with coding theory the equivalent notion of p-polynomial or
linearized polynomial is more common ([10, 13]). In this section we recall the basic facts
and connections between those notions.
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To a difference equation L(y) we can associate the corresponding difference operator
an θn + . . . + a1θ + a0. From the relation θ(a · y) = θ(a)θ(y) we obtain the basic rule
for the compositions of differential operators θ · a = θ(a) · θ. To the difference operator
an θn + . . . + a1θ + a0 corresponding to L(y) we associate the skew polynomial fL =
anX

n + . . . + a1X + a0 ∈ Fq[X, θ]). Let us defines a ring structure on the set of skew
polynomials

Fq[X, θ] =
{

an−1X
n−1 + . . . + a1X + a0 | ai ∈ Fq and n ∈ N

}

.

The addition in Fq[X, θ] is defined to be the usual addition of polynomials and the multi-
plication is defined by the basic rule Xa = θ(a)X (a ∈ Fq) and extended to all elements
of Fq[X, θ] by associativity and distributivity (cf. [1, 12]). The non commutative multipli-
cation of skew polynomials corresponds to the composition of differential operators. The
ring Fq[X, θ] is a left and right euclidean ring whose left and right ideals are principal [12].
Left and right gcd and lcm exist in Fq[X, θ] and can be computed using the left and right
euclidean algorithm [6]. Conversely we associate a difference equation Lg(y) to a given
skew polynomial g ∈ Fq[X, θ].

Suppose that θ is defined as a 7→ aq0 . In this case Fq0 = (Fq)
θ, where (Fq)

θ is the fixed
field Fq of θ. It is classical (Section 5 of [10] or ”p-polynomials‘ in [13]) to associate to L(y)
the linearized polynomial :

ℓ(Y ) = an Y (q0)n

+ . . . + a1Y
q0 + a0 Y ∈ Fq[Y ]. (1)

This amounts to express the action of the automorphism, and therefore there is a bijective
correspondance between solutions of L(y) = 0 in a finite difference field extension and
distinct roots of the classical commutative polynomial ℓ(Y ) = 0.

Definition 1 We call multiplicity of a solution, β, of L(y) = 0 the order of β as a root of
the associated linearized polynomial ℓ(Y ).

Example 1 In the previous example L(y) = θn(y), 0 is a solution of multiplicity (q0)
n.

The following is a reformulation of [10], Theorem 3.50:

Lemma 1 Let θ be an automorphism of Fq defined by a 7→ aq0, denote (Fq)
θ = Fq0 the

fixed field of θ and L(y) =
∑n

i=0 aiθ
i(y) with ai ∈ Fq. Each solution of L(y) = 0 has

multiplicity (q0)
k where k = min{i, ai 6= 0}.

Proof. The first part is proven in [10], Theorem 3.50 and only the claim on the
dimension has to be verified. First we note that the derivative of ℓ(Y ) is ℓ′(Y ) = a0, so
that if a0 6= 0 then all the solutions of ℓ(Y ) = 0 have multiplicity 1.
Suppose that q = qr

0 and that a0 = a1 = ... = ak−1 = 0 and ak 6= 0, then

ℓ(Y ) =
n
∑

i=k

aiY
qi
0 =

n
∑

i=k

a
qrk
0

i Y qi
0 .
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The last equality is true because ai belongs to Fqr
0

= Fq. We get

ℓ(Y ) =
n
∑

i=k

a
qrk
0

i yqi
0 = [

n
∑

i=k

a
q
(r−1)k
0

i yqi−k
0 ]q

k
0

By hypothesis the polynomial in brackets has a constant term a
q
(r−1)k
0

k 6= 0 and thus all its
roots have order 1. Therefore all the solutions of ℓ(Y ) have multiplicity qk

0 .

The following theorem shows a link between the dimension of the vector space of solu-
tions and the coefficients of L.

Theorem 1 (cf. [13], Theorem 5) Let θ be an automorphism of Fq defined by a 7→ aq0,
denote (Fq)

θ = Fq0 the fixed field of θ and L(y) =
∑n

i=0 aiθ
i(y) with ai ∈ Fq. There exists

a finite field Fqs which contains all the roots of ℓL(Y ) = 0 and the (Fq)
θ-subspace of Fqs

spanned by those roots is of dimension n−min{i, ai 6= 0}. In particular if a0 6= 0 then the
smallest field Fqs is a difference splitting field (or Picard-Vessiot field) of L(y) = 0.

Proof. We compute the dimension of the vector space of solutions in a finite field
extension by counting the solutions of the associated linearized polynomial ℓ(Y ). Since ℓ(Y )
is a polynomial of order qn

0 , it has qn
0 roots counted with multiplicity in a decomposition

field. If min{ai, ai 6= 0} = k then the proof of lemma shows that L(y) has qn
0 solutions of

multiplicity qk
0 , it follows that the dimension of the vector space spanned by the solutions

over Fq0 has dimension n − k.

Example 2 Let θ(x) = xq0, then

1. The solution space of L(y) = θn(y) − y is F(q0)n. It is a vector space of dimension n
over Fq0 ( here a0 = 1 6= 0 ).

2. The solution space of L(y) = θn(y) is {0}. It is a vector space of dimension 0
(a0 = ...an−1 = 0 so min{ai, ai 6= 0} = n).

3. The solution space of L(y) = θn(y) − θn−1(y) is Fq0. To see this, note that if α is a
solution, then θ(α) − α = 0 and therefore α ∈ Fq0. In this case the multiplicity of
each solution is (q0)

n−1.

2 Skew codes with constructed rank

According to ([1], Theorem II.12), the two sided ideals of Fq[X, θ] are generated by elements
of the form (b0 + b1X

m + b2X
2m + . . . + bsX

s·m)X t, where m = | < θ > | is the order of θ
and bi ∈ (Fq)

θ. The center Z(Fq[X, θ]) of Fq[X, θ] is (Fq)
θ[Xm]. In particular a left or right

ideal in Fq[X, θ] generated by a central element is a two sided ideal. If I is a two sided ideal
in Fq[X, θ] then I is generated by a polynomial f of some degree n with the above property
and, by the correspondance of ideals, the left ideals in Fq[X, θ]/(f) are principal ideals,
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each generated by a right divisor g of f . To the element a(X) = an−1X
n−1 + . . .+a1X +a0

in Fq[X, θ]/(f) we associate the word a = (a0, a1, . . . , an−1) ∈ F
n
q . The elements a(X) of

Fq[X, θ]/(f) that belong to a left ideal in Fq[X, θ]/(f) generated by a right divisor g of f
form a linear [n, k] code in (Fq)

n, where k = n − deg(g). More precisely

Definition 2 Let f ∈ Fq[X, θ] be of degree n. If I = (f) is a two sided ideal of Fq[X, θ],
then a θ-code C consists of code words a = (a0, a1, . . . , an−1) that are coefficient tuples of
elements a(X) = an−1X

n−1 + . . . + a1X + a0 of a left ideal of Fq[X, θ]/I. In this case the
elements a(X) are left multiples of a right divisor g of f . We will focus on two special
cases:

1. If f ∈ Z(Fq[X, θ]), then we call the θ-code corresponding to the left ideal (g)/(f) a
central θ-code.

2. If m = | < θ > | divides n and f = Xn − 1 , then we call the θ-code corresponding to
the left ideal (g)/(Xn − 1) a θ-cyclic-code.

Note that code words of skew codes can be identified with the multiples of the generating
skew polynomial g ∈ Fq[X, θ] , but not with the solutions of the corresponding difference
equations.

Any codeword of (g)/(f) can be uniquely represented by a skew-polynomial of Fq[X, θ]
of degree n−1. Therefore it can be represented as a n-dimensional vector with components
in Fq. Since [Fq : (Fq)

θ] = m, it can also be represented as a m×n matrix with coefficients
over the field of constants. The rank of such a matrix is called the rank of the vector. It
is clearly independent of the chosen basis of Fq/(Fq)

θ

Definition 3 The minimum rank distance of a code C of length n over (Fq)
θ is the integer

d such that
d = min

c∈C\{0}
(Rk(c))

For a more precise description of rank metric in terms of coding theory, see [8].

Proposition 1 Let g ∈ Fq[X, θ] and Lg(y) = 0 be the associated differential equation.
Suppose that there exists a solution β of Lg(y) = 0 in a finite difference field extension Fqs

and an integer δ ≥ 1 such that

• β, θ(β), . . . , θn−1(β) are linearly independent over (Fq)
θ.

• for i ∈ {0, . . . , δ−1}, the element θi(β) is a solution of Lg(y) = 0, i.e. Lg(θ
i(β)) = 0.

Then, for all skew polynomials f of degree n in the center of Fq[X, θ] which are right
divisible by g, the code (g)/(f) has a minimum rank distance ≥ δ + 1. Therefore its
minimum distance is at least δ + 1.
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Proof. Let c ∈ (g)/(f) be a non-zero codeword of rank t over (Fq)
θ. The coefficients

of c form a n-dimensional vector (c0, . . . , cn−1) ∈ (Fq)
n of rank t over (Fq)

θ. Hence, there
exists U ∈ Mt×n((Fq)

θ) of rank t and C1, . . . , Ct ∈ (Fq)
t linearly independent over (Fq)

θ

such that
(c0, . . . , cn−1) = (C1, . . . , Ct)U (2)

Since a code word c is a left multiple h·g of g and since multiplication in Fq[X, θ] corresponds
to the composition of the differential operators, we have Lc(y) = Lh(Lg(y)). Therefore
any solution γ of Lg(y) = 0 is also a solution of Lc(y) = 0 and there exists a basis
of the space of solutions of the associated difference equation Lg(y) = 0 of the form
(β, . . . , θδ−1(β), γδ, . . . , γk−1). This shows that

(c0, . . . , cn−1)











β · · · θδ−1(β) γδ . . . γk−1

θ(β) · · · θδ(β) θ(γδ) . . . θ(γk−1)
...

. . .
...

...
. . .

...
θn−1(β) · · · θn+δ−2(β) θn−1(γδ) . . . θn−1(γk−1)











= 0 (3)

If we define

∀i = 1, . . . , t, ui(β)
def
=

n
∑

j=0

Uijθ
i(β),

and we replace (c0, . . . , cn−1) by the expression (2), using the fact that the coefficients of
U lie in the field of constants, we obtain

(C1, . . . , Ct)











u1(β) · · · θδ−1(u1(β)) u1(γδ) . . . u1(γk−1)
u2(β) · · · θδ−1(u2(β)) u2(γδ) . . . u2(γk−1)

...
. . .

...
...

. . .
...

ut(β) · · · θδ−1(ut(β)) ut(γδ) . . . ut(γk−1)











= 0 (4)

Since U has rank t, and since β, . . . , θN−1(β) are linearly independent over the field of
constants, this implies that u1(β), . . . , ut(β) are linearly independent over the field of con-
stants and therefore the first δ columns of the matrix of the system are linearly independent.
Hence if t ≤ δ, the previous equation has no non-zero solution. Therefore, the minimum
rank distance of (g)/(f) is at least δ + 1.

The above skew code of prescribed rank δ in the previous proposition will be denoted
Cβ,...,θδ−1(β). In order to construct all codes Cβ,...,θδ−1(β) of length n, less than a given bound
N , which are of prescribed rank δ defined over Fq, we proceed as follows:

1. Consider in turn all non trivial automorphisms θ ∈ Aut(Fq). Trough this choice, the
ring Fq[X, θ] and therefore the constant field (Fq)

θ of order q0 are determined.

2. Consider in turn any β in a field extension Fqs of Fq with s ≤ (q)N (the degree of a
linearized polynomial over Fq of some f ∈ (Fq)

θ[X |θ|] of degree n ≤ N). Compute
the longest sequence β, θ(β), . . . , θt(β) in Fqs that is linearly independent over (Fq)

θ.
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Any subsequence β, . . . , θj−1(β) could correspond to a Cβ,...,θδ−1(β) code, but we need
to construct the code (the generating polynomial g having β, . . . , θδ−1(β) among its
roots) in order to find δ and we need to verify that its length n (the degree of the
bound of g) is less than t (we will see that the length n must in fact be t)

(a) Denote σ a generator of Aut(Fqs/Fq). If σ is not a power of the extension of θ
to Θ ∈ Aut(Fqs), then the fixed field of Θ is no longer contained in Fq and we
stop the computation for this θ. Otherwise construct the smallest σ-invariant
(Fq)

θ-subspace Vg of Fqs containing β, . . . , θ−1(β).

(b) Construct the skew polynomial g ∈ Fq[X, θ] so that the corresponding difference
operator Lg(y) = 0 has Vg as solution space. We will show that g is defined over
Fq if and only if Vg is σ-invariant.

(c) Compute the bound f ∈ (Fq)
θ[X |θ|] and verify that its degree n is less than t.

In order to compute the bound f , we can use the algorithm described in the
proof of ([5], Lemma 10). The computation of the bound will not be necessary,
since we will show that g does generate a Cβ,...,θδ−1(β) code if and only the (Fq)

θ-
subspace spanned by β, θ(β), . . . , θt(β) is the solution space of the difference
operator corresponding to a central polynomial f ∈ (Fq)

θ[X |θ|]. Therefore we
must have n = t.

Note that Gabidulin codes correspond to the case where the length n is maximal, i.e.
n = t = [Fqs : (Fq)

θ]. In this case t is the order of Aut((Fqs/(Fq)
θ) and the bound f must

be X t − 1. We will be particularly interested in codes that are not of this type.
In the following we review the classical result showing how to reconstruct a difference

equation from a given solution space or a fundamental set of solutions {y1, . . . , yn} (see
[13], Theorem 7). This is always possible if a0 6= 0 and the case a0 = 0 is less interesting
since such a code is obtained from a code with a0 6= 0 by adding columns of zeros to the
generating matrix ([5], Proposition 1). The solutions y of such a difference equation are
precisely the y that are linearly dependent with {y1, . . . , yn}, i.e. such that the Casoratian

Cas(y1, . . . , yn, y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2 . . . yn y
θ(y1) θ(y2) . . . θ(yn) θ(y)
θ2(y1) θ2(y2) . . . θ2(yn) θ2(y)

. . . . . . . . . . . . . . .
θn(y1) θn(y2) . . . θn(yn) θn(y)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

We denote by Casi the above determinant where the last column and the i-th row have
been deleted. Expanding the determinant along the last column gives the

Ly1,...,yn
(y) = θn(y) +

n−1
∑

i=0

Casi+1(y1, . . . , yn, y)

Cas(y1, . . . , yn)
θi(y).

This allows to express the coefficients of a difference equation from a fundamental set of
solutions and is therefore analogous to the result about symmetric functions. Next we
want to insure that the code we are constructing is defined over Fq.
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Lemma 2 Let θ ∈ Aut(Fq), σ a generator of the Galois group of Fqs/Fq and yi ∈ Fqs such
that y1, · · · , yn are linearly independent over (Fq)

θ . The difference equation Ly1,...,yn
(y) is

defined over Fq if and only if y1, · · · , yn span a (Fq)
θ-vector space that is invariant under

σ.

Proof. In one direction we have to show that the coefficients of Ly1,...,yn
(y) belong to

Fq :

σ

(

Casi+1(y1, . . . , yn, y)

Cas(y1, . . . , yn)

)

=
det(σ) · Casi+1(y1, . . . , yn, y)

det(σ) · Cas(y1, . . . , yn)
=

Casi+1(y1, . . . , yn, y)

Cas(y1, . . . , yn)

and therefore the coefficients of Ly1,...,yn
(y) belong to Fq, the fixed field of σ. The proof of

the above is similar to the differential case using the fact that σ and (the extension of) θ
commute (cf. [15], p27, Exercice 4c).
For the converse, suppose that Ly1,...,yn

(y) =
∑n

i=0 aiθ
i(y) with ai ∈ Fq. Since σ and (the

extention to Fqs of ) θ commute, we get that

0 = σ

(

n
∑

i=0

aiθ
i(yj)

)

=
n
∑

i=0

aiθ
i(σ(yj)),

which shows that the space spanned by y1, · · · , yn is invariant under σ.

We are now in a position to compute the smallest generating polynomial g having the
roots β, θ(β), . . . , θδ−1(β) and to guarantee that it is defined over Fq. For that we consider
a basis y1, . . . , yℓ of the space spanned by β, θ(β), . . . , θδ−1(β). We add to this set of linearly
independent vectors any image under the generators σ of Aut(Fqs/Fq) of the basis vectors,
until we obtain a basis y1, . . . , yr that is stable under σ. According to the above Lemma,
the corresponding difference equation Ly1,...,yr

(y) is defined over Fq and has the solutions
β, θ(β), . . . , θδ−1(β).

We now focus on the length of the code generated by the skew polynomial g correspond-
ing to the difference operator Ly1,...,yr

(y). According to ([5], Definition 1), we need a two
sided ideal (f) contained in the left ideal (g) ⊂ Fq[X, θ] in order to determine the length
of the code (g)/(f) (i.e. the number of columns of the generating matrix). Such a skew
polynomial f must belong to (Fq)

θ[X |θ|], the center of Fq[X, θ], and is called a bound for
g. An algorithm to find f from g is described in ([5], Lemma 4). In our special situation,
according to the above definition of a skew code of prescribed rank, we also need f to be of
degree at most n, where n is the largest integer such that the elements β, θ(β), . . . , θn−1(β)
of Fqs are linearly independent over the fixed field (Fq)

θ. We now show that f must be
Lβ,θ(β),...,θn−1(β)(y), therefore in the algorithm we will just need to test that the differential
operator corresponding to Lβ,θ(β),...,θn−1(β)(y) belongs to (Fq)

θ[X |θ|]. To see this, note if
f = h · g ∈ (Fq)

θ[X |θ|], then by division in Fqs [X, θ] we have f = qβ · (X − β) + rβ with
rβ ∈ Fqs , therefore rβ must be zero. Since the application φ: F4[X, θ] → F4[X, θ] defined
by φ(

∑n

i=0 aiX
i) =

∑n

i=0 θ(ai)X
i is a morphism ([5], proof of Lemma 21), we have that

f = qθi(β) · (X − θi(β)) for i ∈ {1, . . . , n− 1}. This shows that the degree of f is at least n
and that if the degree is n, then the solution space of f is spanned by β, θ(β), . . . , θn−1(β).
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This proves the claim and leads to the following algorithm to construct all code Cβ,...,θδ−1(β)

of length n less than a given bound N which are of prescribed rank δ ≥ ∆ defined over Fq,
we proceed as follows:

1. Consider in turn all non trivial automorphisms θ ∈ Aut(Fq). At this point we fixed
the ring Fq[X, θ] and therefore the constant field (Fq)

θ of order q0.

2. Consider in turn any β in a field extension Fqs of Fq with s ≤ (q)N with the property
that a generator σ of Aut(Fqs/Fq) is a power of the extension of θ to Θ ∈ Aut(Fs

q).

3. For each β compute the longest sequence β, θ(β), . . . , θn−1(β) in Fqs that is linearly
independent over (Fq)

θ and check that f corresponding to Lβ,θ(β),...,θn−1(β)(y), which
by construction belongs to f ∈ (Fq)

θ[X, θ], is central, i.e. belongs to (Fq)
θ[X |θ|].

4. If f ∈ (Fq)
θ[X |θ|], then for any subsequence β, . . . , θj−1(β), construct the smallest

σ-invariant (Fq)
θ-subspace Vj of Fqs containing β, . . . , θj−1(β), where σ is a the gen-

erator of Aut(Fqs/Fq). It is sufficient to iteratively add the image of a basis under σ
that is not linearly dependent with the space constructed so far, until no such image
appears.

5. The resulting skew polynomial g ∈ Fq[X, θ] will be a skew code of prescribed rank δ,
where δ is the largest integer such that {β, . . . , θδ−1(β)} ⊂ Vj.

Example 3 Consider Fq = F4, θ(x) = x2 and s = 6. This means that we will use elements
β ∈ F46 in order to construct codes over F4. We denote by α the generator of F46 and w
the generator of F4 given by Magma.

1. Consider β = α3688. The longest sequence which is linearly independent over F2 =
(F4)

θ is β, θ(β), . . . , θ7(β). Therefore, if we obtain a skew code of constructed rank,
this code must be of length n = 8. Using the Casoratian determinant we compute
Lβ(y) = (θ8 + θ6 + θ2 + 1)(y). Since the associated operator fL = X8 + X6 +
X2 + 1 ∈ F2[X, θ] is a central polynomial (i.e. f ∈ F2[X

2]), we will be able to
construct a skew code over F4 of constructed rank using this β ∈ F46. We start with
j = 1, and compute the smallest F2-space V1 containing {β} which is stable under the
generator σ: x 7→ x4 of Aut(F46/F4). A basis of V1 is {β, θ2(β), θ4(β), θ6(β)} (note
that σ = θ2). Using the Casoratian determinant, we compute the skew polynomial
g = X4 + α2730X3 + X2 + X + 1 = X4 + wX3 + X2 + X + 1 associated with the
corresponding difference operator having the solution space V1. Since the length of
the skew code is 4, its generating matrix is









1 1 1 w2 1 0 0 0
0 1 1 1 w 1 0 0
0 0 1 1 1 w2 1 0
0 0 0 1 1 1 w 1









We obtain a [8, 4, 4] skew code over F4 of prescribed rank 2. This code maps to a
[16, 8, 4] code over F2.
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2. Consider β = α1444. The longest sequence which is linearly independent over F2 =
(F4)

θ is β, θ(β), . . . , θ11(β). This means that β generates a normal basis and that
the bound must be f = X12 − 1 (which is always a bound in this case, because the
order of θ ∈ Aut(F46/F2) is 12). The resulting code will be a Gabidulin code. The
smallest F2-space V1 containing {β} which is stable under the generator σ: x 7→ x4

of Aut(F46/F4) has basis {β, θ2(β), θ4(β), θ6(β), θ8(β), θ10(β)}. Using the Casoratian
determinant, we compute the skew polynomial

g = X6 + α1365X5 + α1365X4 + α1365X3 + α2730X2 + α1365X + 1

= X6 + w2X5 + w2X4 + w2X3 + wX2 + w2X + 1.

Since the length of the skew code is 12, its generating matrix is
















1 w2 w w2 w2 w2 1 0 0 0 0 0
0 1 w w2 w w w 1 0 0 0 0
0 0 1 w2 w w2 w2 w2 1 0 0 0
0 0 0 1 w w2 w w w 1 0 0
0 0 0 0 1 w2 w w2 w2 w2 1 0
0 0 0 0 0 1 w w2 w w w 1

















We obtain a [12, 6, 6] skew code over F4 of prescribed rank 2 which is a Gabidulin
code. This code maps to a [24, 12, 6] code over F2.

Example 4 Consider Fq = F24 = F16, θ(x) = x4 and s = 4. This means that we will use
elements β ∈ F216 in order to construct codes over F24. We denote by α the generator of
F216 and w the generator of F24 given by Magma.

1. Consider β = α57153. The longest sequence which is linearly independent over F22 =
(F24)θ is β, θ(β), . . . , θ7(β). Therefore, if we obtain a skew code of constructed rank,
this code must be of length n = 8. Using the Casoratian determinant we compute
Lβ(y) = (θ8 − 1)(y). Since the associated operator fL = X8 − 1 ∈ F22 [X, θ] is a
central polynomial (i.e. f ∈ F22 [X4]), we will be able to construct a skew code over
F24 of constructed rank using this β ∈ F216. We start with j = 1, and compute the
smallest F2-space V1 containing {β} which is stable under the generator σ: x 7→ x16

of Aut(F216/F16). A basis of V1 is {β, θ2(β), θ4(β), θ6(β), } (note that σ = θ2). Using
the Casoratian determinant, we compute the skew polynomial

g = X4 + α17476X3 + α56797X2 + α39321X + α39321

= X4 + w4X3 + w13X2 + w9X + w9

associated with the corresponding difference operator having the solution space V1.
Since the length of the skew code is 4, its generating matrix is









w9 w9 w13 w4 1 0 0 0
0 w6 w6 w7 w 1 0 0
0 0 w9 w13 w4 1 0
0 0 0 w6 w6 w7 w 1
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We obtain a [8, 4, 5] skew code over F16 of prescribed rank 2 which is a Gabidulin
code. This code maps to a [32, 16, 7] code over F2.

2. β = α57153. The longest sequence which is linearly independent over F22 = (F24)θ

is β, ..., θ5(β). Therefore, if we obtain a skew code of constructed rank, this code
must be of length n = 6. Using the Casoratian determinant we compute Lβ(y) =
(θ6 +θ4 +θ2 +1)(y). Since the associated operator fL = X6 +X4 +X2 +1 ∈ F22 [X, θ]
is a central polynomial (i.e. f ∈ F22 [X4]), we will be able to construct a skew code over
F24 of constructed rank using this β ∈ F216. A basis of V1 is {β, θ2(β), θ4(β), } (note
that σ = θ2). Using the Casoratian determinant, we compute the skew polynomial

g = X3 + α61166X2 + α56797X + 1

= X3 + w14X2 + w13X + 1

associated to the corresponding difference operator having the solution space V1. Since
the length of the skew code is 4, its generating matrix is





1 w13 w14 1 0 0
0 1 w7 w11 1 0
0 0 1 w13 w14 1





We obtain a [6, 3, 4] skew code over F16 of prescribed rank 2 which is not a Gabidulin
code.

The following table shows the characteristics of codes with prescribed rank that are
defined over F4. The lines indicate the fields where β has been found and the columns
indicate the rank δ that has been prescribed during the construction (the actual prescribed
distance could be larger). The entry [10, 5, 4](8) means that 8 different skew polynomials
g have been found that lead to a [10, 5, 4] code. We also indicate a Gabidulin code with
an index g. Note that codes with the same properties can be obtained using elements β in
very different extensions. In the tables we only included those β that do not belong to any
subfield. In all the examples that follow, imposing a certain rank never results in a code
having a higher rank.

10



δ = 1
F4 [2,1,2]g(2)

F42 [4,2,3]g(4)

[6, 3, 2]g(2)

F43 [6, 3, 3]g(4)
[6,3,4]g(2)

[4,2,2](4)

F44 [8,4,4]g(16)

[6,3,3](8)

[10, 5, 2]g(2)
[10, 5, 4]g(14)

F45 [10,5,5]g(16)

[8, 4, 2](2)
[8, 4, 3](2)

[8,4,4](12)

δ = 1
[12, 6, 3]g(12)
[12, 6, 4]g(12)
[12, 6, 5]g(32)
[12,6,6]g(8)

F46 [10, 5, 3]
[10,5,4](8)
[8, 4, 2](2)
[8, 4, 3](8)

[8,4,4](22)

δ = 1
[14, 7, 2]g(2)
[14, 7, 4]g(14)
[14, 7, 5]g(40)
[14,7,6]g(72)

[12, 6, 2](2)
F47 [12, 6, 4](30)

[12,6,5](32)
[8, 4, 2](4)
[8, 4, 3](24)
[8,4,4](4)
[6,3,3](16)

The following tables, organized in the same way as the previous tables, show the char-
acteristics of codes with prescribed rank that are defined over F8.

δ = 1 δ = 2

F8 [3,2,2]g(3) [3,1,3]g(3)

F82 [6, 4, 2]g(3) [6, 2, 3]g(3)
[6,4,3]g(9) [6,2,5]g(9)

[9, 6, 3]g(54) [9, 3, 6]g(54)
F83 [9,6,4]g(9) [9,3,7]g(9)

[6,4,3](21) [6,2,5](21)

[12, 8, 2]g(3) [12, 4, 3]g(3)
[12, 8, 3]g(63) [12, 4, 5]g(9)

[12,8,4]g(126) [12, 4, 6]g(54)

F84 [9, 6, 2](3) [12, 4, 7]g(54)
[9,6,3](45) [12,4,8]g(72)

[9, 3, 3](3)
[9, 3, 5](9)

[9,3,6](36)

δ = 1 δ = 2

[15, 10, 2]g(5) [15, 5, 3]g
[15, 10, 3]g(120) [15, 5, 6]g
[15, 10, 4]g(432) [15, 5, 7]g
[15,10,5]g(120) [15, 5, 8]g

F85 [12, 8, 2](3) [15,5,9]g
[12, 8, 3](78) [12, 4, 3]

[12,8,4](144) [12, 4, 5]
[12, 4, 6]
[12,4,7]

The following tables, organized in the same way as the previous tables, show the char-
acteristics of codes with prescribed rank that are defined over F16.
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δ = 1 δ = 2 δ = 3

F16 [4,3,2]g(8) [4,2,3]g(8) [4,1,4]g(8)

F162 [8,6,3]g(64) [8, 4, 4]g(32) [8,2,7]g(64)

[8,4,5]g(32)

[12, 9, 2]g(32) [12, 6, 3]g(8) [12, 3, 4]g(8)
[12, 9, 3]g(408) [12, 6, 4]g(72) [12, 3, 6]g(64)

F163 [12,9,4]g(72) [12, 6, 5]g(136) [12, 3, 8]g(152)

[8, 6, 2](16) [12,6,6]g(296) [12, 3, 9]g(216)

[8,6,3](48) [8, 4, 3](16) [12,3,10]g(72)

[8, 4, 4](40) [8, 2, 4](8)
[8,4,5](8) [8, 2, 5](8)

[8,2,7](48)
[16, 12, 3]g(256) [16, 8, 6]g(368) [16, 4, 10]g(256)

F164 [16, 12, 4]g(3840) [16, 8, 7]g(3008) [16, 4, 11]g(1536)
[12,9,3](512) [16,8,8]g(720) [16,4,12]g(2304)

[12, 6, 5](192) [12,3,8](512)
[12,6,6](320)

Example 5 Using elements in F88, we found the following codes [21, 14, 6] (best know
distance) defined over F8:

1. The code generated by

g = X7 + wX6 + w3X5 + w5X4 + w6X3 + w4X2 + w ∈ F8[X, θ]

where w the generator of F8 given by Magma. The bound of g is f = X21 + X18 +
X15 + X12 + X9 + X6 + X3 + 1 ∈ F2[X

3]. This code is not a Gabidulin code.

2. The code generated by

g = X7 + wX6 + w3X5 + w4X4 + w5X3 + w3X2 + wX + w2 ∈ F8[X, θ]

where w the generator of F8 given by Magma. The bound of g is f = X21 + 1 ∈
F2[X

3]. According to his bound, this code is a Gabidulin code.

3 Skew codes with constructed distance

In the previous section we worked with solutions of linear difference equations, while in
this section we will consider (right) roots of the associated skew polynomial.

Definition 4 α ∈ Fqs is a root of skew polynomial f ∈ Fq[X, θ] if and only if f is right
divisible by X − α.
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These codes are built in analogy to BCH codes and in the next section we adapt the
classical algorithm for BCH to decode them.

As for linear difference equations, it is possible to find the roots of a skew polynomial
by solving an associated commutative polynomial. Following [9], for α ∈ Fqs and θ ∈
Aut(Fqs) we denote Nθ,i(α) = θi−1(α) · · · θ(α) · α. From [9] Theorem 1.3.11 we get that
anX

n + . . . + a1X + a0 ∈ Fq[X, θ] is right divisible by X − α if and only if α is a zero of
the associated polynomial

Pf =
n
∑

i=0

aiNθ,n−i(Y ) ∈ Fq[Y ].

If θ is defined by a 7→ aq0 , this corresponds to

Pf =
n
∑

i=0

aiY
(q0)i−1+(q0)i−2+...+1

=
n
∑

i=0

aiY
(q0)i−1

q0−1 ∈ Fq[Y ]

The following Lemma show the link between roots of skew polynomials and solutions
of the associated difference equation:

Lemma 3 Let θ be an automorphism of Fq, L(y) =
∑n

i=0 ai θ
i(y) a difference equation

and P =
∑n

i=0 aiX
i the corresponding operator in Fq[X, θ]. Then a non zero element β of

Fqs is a solution of L(y) = 0 if and only if X − θ(β)
β

is a right divisor of PL in Fqs [X, θ].

Proof. Suppose that L(β) = 0. Using the right euclidean algorithm we obtain

PL = Q · (X − θ(β)
β

) + R where R ∈ Fq. Since β is a solution of (θ− θ(β)
β

)(y) = 0, we obtain

0 = L(β) = PL(β) = R · β, showing that R = 0. Conversely if R = 0 then X − θ(β)
β

is a

right factor of PL, showing that L(α) = 0.

Lemma 4 Let θ ∈ Aut(Fq) be defined by a 7→ aq0 and Fq0 = (Fq)
θ be the fixed field of θ in

Fq. If Fq ⊂ Fqs is an extension of finite fields and θ ∈ Aut(Fq/(Fq)
θ), then for any σ in

Aut(Fqs/Fq) the map

ϕσ: Fqs [X, θ] → Fqs [X, θ]
n
∑

i=0

aiX
i 7→

n
∑

i=0

σ(ai)X
i

is a morphism of rings.

Proof. we denote again θ the extension of the automorphism

θ: Fq → Fq

a 7→ aq0
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to Fqs . Since addition in Fqs [X, θ] is the same as in Fqs [X] and since σ: Fqs → Fqs can be
extended to a morphism of Fq[X] by X 7→ X, we get that ϕσ is a morphism of the additive
group (Fqm [X, θ], +). For the mutiplication we have ϕσ(aX) = ϕσ(a)ϕσ(X), but we also
need ϕσ(Xa) = ϕσ(X)ϕσ(a), or equivalently

σ(θ(a))X = ϕσ(θ(a)X) = ϕσ(Xa) = ϕσ(X)ϕσ(a) = θ(σ(a))X.

The condition turns out to be θσ = σθ. The later is true because Aut(Fqs/(Fqs)θ) is cyclic
and σ is a power of the generator of Aut(Fqs/(Fqs)θ).

Lemma 5 Let f = anX
n + . . . + a1X + a0 ∈ Fq[X, θ] and assume that a0 6= 0, then there

is a finite field extension Fqs such that f is the least common left multiple of polynomials
X − αi, where αi ∈ Fqs.

Proof. Since a0 6= 0, Theorem 1 shows that a finite splitting field exists for f(y) = 0.

For any solutions β ∈ Fqs of f(y) = 0 , we have that X − θ(β)
β

is a right factor of f in

Fqs [X, θ]. Therefore the least common left multiple g of the X − θ(β)
β

, where β runs over all

the solutions of f(y) = 0 is also a right factor of f . Let σ be a generator of Aut(Fqs/Fq),
then σ commutes with the extension of θ to Fqs and therefore maps a solution of f(y) = 0
into another solution. This shows that ϕσ maps g to itself and therefore g is defined over
Fq. Since all solutions of f are solutions of g, the degree of g must be the same as the
degree of f , which show that they coincide.

In analogy to BCH codes, skew BCH codes with designed distance are introduced in
[4] in the case where q is a power of 2. We now extend this definition to an arbitrary field
Fq:

Definition 5 Suppose that θ ∈ Aut(Fq) is defined by a 7→ aq0 and that q = q0
r. A skew

BCH code of length n over Fq for the non zero positive integer parameters δ and s is a
θ-code that is generated by a skew polynomial g ∈ Fq[X, θ] with the property that

1. g ∈ Fq[X, θ] is the skew polynomial of smallest degree that is right divisible by X−αk

for k ∈ {1, . . . , δ − 1} where α is a generator of the multiplicative group of Fq0
s.

2. g is bounded by a polynomial of degree n.

We note such a code a (n, q0, r, s, δ) skew BCH code.

The following is a generalization of [4], Proposition 2

Proposition 2 If n ≤ (q0 − 1) · s, then an (n, q0, r, s, δ) skew BCH code has distance at
least δ.

Proof. Suppose that the code is generated by g ∈ Fq[X, θ] and that f is a bound of
degree n of g. An element h =

∑n−1
i=0 ciX

i ∈ Fq[X, θ]/(f) is a code word if and only if it is
a left multiple of g, or equivalently, if αk is a root of Ph(Y ) ∈ Fq[Y ] for k ∈ {1, . . . , δ − 1}.
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We write [i] = (q0)i−1
q0−1

and like in the proof of ([4], Proposition 2) we obtain a parity-check
matrix of the form











α α[1] · · · α[δ−1] · · · α[n−1]

(α2) (α2)[1] · · · (α2)[δ−1] · · · (α2)[n−1]

...
...

(αδ−1) (αδ−1)[1] · · · (αδ−1)[δ−1] · · · (αδ−1)[n−1]











.

The determinant of all extracted (δ − 1) × (δ − 1) is non zero if and only if α[i] − α[j] 6= 0
for i > j in {0, 1, . . . , n − 1}. This follows from α[i] = α[j] if and only if

α
(q0)i−(q0)j

q0−1 = α
(q0)j ·((q0)i−j

−1)
q0−1 = 1. (5)

In particular α(q0)j ·((q0)i−j−1) = 1, which implies that (q0)
i−j − 1 is divisible by (q0)

s − 1,
the order of α. This shows that i− j = m · s and from relation (5), we now get that q0 − 1
must divide

qm·s
0 − 1

qs
0 − 1

=
m−1
∑

r=0

(q0)
s·k.

Therefore q0 − 1 divides m, showing that i − j is a multiple of (q0 − 1) · s. Since i − j <
n ≤ (q0 − 1) · s, this is impossible.

Denote α a generator of the multiplicative group of F(q0)s . Note that g is right divisible
by X − αi, if and only if the solution βi of θ(y) − αiy = 0, is a solution of the difference
equation Lg(y) = 0 associated to g, i.e. θ(βi)/βi = αi. The fact that g ∈ Fq[X, θ] is the
skew polynomial of smallest degree that is right divisible by X − αk for k ∈ {1, . . . , δ − 1}
is therefore equivalent to the solution space Vg of Lg(y) = 0 containing β1, β2, . . . , βδ−1.
According to Lemma 2, for Lg(y) (and therefore g) to be defined over Fq, the vector space
Vg must be stable under a generator σ of Aut(Fqs

0
/Fq). The following gives an algorithm

to find (n, q0, r, s, δ) skew BCH code with designed distance δ ≥ ∆:

1. For each generator α of (Fq)
∗, compute βi (where i ∈ {1, . . . , ∆ − 1}) such that

θ(βi)/βi = αi.

2. Compute the smallest Fq0-vector space Vg that contains β1, β2, . . . , β∆−1 which is
invariant under a generator σ of Aut(Fqs

0
/Fq).

3. Using the Casoratian determinant on a basis of Vg, Compute the skew polynomial
g ∈ Fq[X, θ] associated to the corresponding difference operator, having the solution
space Vg.

4. Compute a bound f ∈ Fq0 [X
m] for g (here m denote the order of θ ∈ Aut(Fq). If the

degree n of f is such that n ≤ (q0 − 1) · s, then g will denote a skew BCH code of
designed distance ≥ ∆.
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5. In order to compute the real designed distance of the resulting code, we compute the
largest integer δ with the property, that β1, β2, . . . , βδ−1 are solutions of Lg(y) = 0.

In order to simplify the computation of the bound f of g, we can use the fact that
the solution space of f ∈ Fq0 [X, θ] ⊂ Fq0 [X

m] must be invariant under Θ ∈ Aut(Fq0
s/Fq0)

(Lemma 2). In particular the smallest Fq0-vector space VF that contains Vg and is invariant
under Θ ∈ Aut(Fq0

s/Fq0) will be included in the solution space Vf of Lf (y) = 0. If we
denote F ∈ Fq0 [X, θ] = Fq0 [X] the skew polynomial associated to the difference equation
whose solution space is VF , this implies that f is (right) divisible by F in Fq0 [X, θ] = Fq0 [X].
The computation of the bound f in the above procedure can therefore be replaced by :

1. Compute the smallest Fq0-vector space VF that contains Vg and is invariant under
Θ ∈ Aut(Fq0

s/Fq0) will be included in the solution space Vf of Lf (y) = 0.

2. Compute the skew polynomial F ∈ Fq0 [X, θ] = Fq0 [X] associated to the correspond-
ing difference operator having the solution space VF .

3. If the degree of F is t, then consider a polynomial h ∈ Fq0 [X] with unknown coef-
ficients of degree (q0 − 1) · s − t. Verify if there are values in Fq0 for the unknown
coefficients so that h · F belongs to Fq0 [X

m] for g (here m denotes the order of
θ ∈ Aut(Fq). This leads to a system of linear equations over Fq0 , which can be
obtained by setting the corresponding coefficients of h · F to zero.

Example 6 Consider Fq = F23, θ: x 7→ x2 and s = 9. This means that we will use elements
α ∈ F29 in order to construct codes over F23. We denote by γ the generator of F29 and
by w the generator of F23 given by Magma. Consider α = γ433 and δ = 2. The smallest
F2 = (F23)θ-space Vα,α2 containing {α, α2} which is stable under the generator σ: x 7→ x8

of Aut(F29/F3) has a basis {α, γ483, γ410, γ179}. Using the Casoratian determinant, we
compute

Lα,γ483,γ410,γ179(y) = θ4(y) + w2θ3(y) + wθ2(y) + wθ(y) + y

The skew polynomial g = X4 + w2X3 + wX2 + wX + 1 ∈ F23 [X, θ] will be the generator of
the skew code we are constructing. The bound of g is f = X6 +X3 +1 ∈ F2[X

3]. Therefore
the length of the skew code will be 6 and its generating matrix is

(

1 w w w2 1 0
0 1 w2 w2 w4 1

)

We obtain a [6, 2, 5] skew code over F8 of prescribed distance 3.

The following tables show the characteristics of codes with prescribed distance that are
defined over F4. The lines indicates the fields where α has been found and the column indi-
cate the distance ∆ that has been prescribed during the construction (the actual prescribed
distance could be larger). The entry [6, 3, 3](8) means that 8 different skew polynomials g
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have been found for the values [6, 3, 3]. In the following table we can observe that prescrib-
ing a certain distance may result in a code with the same characteristics where a higher
distance could have been prescribed.

∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5 ∆ = 6 ∆ = 7

F26 [6, 3, 3](6) [6, 1, 6](1) [6, 1, 6](1) [6, 1, 6](1)
[6, 3, 4](6) [6, 2, 4](1)

F28 [8, 4, 4](20) [8, 1, 8](1) [8, 1, 8](3)
[6, 3, 3](8) [6, 1, 4](1)

F210 [10, 5, 4](24) [10, 1, 10](1) [10, 1, 10](3) [10, 1, 10](3) [10, 1, 10](3) [10, 1, 10](3)
[10, 5, 5](24) [10, 4, 4](1)
[10,6,3](2)
[8,4,4](12))

F212 [12, 6, 3](12) [12,1,12](1) [12,1,12](3) [12,1,12](3) [12,1,12](3) [12,1,12](3)
[12, 6, 4](18) [12,2,8](1) [12, 2, 6](2) [12, 2, 6](2) [12, 2, 8](1) [12,2,8](1)
[12, 6, 5](54) [12,3,4](1) [12, 2, 8](3) [12, 2, 8](3) [12,2,9](4)
[12,6,6](12) [10,1,6](1) [12,2,9](4) [12,2,9](3)
[12, 7, 3](6) [10, 2, 4](1) [12,4,6](2) [12,4,6](2)

[12,7,4](12) [10,3,4](1)
[12,8,3](6) [8, 1, 4](1)
[10, 5, 3](6) [8, 2, 4](1)

[10,5,4](18) [8, 2, 5](1)
[8, 4, 3](12) [8, 3, 4](1)
[8,4,4](18)

F214 [14, 7, 4](24) [14, 1, 14](1) [14,1,14](3) [14,1,14](3) [14, 1, 14](3) [14, 1, 14](3)
[14, 7, 5](84) [14, 3, 8](2) [14, 3, 8](2) [14, 3, 8](2) [14, 3, 8, 1] [14, 3, 8](1)

[14,7,6](132) [14, 4, 6](2) [14,3,10](4) [14,3,10](4)
[12, 6, 4](30) [14, 6, 4](1) [14, 4, 6](2) [14,4,6](2)
[12,6,5](48) [14,4,8](4)
[8, 4, 3](24)
[8,4,4](8)
[6,3,3](8)

The following table, organized in the same way as the previous table, shows the char-
acteristics of codes with prescribed distances that are defined over F8.
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∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5

F82 [6,4,3](18) [6,2,5](12) [6,2,5](9) [6,1,6](3)
[6,3,4](3) [6,1,6](3)

[9, 6, 3](108) [9, 3, 6](60) [9,1,9](6) [9,1,9](3)
F83 [9,6,4](18) [9,3,7](12) [9, 2, 6](6) [9,2,6](6)

[6,3,4](18) [9, 4, 5](12) [9,2,8](6)
[9,4,6](3) [9, 3, 6](24)
[6,2,5](18) [9,3,7](3)

[9,4,5](3)
[12, 8, 3](132) [12, 4, 5](12) [12,1,12](6) [12,1,12](3)

F84 [12,8,4](183) [12, 4, 6](60) [12, 2, 6](3) [12, 2, 6](3)
[9,6,3](54) [12,4,7](48) [12, 2, 8](6) [12, 2, 8](6)

[12, 5, 6](21) [12,2,10](9) [12,2,10](3)
[12,5,7](12) [12, 3, 6](6) [12, 3, 6](9)
[12, 6, 4](12) [12, 3, 8](3) [12, 3, 8](6)
[12,7,4](3) [12,3,9](18) [12,3,9](3)
[12,8,4](72) [12, 4, 7](9) [12, 4, 6](3)
[9, 3, 5](12) [12,4,8](3) [12,5,6](3)
[9,3,6](21) [12, 5, 5](3)
[9, 4, 4](6) [12,5,6](12)
[9,5,4](3) [12,6,5](3)

4 Decoding skew BCH codes

These skew codes are built in analogy to BCH codes and it is possible to adapt the classical
algorithm to decode these codes.

Using the notations of the definition 5, we consider a (n, q0, r, s, δ) skew BCH code : C.
We assume that this code can correct t errors.
Consider the code word c ∈ C and the error e(x) = ei1x

i1 + ... + eirx
ir . We assume that

r ≤ t and denote

c′ = c + e =
n
∑

j=0

c′jx
j the received word.

The question is how to find e knowing c′.
1) According to [8] theorem 1.3.11 we get that the remainder of the right division of e

by X − αi for i = 1, ..., δ − 1 is

Ai =
n−1
∑

j=0

ej(α
i)[j]

where β[j] = β
(q0)i−1

q0−1 .
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It is possible to compute Ai only with c′ since the remainder of the right division of e
by X −αi is the same as the remainder of the right division of c′ by X −αi (since c is right
divisible by X − αi).

Since Ai is also equal to
n−1
∑

j=0

c′j(α
i)[j], it can be calculated only knowing c′.

One defines the syndrome polynomial of e as the polynomial :

S(z) =
δ−1
∑

k=1

Aiz
i−1 ∈ Fqs [z]

2) One also defines the pseudo-locator polynomial :

σ(z) =
r
∏

k=1

(1 − α[ik])

and the evaluator polynomial :

w(z) =
r
∑

l=1

eilα
[il]
∏

k 6=l

(1 − α[ik]z)

3) Knowing σ(z) enables us to find the [ik] = (q0)ik−1
q0−1

mod(qs − 1). To do that we have

to find [i1], ...[ir] such as σ(α−[i1]) = ... = σ(α−[ir]) = 0, this research can be done by testing
σ(x) for all x ∈ Fqs .

Knowing [ik] and w(z) enables us to find the coefficients eik since

eik = α−[ik]w(α−[ik])
∏

l 6=k

(1 − α[il]−[ik])

for k ∈ {1...r}.

4) We apply Euclid’s algorithm to the polynomials S(z) and zδ−1 in Fqs [z], we stop as
soon as we find the first remainder of degree less than t, then we have :

u(z)zδ−1 + v(z)S(z) = r(z)

As in the classical BCH algorithm, we can prove that σ(z) = v(z)/v(0) and w(z) =
r(z)/v(0). And if we know σ and w, we have seen that we can rebuild the error e and find
the codeword c.
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