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1 Polarized Parton Distributions

We give a brief review of the parton distributions functions which are de-
scribed in Refs. [1-6].

1.1 Quarks

The density functions are given by 2 :

xu+(x) =
AX+

0ux
b

exp[(x − X+
0u)/x̄] + 1

+
Ãxb̃

exp[x
x̄
] + 1

(1)

xu−(x) =
AX−

0ux
b

exp[(x − X−
0u)/x̄] + 1

+
Ãxb̃

exp[x
x̄
] + 1

(2)

xd+(x) =
AX+

0dx
b

exp[(x − X+
0d)/x̄] + 1

+
Ãxb̃

exp[x
x̄
] + 1

(3)

xd−(x) =
AX−

0dx
b

exp[(x − X−
0d)/x̄] + 1

+
Ãxb̃

exp[x
x̄
] + 1

(4)

A = 1.74938 (5)

b = 0.40962 ± 0.00438(∗) (6)

x̄ = 0.09907 ± 0.00110(∗) (7)

X+
0u = 0.46128 ± 0.00338(∗) (8)

X−
0u = 0.29766 ± 0.00303(∗) (9)

X+
0d = 0.22775 ± 0.00294(∗) (10)

X−
0d = 0.30174 ± 0.00239(∗) (11)

Ã = 0.08318 ± 0.00157 (12)

b̃ = −0.25347 ± 0.00318(∗) (13)

note:
The temperature x̄ is identical for quarks, antiquarks and gluons.

2Values marked with an asterisk are free parameters of the model. The input scale is
Q2

0
= 4GeV2, and Λ(MS) = 300MeV. The evolution is performed at NLO.
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1.2 Antiquarks

The density functions are given by:

xū+(x) =
Ā

X−
0u

·
xb̄

exp[(x + X−
0u)/x̄] + 1

+
Ãxb̃

exp[x
x̄
] + 1

(14)

xū−(x) =
Ā

X+
0u

·
xb̄

exp[(x + X+
0u)/x̄] + 1

+
Ãxb̃

exp[x
x̄
] + 1

(15)

xd̄+(x) =
Ā

X−
0d

·
xb̄

exp[(x + X−
0d)/x̄] + 1

+
Ãxb̃

exp[x
x̄
] + 1

(16)

xd̄−(x) =
Ā

X+
0d

·
xb̄

exp[(x + X+
0d)/x̄] + 1

+
Ãxb̃

exp[x
x̄
] + 1

(17)

Ā = 1.90801 ± 0.12627(∗) (18)

b̄ = 2b = 0.81924 (19)

xs(x) = xs̄(x) = 1
4
(xū(x) + xd̄(x))

x∆s(x) = x∆s̄(x) = 1
3
(x∆d̄(x) − x∆ū(x)). This assumption was removed in

a new version of the model, see [6].

xsh(x, Q2
0) =

AX+
0ux

bs

exp[(x − Xh
0s)/x̄] + 1

ln
(

1 + exp [kXh
0s/x̄]

)

ln
(

1 + exp [kX+
0u/x̄]

) +
Ãsx

b̃

exp(x/x̄) + 1
,

(20)

xs̄h(x, Q2
0) =

Ā(X+
0d)

−1x2bs

exp[(x + X−h
0s )/x̄] + 1

ln
(

1 + exp [−kX−h
0s /x̄]

)

ln
(

1 + exp [−kX+
0d/x̄]

) +
Ãsx

b̃

exp(x/x̄) + 1
.

(21)

A = 1.74938, Ā = 1.90801, X+
0u = 0.46128, X+

0d = 0.22775,

x̄ = 0.09907, b̃ = −0.25347, k = 1.42 . (22)
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1.3 Gluon

xG(x) =
AGxbG

exp[x/x̄] − 1
(23)

AG = 14.27535 (24)

bG = 1 + b̃ = 0.74653 (25)

x∆G(x) = 0 at Q2
0 = 4GeV2 (26)

Charm
The charm is set to 0 at Q2

0 = 4GeV2
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2 Parton Fragmentation Functions

We propose to parametrize the fragmentation functions of the baryons octet
with a statistical model as in the case of PDF.

For the quarks q = u, s, d the FF are expressed as

DB
q (x, Q2

0) =
AB

q XB
q xb

exp[(x − XB
q )/x̄] + 1

, (27)

where XB
q is the potential corresponding to the fragmentation q → B and

Q2
0 is an initial scale, given below in Table 1. We will ignore the antiquark

FF DB
q̄ , which are considered to be strongly suppressed. The heavy quark

FF DB
Q(x, Q2

0) for Q = c, b, t, which are expected to be large only in the
small x region (x ≤ 0.1 or so), are parametrized by a diffractive term with a
vanishing potential

DB
Q(x, Q2

0) =
ÃB

Qxb̃

exp(x/x̄) + 1
. (28)

The initial scale Q2
0, which is flavor dependent in this case, is given below in

Table 1 3. This FF for Q → B depends on b̃ and a normalization constant
ÃQ

B for each baryon B. For the other quarks, we make some reasonable
assumptions in order to reduce the number of parameters in addition to b,
the universal power of x in Eq. (27). First we have the obvious constraints,
namely, DB

u = DB
d for B = p, Λ. Moreover we assume that we need only four

potentials, two for the proton Xp
u = Xp

d and Xp
s and two for the hyperons

XY
u = XY

d and XY
s where Y = Λ, Σ±, Ξ−. Finally for the gluon to baryon

FF DB
g (x, Q2), which is hard to determine precisely, we take a Bose-Einstein

expression with a vanishing potential

DB
g (x, Q2

0) =
AB

g xb̃+1

exp(x/x̄) − 1
. (29)

We assume it has the same small x behavior as the heavy quarks and it is
the same for all baryons. The normalization constants AB

q , AB
g and ÃB

Q are
determined by fitting the data.

3Due to the fact that the input scale of the t quark is above the highest energy data
investigated in this work, it does not contribute to our analysis.
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Table 1: Input scales Q0 and Λ(MS) in GeV unit.

quark u,d,s c b t

Q0 0.632 1.4 4.5 175

Λ(MS) 0.299 0.246 0.168 0.068

Now, let us report the values of the free parameters we have obtained
from the NLO fit:

Xp
u = 0.648, Xp

s = 0.247, XΛ
u = 0.296, XΛ

s = 0.476

b = 0.200, b̃ = −0.472, AB
g = 0.051.

(30)

Table 2: Values of the normalization constants of the the octet baryons FF

Baryon q1 q2 AB
q1

AB
q2

ÃB
Q

p(uud) u = d s 0.264 1.168 2.943
Λ(uds) u = d s 0.428 1.094 0.720

Σ+(uus) u s 0.033 0.462 0.180
Σ−(dds) d s 0.030 0.319 0.180
Ξ−(dss) d s 0.023 0.082 0.072
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3 Parton distributions and fragmentation functions

figures
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Figure 1: The Fermi-Dirac functions for quarks F h
q = Xh

0q/(exp[(x−Xh
0q)/x̄]+

1) at the input energy scale Q2
0 = 4GeV2, as a function of x.
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Figure 2: The Fermi-Dirac functions for antiquarks F h
q̄ = 1/Xh

0q̄(exp[(x +

Xh
0q̄)/x̄] + 1) at the input energy scale Q2

0 = 4GeV2, as a function of x.
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Figure 3: The different unpolarized parton distributions (f =u, d, ū, d̄, s, c
and G) after NLO evolution, at Q2 = 20GeV2, as a function of x.
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Figure 4: Variation of d/u at large x, for Q2 = 4, 100GeV2
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Figure 5: xu(x, Q2) as function of x for Q2 = 3000, 8000GeV2, data from
H1 collaboration [41, 42].
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Figure 6: xd(x, Q2) as function of x for Q2 = 3000, 8000GeV2, data from H1
collaboration [41, 42].
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Figure 7: c · xu(x, Q2) as function of Q2 for different x bins, data from H1
collaboration [41, 42].

14



Figure 8: c · xd(x, Q2) as function of Q2 for different x bins, data from H1
collaboration [41, 42].
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Figure 9: Comparison of the data on d̄/ū(x, Q2) from E866/NuSea at Q2 =
54GeV2 [25], with the prediction of the statistical model (solid curve) and
the set 1 of the parametrization proposed in Ref. [84] (dashed curve).
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Figure 10: Difference d̄ − ū as a function of x, Q = 7.35GeV, experimental
results from FNAL-E866.
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Figure 11: The strange quark distribution xs(x, Q2) determined at NLO as
a function of x for different Q2 values. Data from CCFR Collaboration [14].
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Figure 12: The unpolarized and polarized strange quark and antiquark dis-
tributions determined at NLO as a function of x for Q2 = 4GeV2.
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Figure 13: The difference s − s̄ quark distributions determined at NLO as a
function of x for Q2 = 4, 20, 100GeV2.
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Figure 14: The different polarized parton distributions after NLO evolution,
at Q2 = 20GeV2, as a function of x.
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Figure 15: The different helicity components of the light quark distributions
after NLO evolution, at Q2 = 20GeV2, as a function of x.
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Figure 16: The different helicity components of the light antiquark distribu-
tions after NLO evolution, at Q2 = 20GeV2, as a function of x.
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Figure 17: Details of the polarized parton distributions g, s, c, after NLO
evolution, at Q2 = 20GeV2, as a function of x.

24



Figure 18: Quark helicity distributions at < Q2 >= 2.5GeV2, as a function
of x. Data from HERMES Coll. [46].
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Figure 19: Flavor asymmetry ∆ū − ∆d̄ of the light sea quark as a function
of x, for Q2 = 2.5GeV2. Data from HERMES Coll. [46].
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Figure 20: Flavor asymmetry ∆ū − ∆d̄ of the light sea quark as a function
of x, for Q2 = 4GeV2.
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Figure 21: x∆uv, x∆dv, x∆q̄ as function of x at fixed Q2 = 10GeV2, exper-
iment SMC Coll..
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Figure 22: The sum of polarized valence quark distributions determined at
NLO as a function of x for Q2 = 10GeV2, data from Compass Collaboration
[109, 110].
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Figure 23: Prediction for the integral ∆uv + ∆dv determined at NLO as a
function of the lower limit x for Q2 = 10GeV2.
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Figure 24: HERMES [44] and E99-117 [54] data on (∆u+∆ū)/(u+ū), (∆d+
∆d̄)/(d + d̄), ∆qs/qs as function of x at fixed Q2 = 2.5GeV2 . The curves
are our model calculations. For the sea quarks ∆ū/ū (solid curve) , ∆d̄/d̄
(dashed curve) and ∆s/s (dotted curve).
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Figure 25: Ratios (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄) as a function
of x for Q2 = 2.5GeV2. Data from Hermes [44] and JLab experiments [45].
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Figure 26: Prediction of BBS PDF for the difference asymmetry Ah+−h−

determined at NLO as a function of x for Q2 = 10GeV2, data from Compass
Collaboration.
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Figure 27: Ratio polarized/unpolarized quark distributions for u, d, s, at
Q2 = 4GeV2.
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Figure 28: Ratio polarized/unpolarized antiquark distributions for ū, d̄, s̄
and G, at Q2 = 4GeV2.
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Figure 29: Spin components of gluon density
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Figure 30: Comparison of xG(x, Q2) at Q2 = 20 − 30GeV2 (dashed-solid)
with experimental determination from NMC [57], H1 [39] and ZEUS [91]
experiments.
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Figure 31: Positivity constraints between polarized and unpolarized distri-
butions according to the inequality of Soffer-Teryaev [98].
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Figure 32: The u quark to proton fragmentation function Dp
u(x, Q2) as a

function of x at Q2 = 25GeV2. The experimental data are from Ref. [36].
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Figure 33: The fragmentation function for u quark to Λ, DΛ
u (x, Q2), as a

function of x at Q2 = 2.5GeV2. The experimental data are from Ref. [43].

40



Figure 34: The quark to octet baryons fragmentation functions DB
q (x, Q2)

and DB
Q(x, Q2) (B = p, Λ, Σ±, Ξ− , q = u, d, s and Q = c, b, t), as a function

of x at Q = 91.2GeV. Note that we used different vertical scales in the upper
and lower parts of the figure.
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4 Unpolarized experiments
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Figure 35: F p
2 (x, Q2) as function of Q2 for fixed x, E665 data [23]. The

function c(xi) = 0.6(19 − i), i = 1 corresponds to x = 8.9 10−4.

43



Figure 36: F p
2 (x, Q2) as function of Q2 for fixed x, H1 data [37, 38]. The

function c(xi) = 0.6(19 − i), i = 1 corresponds to x = 1.78 10−4.
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Figure 37: F p
2 (x, Q2) as function of Q2 for fixed x, H1 Coll. The function

c(xi) = 0.6(19 − i), i = 1 corresponds to x = 0.003.
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Figure 38: F p
2 (x, Q2) as function of Q2 for fixed x, ZEUS data [92, 93]. The

function c(xi) = 0.6(19 − i), i = 1 corresponds to x = 6.3 10−5.
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Figure 39: F p
2 (x, Q2) as function of Q2 for fixed x, BCDMS Coll. [11, 12].

The function c(xi) = 0.6(19 − i), i = 1 corresponds to x = 0.07

47



Figure 40: F p
2 (x, Q2) as function of Q2 for fixed x, NMC Coll. The function

c(xi) = 0.6(19 − i), i = 1 corresponds to x = 4.5 10−3.
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Figure 41: F p
2 (x, Q2) as function of Q2 for fixed x, NMC Coll. The function

c(xi) = 0.6(19 − i), i = 1 corresponds to x = 9 10−2.
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Figure 42: F p
2 (x, Q2) as function of Q2 for fixed x, c(x) = 0.6(ix − 0.4), ix =

1 → x = 0.32, rebinned data H1, ZEUS, E665, NMC, BCDMS. (Presentation
of data, courtesy of R. Voss).
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Figure 43: Ratio F n
2 /F p

2 as a function of x for differents Q2 values, data are
from NMC and E665 Coll. Difference F p

2 − F n
2 as a function of x for Q2 =

4GeV2, data are from NMC Coll.. The curves are shown for Q2 = 4GeV2.
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Figure 44: F d
2 (x, Q2) as function of Q2 for fixed x, NMC data [58]. The

function c(xi) = 0.6(19 − i), i = 1 corresponds to x = 4.5 10−3.
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Figure 45: F d
2 (x, Q2) as function of Q2 for fixed x, BCDMS data [12]. The

function c(xi) = 0.6(19 − i), i = 1 corresponds to x = 7 10−2.
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Figure 46: F d
2 (x, Q2) as function of Q2 for fixed x, E665 data [23]. The

function c(xi) = 0.6(19 − i), i = 1 corresponds to x = 8.9 10−4.
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Figure 47: Prediction of the partial derivative ∂F p
2 (x, Q2)/∂ ln(Q2) for fixed

x as a function of Q2. Data from H1 Collaboration [111].
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Figure 48: Prediction of the partial derivative ∂F p
2 (x, Q2)/∂ ln(Q2) for Q2 =

10GeV2 as a function of x. Data from H1 Collaboration [111].
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Figure 49: Prediction of the partial derivative −∂ ln F p
2 (x, Q2)/∂ ln(x) for

fixed Q2 as a function of x. Data from H1 Collaboration [112].
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Figure 50: F p
2 partial derivative λ(x, Q2) as a function of Q2, the shaded

surface represents the allowed domain for 10−4 ≤ x ≤ 10−2, predicted by the
statistical model. Data from H1 Collaboration [112].
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Figure 51: Prediction of the structure function FL for different Q2 as a
function of x. Data from H1 Collaboration [111].
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Figure 52: xF νN
3 (x, Q2) as function of x for low Q2 values, CCFR Coll. The

curves are for Q2 = 4, 12.6GeV2, solid, dashed respectively.
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Figure 53: xF νN
3 (x, Q2) as function of Q2 for fixed x, CCFR data [13]. The

function c(xi) = 0.6(19 − i), i = 1 corresponds to x = 7.5 10−3.
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Figure 54: The structure function xF NC
3 as a function of x, for different Q2.

Data from ZEUS Coll. [95], H1 Coll. [40].
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Figure 55: Charged-current total cross section νN for an isoscalar nucleon
as a function of the neutrino energy.
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Figure 56: Theoretical calculations for the ratio RW (y) = (dσW+

/dy)
/(dσW−

/dy) for pp versus the W rapidity, at two RHIC-BNL energies. Solid
curve (

√
s = 500GeV) and dashed curve (

√
s = 200GeV) are the statistical

model predictions. Dotted curve (
√

s = 500GeV) and dashed-dotted curve
(
√

s = 200GeV) are the predictions obtained using the d̄(x)/ū(x) ratio from
Ref. [84].
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Figure 57: Cross sections for proton production in e+e− annihilation
at several energies as function of xE. The experimental data are from
Refs. [8, 20, 79, 86, 90, 88].
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Figure 58: Cross sections for Λ production in e+e− annihilation at several
energies, as function of xE. The experimental data are from Refs. [15, 9, 21,
61, 55, 79, 85, 87, 89, 50, 51, 52].
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Figure 59: Cross sections for Σ± production in e+e− annihilation at the
Z-pole as function of xE. The experimental data are from Ref. [61].
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Figure 60: Cross sections for Ξ− production in e+e− annihilation at the
Z-pole as function of xE. The experimental data are from Refs. [9, 61, 22].

68



Figure 61: Drell-Yan cross sections per nucleon at
√

s = 38.8GeV for pp, pd,
and pCu as a function of M for selected xF bins. Experimental data are
from Refs. [26, 27, 28].
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Figure 62: Drell-Yan cross sections per nucleon at
√

s = 38.8GeV for pp and
pd as a function of M for selected xF bins. Experimental data are from Refs.
[26, 27].
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Figure 63: Drell-Yan cross sections ratios experiment vs theory at
√

s =
38.8GeV for pp, pd, and pCu as a function of M for selected xF bins. Ex-
perimental data are from Refs. [26, 27, 28].
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Figure 64: Drell-Yan cross sections per nucleon at
√

s = 38.8GeV for pp and
pd as a function of xF for selected M bins. Experimental data are from Ref.
[26].

72



Figure 65: Drell-Yan cross sections per nucleon at
√

s = 38.8GeV for pp and
pd as a function of xF for selected M bins. Experimental data are from Ref.
[26].
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Figure 66: Cross section for single jet production in p̄p at
√

s = 1.8TeV as a
function of ET . Data from CDF [17] and D0 [18] collaborations.
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Figure 67: Inclusive π0 production in pp reaction at
√

s = 63GeV as a
function of pT . Data from AFS [7] and R806 [63] Collaborations. Solid curve
scale µ = pT /2, dashed µ = pT , fragmentation functions from KKP [100].
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Figure 68: Inclusive π0 production in pp reaction at
√

s = 63GeV as a
function of pT . Data from AFS [7] and R806 [63] Collaborations. Solid curve
scale µ = pT /2, dashed µ = pT , fragmentation functions BKP [101].
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Figure 69: Inclusive π0 production in pp reaction at
√

s = 200GeV as a
function of pT , scale µ = pT . Data from Phenix Collaboration [62]. Solid
curve fragmentation functions from KKP [100], dashed curve BKP [101].
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Figure 70: The reduced charged current cross section, σ̃, in e−p reaction as
a function of x, for different fixed values of Q2. Data from H1 Coll. [40].
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Figure 71: The reduced charged current cross section, σ̃, in e−p reaction as
a function of Q2, for different fixed values of x. Data from H1 Coll. [40].
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Figure 72: The reduced charged current cross section, σ̃, in e+p reaction as
a function of x, for different fixed values of Q2. Data from H1 Coll. [41].
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Figure 73: The reduced charged current cross section, σ̃, in e+p reaction as
a function of Q2, for different fixed values of x. Data from H1 Coll. [41].
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Figure 74: The reduced charged current cross section, σ̃, in e−p reaction as
a function of x, for different fixed values of Q2. Data from ZEUS Coll. [96].
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Figure 75: The reduced charged current cross section, σ̃, in e−p reaction as
a function of Q2, for different fixed values of x. Data from ZEUS Coll. [96].
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Figure 76: The reduced charged current cross section, σ̃, in e+p reaction as
a function of x, for different fixed values of Q2. Data from ZEUS Coll. [97].
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Figure 77: The reduced charged current cross section, σ̃, in e+p reaction as
a function of Q2, for different fixed values of x. Data from ZEUS Coll. [97].
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Figure 78: The reduced neutral current cross section σ̃, in e−p reaction as a
function of x, for different fixed values of Q2 and

√
s = 320GeV. Data from

H1 Coll [40]
.
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Figure 79: The reduced neutral current cross section σ̃, in e+p reaction as a
function of x, for different fixed values of Q2 and

√
s = 319GeV. Data from

H1 Coll [40]
.
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Figure 80: The reduced neutral current cross section σ̃, in e±p reaction as
a function of Q2, for different fixed values of x. Solid line e−p, dashed line
e+p. Data from H1 Coll [40]
.
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Figure 81: The reduced neutral current cross section σ̃, in e−p reaction as a
function of x, for different fixed values of Q2 and

√
s = 318GeV. Data from

Zeus Coll [97]
.
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Figure 82: The reduced neutral current cross section σ̃, in e+p reaction as a
function of x, for different fixed values of Q2 and

√
s = 318GeV. Data from

Zeus Coll [97]
.
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Figure 83: The reduced neutral current cross section σ̃, in e±p reaction as
a function of Q2, for different fixed values of x. Solid line e−p, dashed line
e+p. Data from Zeus Coll [97]
.
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Figure 84: Differential cross section νN proton for Eν = 85GeV as a function
of y for different x bins. Data from CCFR [29] and NuTeV collaboration
[31, 30].
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Figure 85: Differential cross section νN proton for Eν = 85GeV as a function
of y for different x bins. Data from CCFR [29] and NuTeV collaboration
[31, 30].
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Figure 86: The reduced harged current cross section νN , for different x bins
as a function of Q2. The data points are obtained from the differential cross
section [31, 30], they are not a direct measurement
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Figure 87: Comparison of the CCFR ν data [103] to the result of the fit
for dσ/dxdy, in units of charged-current σ, for various kinematic ranges in
energy, x and y.
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Figure 88: Comparison of the CCFR ν̄ data [103] to the result of the fit
for dσ/dxdy in units of charged-current σ, for various kinematic ranges in
energy, x and y.
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Figure 89: Comparison of the NuTeV ν data [103] to the result of the fit
for dσ/dxdy, in units of charged-current σ, for various kinematic ranges in
energy, x and y.
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Figure 90: Comparison of the NuTeV ν̄ data [103] to the result of the fit
for dσ/dxdy, in units of charged-current σ, for various kinematic ranges in
energy, x and y.
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5 Polarized experiments
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Figure 91: gp
1(x, Q2) as function of x at for a range 1.1 ≤ Q2 ≤ 1.64GeV2,

CLAS Coll [16]. The two curves represent the extreme Q2 values.
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Figure 92: gp
1(x, Q2) as function of x at fixed Q2 = 3GeV2, E143 Coll.
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Figure 93: gp
1(x, Q2) as function of x at fixed Q2 = 5GeV2, E155 Coll.
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Figure 94: gp
1(x, Q2) as function of x at fixed Q2 = 10GeV2, evolved SMC

data.
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Figure 95: Behavior of gp
1(x, Q2) at low x and fixed Q2 = 5GeV2,
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Figure 96: gn
1 (x, Q2) as function of x at fixed Q2 = 3GeV2, E143 Coll.
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Figure 97: gn
1 (x, Q2) as function of x at fixed Q2 = 5GeV2, E154, E155, JLab

Coll..
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Figure 98: gd
1(x, Q2) as function of x at fixed Q2 = 10GeV2, evolved SMC

data.
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Figure 99: gp
1(x, Q2)− gn

1 (x, Q2) as function of x at fixed Q2 = 5GeV2, E155
Coll..
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Figure 100: gp,d,n
1 (x, Q2) as function of x for different Q2 values, from E155,

E154, E143, SMC, HERMES experiments. The curves correspond to our
model predictions at Q2 = 5GeV2.
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Figure 101: gp,d,n
1 (x, Q2) at large x values for different Q2 values, from E155,

E154, E143, SMC, HERMES, Jlab experiments. The curves correspond to
our model predictions at Q2 = 5GeV2.
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Figure 102: 2ngp
1(x, Q2) as function of Q2 for different x values. n = 0

corresponds to x = 0.75 and n = 16 to x = 7.5 10−3. Experimental data are
rebined to the nearest x values.
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Figure 103: gn
1 (x, Q2) as function of Q2 for different x values. The function

c(xi) = 19 − i, i = 0 corresponds to x = 7.5 10−3. Experimental data are
rebined to the nearest x values.
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Figure 104: xg2 for proton and neutron as a function of x, for Q2 = 4GeV2.
Data from SLAC E155 [77], JLab E99-117 [54].
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Figure 105: xg2 for neutron as a function of x, for Q2 = 4GeV2. Data from
E142, E143, E154 [66]-[72].
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Figure 106: Ap
1 as a function of x, for Q2 = 4GeV2. Data from E143[70],

EMC[35], E155[76], HERMES[48], SMC[81].
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Figure 107: An
1 as a function of x, for Q2 = 4GeV2 solid curve, gn

1 /F n
1

dashed curve. Data from E142[66], E155[76], E154[74], HERMES[49], Jlab
E-99-117[53].
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Figure 108: The longitudinal spin asymmetry Ad
1 as a function of x. Data

from Compass, Hermes, SMC Collaborations [113, 114, 115].
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Figure 109: Compilation of the asymmetries Ap
1 and An

1 from E155, E154,
E142, E143, EMC, SMC and HERMES experiments [33]-[69]. The curves
correspond to our model predictions at Q2 = 4GeV2.
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Figure 110: The quantities 2x(gp
1 − gn

1 ) and F p
2 − F n

2 as function of x at
fixed Q2 = 4 − 5GeV2, calculated from E155, NMC Coll. Curves are model
predictions.
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Figure 111: The quantity 2x(gp
1 − gn

1 ) − (F p
2 − F n

2 ) as function of x at fixed
Q2 = 4 − 5GeV2, calculated from E155, NMC Coll. Comparison with the
difference d− − u− as a function of x, Q2 = 4GeV2. 2/3(d− − u− + d̄− − ū−),
solid curve, 2/3(d̄− − ū−), dashed curve.
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Figure 112: gd
1(x, Q2) as function of x at fixed Q2 = 3GeV2, E143 Coll.

121



Figure 113: The parity violating asymmetry APV
L for pp → W± production

versus the rapidity y at
√

s = 350, 500GeV (dashed, solid).
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Figure 114: The parity violating asymmetry APV
LL versus the rapidity y for

pp → W± production at
√

s = 350, 500GeV (dashed, solid).
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Figure 115: The parity violating asymmetry APV
L with polarized proton for

p↑n → W± production versus the rapidity y at
√

s = 350, 500GeV (dashed,
solid).
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Figure 116: Parity violating asymmetry APV
L with a polarized neutron for

pn↑ → W± production versus the rapidity y at
√

s = 350, 500GeV (dashed,
solid) .
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Figure 117: The parity violating asymmetry APV
L for pp → Z0 production

versus the rapidity y at
√

s = 350, 500GeV (dashed, solid).
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Figure 118: The parity violating asymmetry APV
LL versus the rapidity y for

Z0 production at
√

s = 350, 500GeV (dashed, solid).
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Figure 119: The parity violating asymmetry APV
L for p↑n → Z0 production

versus the rapidity y at
√

s = 350, 500GeV (dashed, solid).
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Figure 120: Parity conserving double helicity asymmetry APC
LL for pp → W±

production versus the rapidity y at
√

s = 350, 500GeV (dashed, solid) .
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Figure 121: Parity conserving double helicity asymmetry APC
LL for pp → Z0

production versus the rapidity y at
√

s = 350, 500GeV (dashed, solid) .
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Figure 122: Parity conserving double helicity asymmetry APC
LL for pn → Z0

production versus the rapidity y at
√

s = 350, 500GeV (dashed, solid) .
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