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A mixed model of active geodesic contours with
gradient vector flows for X-ray microtomography

segmentation
Laurence Guillot, Emmanuel Le Trong, Olivier Rozenbaum, Maı̈tine Bergounioux and Jean-Louis Rouet

Abstract—The structural characterization of weathered build-
ing stones of historical monuments can be achieved with a pow-
erfull imagering technique, X-ray microtomography. It requires
however a carefull extraction of each phase constituting the
sample from the raw gray-level images obtained (the segmen-
tation process). This contribution presents an original method
of segmentation of such images that combines active contour
models driven by gradient vector flows with a morphological
preprocessing, alternate sequential filters. Preliminary results on
high resolution, structuraly complex images are presented and
compared to more classical approaches.

Index Terms—Segmentation, Alternate Sequential Filtering
(ASF), microtomography, active contours

I. INTRODUCTION

WEATHERING of buildings is a widespread problem
encountered in most of countries all around the world.

This weathering concerns buildings made with concrete as
well as historical buildings made with stones or bricks. Indeed,
these porous materials are subjected to deterioration due to
the action of external environmental (physical, chemical and
biological) agents [8], [14]. In all cases, water transfer within
the whole volume of the porous media is the common point to
weathering. Then, for aesthetical reasons, durability aspects,
historical and cultural interests, architects, restorers and sci-
entists work together in order to protect and restore these
buildings. On this topic, a lot of studies concerns building
material characterisations by analysing mineral and chemical
composition and determining their porous characteristics [13],
[25]. A complementary way in this field is to characterize the
medium and to simulate some physical processes (e.g. fluid
and mass transfer) in a realistic geometry. Such a goal can be
achieved by 3D grey level image analysis obtained by X-ray
microtomography. This technique gives a map of the X-ray
absorption coefficient of the various phases constituting the
material. Indeed, X-ray tomography [17] is a powerful tool
to extract accurately the structure of various porous materials:
rocks [1], [6], [30], cements [12], and others [7], [24], [16].

However the segmentation of a 3D image is rarely a
straightforward process, because it depends strongly on the
raw image and on the objects to extract. Segmentation of
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a 3D image is the process to determine to which phase or
object a grey-level pixel belongs. In the case of porous material
images, segmentation has to separate the void phase (actually
filled with resin) from some distinct solid phases (two for
the stone studied as example in this paper). Most of the
segmentation complexity is related to the presence of noise
(a single phase is addressed by two or more grey values) and
blur (the boundaries between the phases are not well defined).
Furthermore, as the images are large and three-dimensional,
the analysis cannot be done by hand (e.g. by marking the
objects of interests) and must be as automated as possible.

A. Material and image acquisition

Our works focuses on buildings stones of heritage mon-
uments (here called “tuffeau”), keeping in mind that our
methodologies are perfectly applicable for all kind of building
porous materials. Most of heritage monuments (chateaux,
cathedrals) constituting the cultural heritage of the Loire valley
are made with tuffeau, a highly porous limestone (porosity !
45%) originating from this valley. Previous studies [11], [25]
showed that minerals are essentially sparitic (large grains) or
micritic (small grains) calcite (! 50% of the solid phase),
silica (! 45%) and some secondary minerals (clays, micas)
in much smaller proportion (a few %). The scanning electron
microscopic (SEM) image in Figure 1 illustrates the structural
complexity of the main phases of tuffeau. The typical sizes of
the structural components of tuffeau (few µm to 20 µm in size)
justify the use of a high resolution tomograph, which leads
toward synchrotron radiation facilities that enables high quality
and high resolution images compared to the more conventional
X-ray tubes. However smallest structures as micritic calcite (b)
on Figure 1, could not be so well defined as their size is far
below the best resolution any X-ray tomographic facility can
achieve nowadays. The microtomographic images presented in
this study were collected at the ID-19 beamline of the ESRF
(European Synchrotron Radiation Facility, Grenoble, France)
[3], [26] at the smallest possible pixel size: 0.28 µm. The
energy used was 14.7 keV and 1500 successive rotations of
the sample corresponding to 1500 regularly spaced angular
positions ranging between 0o and 180o were acquired by
a FReLoN camera with 2048×2048 pixels image size. In
order to stay in the field of view of the detector and avoid
supplementary artefacts, the samples have to measure less than
700 µm in diameter [19]. For such size, the cohesiveness of the
material implies to glue it with resin. Samples were prepared
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Fig. 1. SEM image of a tuffeau sample with (a) sparitic calcite (large grains),
(b) micritic calcite (small grains of a few µm), (c) opal spheres of 10 to 20
µm diameter.

Fig. 2. One slice extracted from a 3D tomographic image of a tuffeau
sample. The image is 2048× 2048 pixels, pixel size is 0.28 µm (the radius
of the sample is " 600µm) with (a) resin, (b) silica (opal sphere), (c) air
bubble in the resin (caused by the impregnation process), (d) silica (quartz
crystal), (e) calcite and (f) phyllosilicate. The rectangle marks the location of
the zoomed image that appears in Figure 3-(a).

as cylindrical cores of that diameter and were mounted on
a vertical rotator on a goniometric cradle. Imaging time was
approximately 45 minutes and the 2048 horizontal slices (0.28
µm thick) were reconstructed from the projections with a
dedicated filtered back-projection algorithm. The outputs of
the tomographic process are then 2048 images of 2048×2048
pixels with 256 level grey level values (one uncompressed
image is 8 GB in size). Stacking these images produced a 3D
volume. The grey level value of a pixel is linked to the X-ray
absorption of the sample at the pixel position [4]. Figure 2
gives a typical output on which the pores appear.

The different phases are easily distinguishable to the naked-
eye. Calcite is present in the form of large irregular grains
(sparitic calcite) or small grains that look like crumble (mi-

critic calcite). Silica has the form of large crystals and small
spheres. Therefore, it is not possible to depend to some
shape or size criteria to identify the phases and solely the
grey level is pertinent. Unfortunately, even though looking
smooth to the naked eye, the images are in fact noisy as
shown in Figure 3-(a). This noise affects at random the pixels
grey value, preventing to identify these pixels only from
this sole information . This noise effect is also visible on
the image histogram that is smoothed (c.f. histogram of the
original image in Figure 4) and the bands corresponding to the
three main phases (resin, silica and calcite) are impossible to
separate. As a result, segmentation by a simple thresholding
on such images would lead to an incorrect result. Since the
grey levels are the only relevant information to distinguish the
phases, the segmentation technique will firstly consist in an
efficient image denoising: enough noise must be removed to
identify the phases. In addition the filtering process should
not add blur which yields to loosing the smaller structures
of the images (e.g. micritic calcite). Some basic smoothing
filters (e.g. convolution, mean or gaussian filters) have been
found unable to fulfil both these requirements. For this reason,
the first treatment to apply on these images turn towards
morphological tools.

Two different approaches have been tested. The first one is
a full 3D approach : the tomographic reconstruction provides a
3D object that is denoised and segmented with morphological
methods. This is described in [19]. An alternative approach
is to consider 2D slices of the object and perform a 2D
treatment. The object is a posteriori reconstructed adding the
different slices. This approach allows to use different denoising
and segmentation methods. The denoising process will be
performed with a (2D) mathematical morphology technique.
Indeed, this has been fully developed for the 3D case and
we recover 2D slices very easily. Note that another denoising
process is also tested in a forthcoming paper [15], that deals
with the so-called Rudi-Osher-Fatemi (ROF) model [27].
The filtering step is described in next section. Section III is
devoted to the theoretical presentation of the segmentation
model and section IV to the numerical implementation. We
present numericals results in section V.

II. FILTERING STEP BY MATHEMATICAL MORPHOLOGY
TREATMENT

IN order to apply a contour detection method we first
filter the images. Because the objectif is to detect contours

we use Alternate Sequential Filtering (ASF). This method
is one of the main tool of mathematical morphology theory
formulated by Matheron and Serra [20], [28]. An ASF is using
the two main operators of mathematical morphology that are
erosion ε and dilation δ by a structuring element B. They are
defined on a grey level image at every point x by

δB(Io)(x) = ∨{Io(x− y), y ∈ B(x)} (1)

εB(Io)(x) = ∧{Io(x− y), y ∈ B(x)} (2)

where B(x) is a structuring element centred at point x, ∨
is the supremum (or maximum) operator and ∧ the infimum
(minimum) operator. Here Io is the discrete intensity function
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of a 2D image (considered square for the sake of simplicity)
which support is constituted by a set of N ×N pixels, N ∈ N
(i.e. a squared grid). Io has integer values (the grey level),
in the range [0, 255]. In the sequel we identify the intensity
function with the image. The opening γ and closing ϕ are then
defined by the adjunctions

ϕB = δB ◦ εB (3)

γB = εB ◦ δB . (4)

Finally on order p ASF is a sequence of opening followed
by a closing operator on image I using larger and larger
structuring elements Bi, i = 1, · · · , p. Here the structuring
element is a Digital balls Bp, with radius p, defined by

Bp(x) = {y, d(x, y) ≤ p}, p ∈ N (5)

where d(x, y) is the Euclidian distance between the digital
points x and y. The ASF operations are brought up to p = 3,
yielding the filtered image I

I = γB3ϕB3γB2ϕB2γB1ϕB1(Io). (6)

An ASF up to a structuring element of size n = 2p + 1
removes the noise with characteristic length smaller than n
but, as a counter part, generates an undesirable side effect
by destroying each object of the image smaller than that
size. Therefore, the more the ASF is pushed towards bigger
sizes, the more the image is denoised but the more structural
components of the image are lost: a compromise has to be
done. For the stone images presented here we take n = 7.
Consequently, each object bigger than a ball with a diameter
of 7 pixels is kept (which is the just under typical size
of micritic calcite grains) and each object smaller than this
structuring element is lost. An ASF up to a smaller structuring
element appeared to let too much noise. The intermediate
steps and the result of this filtering operation are shown in
Figure 3-(a) to (d). In the sequel n = 2p+1, with p = 1, 2, 3.

III. THE SEGMENTATION MODEL

THE classical parametric active contour model, also
called “snakes” model, was proposed by D.Terzopoulos,

A.Witkin et M.Kass [31]. The performance of this model is
limited by unstable initialization process and poor convergence
when the boundary is concave. Chenyang Xu and Jerry L.
Prince [32] build a class of vector fields derived from images.
The Gradient Vector Flow (GVF) can be viewed as external
forces for active contour models: it allows to solve problems
where classical methods convergence fail to deal with bound-
ary concavities. Its formulation fundamentally differs from
external forces of snakes model since it includes a divergence-
free component and a curl-free component [18], [34]. In the
sequel f denotes an edge detector function. There are many
choices for f : in [33], C.Xu and JL.Prince consider

f(x) = −|∇I(x)|2

where I is the continuous intensity function (identified to the
image). From an operational point of view I will be the result

(a) p=0

(b) p=1

(c) p=2

(d) p=3
Fig. 3. Illustration of the image denoising process. In the left column a
2D zoom in the sample (white rectangle in Figure 2) undergoes the image
treatment. In the right column, a line of the zoomed image is plotted (pixel
coordinate in abscissa, grey level in ordinate). From top to bottom: (a) the
original image; (b) after step 1 of the ASF; (c) after step 2, (d) after step 3.
The histograms of the whole 3D image at each steps are visible on Figure 4.
The ASF clearly removes the noise in the image without blurring the borders
between the phases.
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Fig. 4. Evolution of the histogram of a 1024×1024 pixels image during
the image processing. Original is the histogram of the original image (dotted
line) , ASF after the ASF (n=2p+1,p =1, 2, 3). In the starting image, the noise
precludes any thresholding, the peaks are not distinguishable. The ASF makes
them become visible, resulting in the last histogram where the threshold levels
are straightforward.

of the previous filtering treatment presented in section II. R.
Deriche and O. Faugeras propose in [10]

f(x) = h(|∇I(x)|2) where h(b) = 1− 1√
2πσ

e−
b

2σ2 , σ ∈ R.

Here x = (x, y) stands for pixel coordinates. We made
tests with the above detectors. As we could not recover thin
contours, we finaly take in the following applications

f(x) =
1

1 + c|∇I(x)|2 , c > 0

where c is chosen depending on whether we want recover more
or less contrasted contours according to delimited grey levels.
Here | · | denotes the R2- euclidean norm.
The gradient vector flow Vµ = (uµ, vµ) is defined by the
following decoupled equations respectively verified by each
of its coordinates u(t,x) and v(t,x) :






∂uµ

∂t
− µ∆uµ + f |∇f |2(uµ − fx) = 0 in Q

∂uµ

∂N = 0 on Σ
uµ(0, ·) = fx in Ω






∂vµ

∂t
− µ∆vµ + f |∇f |2(vµ − fy) = 0 in Q

∂vµ

∂N = 0 on Σ
vµ(0, ·) = fy in Ω

where Ω stands for the image frame (domain) and N (x) is
unit the outward normal vector at x.
Q :=]0,+∞[×Ω, Σ is the lateral boundary of Q. Here fx, fy

denotes the partial derivatives of f with respect to x, y
respectively and µ > 0.

The GVF is built as a spatial diffusion of the edge map f
gradient. This is equivalent to a progressive construction of
the gradient vector flow starting from the object boundaries
and moving toward the flat background. In [33], the GVF is

normalized to obtain a more efficient propagation. It is denoted
V̂µ(x) = (ûµ(x), v̂µ(x)) where

ûµ(x) =
uµ(x)√

uµ(x)2 + vµ(x)2
, v̂µ(x) =

vµ(x)√
uµ(x)2 + vµ(x)2

.

We used a geodesic active contour model combined with the
GVF [9], [23], [5]. It is based on the remark that the GVF
field after the rescaling refers to the direction that has to
be followed to locally deform the contour and to reach the
closest object boundaries. On the other hand, given the fact
that the propagation of a contour often occurs along the normal
direction, the propagation will be optimal when V̂µ and the
unit outward normal N are colinear. So we choose to project
the normalized gradient vector flow onto the outward normal.
Then we multiply the velocity by an edge detector function g
(that may be different from f ), which represents the contour
information. The contour evolution velocity Vt is given by
Vt(x) = Ct(x)N (x) where Ct satisfies :

Ct(x) = g(|∇I(x)|2)︸ ︷︷ ︸
boundary

〈(ûµ, v̂µ)(x),N (x)〉R2
︸ ︷︷ ︸

projection

(7)

When there is no boundary information ( |∇I|2 . 1) g ! 1,
the contour evolution is driven by the inner product between
the Normalized Gradient Vector Flow (NGVF) and the normal
direction : it is adapted to deal with concave regions.
When the curve reaches the object boundaries neighbourhood
( |∇I|2 / 1 ) then g ≈ 0 : the flow becomes inactive and the
equilibrium state is reached.

It is classical to impose a regularity condition on the contour
propagation adding a curvature term κ and a “balloon force”
H so that the evolution equation for Ct becomes

Ct(x) = g(|∇I(x)|2)(−βκ(x)︸ ︷︷ ︸
smoothness

+H(x)︸︷︷︸
balloon force

) + ν〈(ûµ, v̂µ)(x),N (x)〉R2︸ ︷︷ ︸
boundaries attraction

where β and ν are positive constants. In the following appli-
cations, we choose for the detector

g(|∇I(x)|2) = f(x) :=
1

1 + c|∇I(x)|2 , c > 0.

Problems of topologic changes can be solved using the level
set method [22]. The moving 2D-curve is viewed as the zero
level set of a 3D surface which equation is z − Φ(x, y) = 0.

We denote Φt the partial derivative
∂Φ
∂t

of Φ towards t. The
3D-surface Φ evolution is described by :






Φt(x) = g̃(x) (βκ(x)−H(x))|∇Φ(x)|
− ν〈V̂µ(x),∇Φ(x)〉R2 in Q,

∂Φ
∂N = 0 on ∂Q,

Φ(0, ·) = Φo in Ω
(8)

where Φo is the usual signed distance to an initial curve.



JOURNAL OF IEEE TRANSACTIONS ON IMAGE PROCESSING 6

IV. SEGMENTATION DISCRETIZATION SCHEME

TO do the numerical computation we have adopted the
scheme proposed by J.A. Sethian in [29]. We approche

a level sets equation by using techniques from hyperbolic
conservation laws equations [29], [21]. In order to write the
agorithm we consider discretizations in space and time. We
write discrete times tn := nτ , where n ∈ N and τ is the time
step size. The image is divided in a grid of nodes (i, j) by a
uniform mesh grid of size h that we choose equal to 1. By
Φn

i,j we denote approximations to Φ(ih, jh, tn).
The Gradient Vector Flow is computed with an explicit

scheme: the equation satisfied by uµ (vµ is implemented in
the same way) is approximated as follows

un+1
i,j =un

i,j + µ∆t
h2

(
un

i+1,j +un
i−1,j +un

i,j+1 +un
i,j−1−4un

i,j

)

−∆tf(i, j)(f2
x(i, j) + f2

y (i, j))(un
i,j − fx(i, j)).

The GVF is initialized in the gradient of the edge map
∇f and the boundary conditions are Neuman conditions. If
|∇f(x, y)|2, |∇f(x, y)|2fx(x, y) and |∇f(x, y)|2fy(x, y) are

bounded, the scheme is stable if the CFL condition :
µ∆t

h2
≤ 1

4
is satisfied [33]. Then the GVF is normalized and the advection
term g(|∇I(x)|2)〈V̂µ(x),∇Φ(x)〉 can be estimated. The term
〈V̂µ(x),∇Φ(x)〉 can be computed with an upwind scheme
that selects the right direction according to the sign of the
coordinate uµ or vµ of the Gradient Vector Flow V̂µ :

〈V̂µ(x),∇Φ(x)〉 ≈ max (ûn
i,j , 0)D

−
x Φi,j + min (ûn

i,j , 0)D
+
x Φi,j

+max (v̂n
i,j , 0)D

−
y Φi,j + min (v̂n

i,j , 0)D
+
y Φi,j .

where
D±

x Φi,j := ±Φi±1,j ∓ Φi,j

and
D±

y Φi,j := ±Φi,j±1 ∓ Φi,j .

The curvature dependent term βg(|∇I(x)|2)κ(x)|∇Φ(x)| is a
parabolic contribution to the evolution equation of the surface
Φ, so an upwind scheme is not appropriate.The most natural
approach is a finite central differences of each derivative
approximation. For this term we obtain :

βgn
i,jK

n
i,j

√
(D0

xΦi,j)2 + (D0
yΦi,j)2

where Kn
i,j is the curvature approximation κ = div

(
∇Φ
|∇Φ|

)

as in [2]. The term g(|∇I(x)|2)H(x)|∇Φ(x)| describes the
balloon force. We choose a constant balloon force equal to
α that is usually a constant nonnegative real number. This
contributed term comes from the dilatation/erosion hyperbolic
equation ∂tw = ±|∇w|. Therefore we use an upwind scheme
to approach the gradient that provides two possible approxi-
mations of |∇Φ|ni,j at the pixel (i, j) if α ≥ 0

|∇+Φ|ni,j =
(
max(D−x Φn

i,j , 0)2 + min(D+
x Φn

i,j , 0)2

+ max(D−y Φn
i,j , 0)2 + min(D+

y Φn
i,j , 0)2

)1/2
,

and if α ≤ 0
|∇−Φ|ni,j =

(
min(D−x Φn

i,j , 0)2 + max(D+
x Φn

i,j , 0)2

+ min(D−y Φn
i,j , 0)2 + max(D+

y Φn
i,j , 0)2

)1/2
.

Finally the approximated equation stands

Φn+1
i,j =Φn

i,j + ∆t





βgn
i,jK

n
i,j

√
(D0

xΦi,j)2 + (D0
yΦi,j)2

−max(αgn
i,j , 0)|∇+Φ|ni,j

+ min(αgn
i,j , 0)|∇−Φ|ni,j

−ν





max (ûn
i,j , 0)D−x Φi,j

+ min (ûn
i,j , 0)D+

x Φi,j

+ max (v̂n
i,j , 0)D−y Φi,j

+ min (v̂n
i,j , 0)D+

y Φi,j









V. NUMERICAL RESULTS

WE present now numerical results for both the filtering
process and the segmentation process that have been

described in the previous sections.
The parameters choice constitutes a significant difficulty.

We have chosen the same time step for the discretization of
the GVF and of the surface evolution equation. In the sequel
we set ∆t = 1, h = 1. As in [32], we take µ ∈ [0, 0.2].
The value of ν is very important since it accounts the GVF
importance; ν is chosen in [0, 0.3]. We will see in the presented
examples that the balloon force H = Cst = α is essential to
make evolve the initial contour and the choice of the value c
of the detector g̃ is important to have satisfactory results. In
the examples we chose µ = 0.1.

In Figure 5, we present the segmentation process on the
images given by the filtering operation intermediate steps. The
edge detector has been “set” to c = 0.75. One can see that
the original image segmentation is quite poor: a lot of small
contours that are generated by the noise appear.

Figure 6, shows the segmentation sensitivity process with
respect to the edge detector and parameter c. It has been
performed on the filtered image (n = 7, p = 3). If c is small
we find contours that are quite constrasted : this gives the
global structure of the material. A larger c provide the details
via the less contrasted contours. We give the contours that are
obtained with a standard Canny’s edge detector as well.

VI. CONCLUSION

We conclude that the mixture of different techniques gives
an interesting segmentation of the images we consider. In-
deed, the filtering step allows to get rid of the noise that
would provide articial contours otherwise. With a suitable
choice of a contour detector function (that we tune via the
c parameter) we have a hierarchical segmentation (from the
very contrasted contours to the less ones) which can be
adpated to the “textured areas” that appear when the stone
is completely pulverulent. However, we try to improve the
method : the filtering step can be performed with variational
techniques (namely the Rudin-Osher-Fatemi model [27]) and
the segmentation process is now investigated with a watershed
approach.
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Original image (p=0) Contours

Filtered image (p=1)

Filtered image (p=2)

Filtered image (p=3)
Fig. 5. Segmentation of filtered images with respect to p and c = 0.75.
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