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Homogenization of fully overdamped
Frenkel-Kontorova models

N. Forcadel1,2, C. Imbert3, R. Monneau1

March 5, 2008

Abstract

In this paper, we consider the fully overdamped Frenkel-Kontorova model. This is

an infinite system of coupled first order ODEs. Each ODE represents the microscopic

evolution of one particle interacting with its neighbors and submitted to a fixed periodic

potential. After a proper rescaling, a macroscopic model describing the evolution of

densities of particles is obtained. We get this homogenization result for a general class

of Frenkel-Kontorova models. The proof is based on the construction of suitable hull

functions in the framework of viscosity solutions.

AMS Classification: 35B27, 35F20, 45K05, 47G20, 49L25, 35B10.

Keywords: particle systems, periodic homogenization, Frenkel-Kontorova models, Hamilton-

Jacobi equations, hull function, cumulative distribution function, Slepčev formulation.

1 Introduction

In the present paper we are interested in systems of ODEs describing the motion of particles
in interactions with their neighbors and submitted to a periodic potential. An important
special case is the classical Frenkel-Kontorova (FK) model in its fully overdamped version.
This physical model is a very simple and very important one. For a good overview on the
Frenkel-Kontorova model, we refer the reader to the recent book [8] of Braun and Kivshar
and the article [13] of Floria and Mazo.

We want to study the limit of the system of ODEs as the number of particles per length
unit goes to infinity. As we shall see, this can be understood as an homogenization procedure.
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1.1 The classical fully overdamped Frenkel-Kontorova model

The classical Frenkel-Kontorova model describes a chain of classical particles evolving in a
one dimensional space, coupled with their neighbors and subjected to a periodic potential.
If τ denotes time and Ui(τ) denotes the position of the particle i ∈ Z, one of the simplest
FK models is given by the following dynamics

m
d2Ui

dτ 2
+ γ

dUi

dτ
= Ui+1 − 2Ui + Ui−1 + sin (2πUi) + L

where m denotes the mass of the particle, γ a friction coefficient, L is a constant driving
force which can make the whole “train of particles” move and the term sin (2πUi) describes
the force created by a periodic potential whose period is assumed to be 1. Notice that in the
previous equation, we set to one physical constants in front of the elastic and the exterior
forces. If we assume that m ≪ γ = 1, we can neglect the acceleration term and obtain for
i ∈ Z

(1.1)
dUi

dτ
= Ui+1 − 2Ui + Ui−1 + sin (2πUi) + L for τ > 0 .

This is the reason why we say that the dynamics of this model is fully overdamped. It can
describe the friction between two materials. Indeed, this model was originally introduced
in Kontorova, Frenkel [18] to describe the plasticity at a microscopic level. Such a model is
sketched on figure 1.

i−1 i i+1 i+2

periodic potential

Figure 1: Sketch of the chain or particles for the classical FK model

We would like next to give the flavour of the results we obtain in this paper. In order to
do so, let us assume that at initial time, particles satisfy

Ui(0) = ε−1u0(iε)

for some ε > 0 and some Lipschitz continuous function u0(x) which satisfies the following
assumption:

(A0) Initial gradient bounded from above and below

0 < 1/K0 ≤ (u0)x ≤ K0 on R

for some fixed K0 > 0.
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Such an assumption can be interpreted by saying that at initial time, the number of particles
per length unit lies in (K−1

0 ε−1, K0ε
−1).

It is then natural to ask what is the macroscopic behaviour of the solution U of (1.1) as
ε goes to zero, i.e. as the number of particles per length unit goes to infinity. To this end
we define the following function that describes the rescaled positions of the particles

(1.2) uε(t, x) = εU⌊ε−1x⌋(ε
−1t)

where ⌊·⌋ denotes the floor integer part. One of our main results states that the limiting
dynamics as ε goes to 0 of (1.1) is determined by a first order Hamilton-Jacobi equation of
the form

(1.3)

{
u0

t = F (u0
x) for (t, x) ∈ (0, +∞) × R,

u0(0, x) = u0(x) for x ∈ R

where F is a continuous function to be determined. More precisely, we have the following
homogenization result:

Theorem 1.1. (Homogenization of the FK model)
For all L ∈ R, there exists a continuous function F : R → R such that, under assumption
(A0), the function uε converges locally uniformly towards the unique viscosity solution u0 of
(1.3).

1.2 Generalized Frenkel-Kontorova models

In order to present our main results in full generality, we first describe the generalizations of
the classical FK model we deal with.

An important remark about (1.1) is that such an ODE system can be embedded into a
single PDE. In order to see this, let us first give the following definition. For a given integer
m ∈ N \ {0} and for a function v : R → R, we define

[v]m(y) = (v(y − m), v(y − m + 1), ..., v(y + m)) .

With this notation in hand, we claim that solving (1.1) for the family of initial condition
u0,α(·) = u0(· + α), α ∈ [0, 1), is equivalent to solve

∂τU = F ([U ]1) for (τ, x) ∈ (0, +∞) × R

submitted to the initial condition U(0, x) = u0(x) and where

(1.4) F (τ, V−1, V0, V1) = V−1 − 2V0 + V1 + sin (2πV0) + L .

We can then consider generalized FK models with interactions with the m-th nearest neigh-
bors. Precisely, we look for solutions u(τ, y) to the following “finite difference-like” PDE

(1.5) uτ = F (τ, [u(τ, ·)]m) for (τ, y) ∈ (0, +∞) × R .

In the present paper, we work with viscosity solutions, and even with possibly discontinuous
ones (see Definition 2.1). Let us now make precise the assumptions we make on the function
F : R × R

2m+1 → R that maps (τ, V ) to F (τ, V ).
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(A1) Regularity {
F is continuous ,
F is Lispchitz continuous in V uniformly in τ .

(A2) Monotonicity

F (τ, V−m, ..., Vm) is non-decreasing in Vi for i 6= 0 .

(A3) Periodicity {
F (τ, V−m + 1, ..., Vm + 1) = F (τ, V−m, ..., Vm) ,
F (τ + 1, V ) = F (τ, V ) .

Remarks 1.2. 1. When F does not depend on τ , we simply denote by F (V ).

2. We see that these assumptions are in particular satisfied for the classical FK model
(1.1) (see Equation (1.4)).

We next rescale the generalized FK model as we did for the classical one. Precisely, we now
consider the following problem satisfied by uε(t, x)

(1.6)





uε
t = F

(
t

ε
,

[
uε(t, ·)

ε

]ε

m

)
for (t, x) ∈ (0, +∞) × R,

uε(0, x) = u0(x) for x ∈ R

where for some function v(x) we set

[v]εm (x) = (v(x − mε), ..., v(x + mε)) .

We then have the following homogenization result

Theorem 1.3. (Homogenization of generalized FK models)
Under assumptions (A0),(A1),(A2),(A3), there exists a continuous function F̄ : R → R such
that the solution uε to (1.6) converges locally uniformly towards the unique viscosity solution
u0 of (1.3).

We will explain in the next subsection how the so-called effective Hamiltonian F̄ is
determined. We will see that it has to do with the existence of so-called hull functions (see
Theorem 1.5 below). But before giving further details, let us make several comments about
this general homogenization result.

We would like first to shed light on an important fact. Assumption (A2) concerning the
monotonicity of F is fundamental in our analysis. Indeed, This condition ensures that a
comparison principle holds true for the solutions of (1.5) and this allow us to perform the
homogenization limit in the framework of viscosity solutions. With this respect, Theorem 1.3
makes part of a huge literature concerning homogenization of Hamilton-Jacobi equations
whose pionnering paper is the one of Lions, Papanicolaou, Varadhan [19].
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The homogenization of model with interactions with an infinite number of particles (i.e.
the case m = +∞) was studied in Forcadel, Imbert, Monneau [12] for a model describing
dislocation dynamics.

Concerning the homogenization of equations with periodic terms in u/ε (which is the case
of the models considered in the present paper), only very few results exist. Let us mention
the recent result of Imbert, Monneau [15] and the one of Barles [6]. We can also mention
the work of Boccardo, Murat [7] about the homogenization of elliptic equations and the one
of Bacaër [4].

1.3 Hull functions

In order to study the solutions of (1.5), it is classical to introduce the so-called (dynamical)
hull function, i.e. a function h(τ, z) such that u(τ, y) = h(τ, py + λτ) is a solution of (1.5).
We refer for instance to the pionnering work of Aubry [1, 2], and Aubry, Le Daeron [3] where
they studied (among other things) this notion in details.

Definition 1.4. (Hull function)
Given F satisfying (A1),(A2) and (A3), a positive number p ∈ (0, +∞) and a real number
λ ∈ R, a locally bounded function h : R

2 → R is a hull function for (1.5) if it satisfies for
all (τ, z) ∈ R

2

(1.7)





hτ + λhz = F (τ, h(τ, z − mp), ..., h(τ, z + mp)),
h(τ + 1, z) = h(τ, z),
h(τ, z + 1) = h(τ, z) + 1,
hz(τ, z) ≥ 0,
|h(τ, z + z′) − h(τ, z) − z′| ≤ 1 for all z′ ∈ R .

In the case where F is independent on τ , we require that the hull function h is also indepen-
dent on τ and we denote it by h(z).

Given p > 0, the following theorem explains how the effective Hamiltonian F (p) is
determined by an existence/non-existence result of hull functions as λ ∈ R varies.

Theorem 1.5. (Effective Hamiltonian and hull function)
Given F satisfying (A1),(A2),(A3) and p ∈ (0, +∞), there exists a unique real λ for which
there exists a hull function h (depending on p) satisfying (1.7). Moreover the real number λ,
seen as a function F of p, is continuous on (0, +∞).

1.4 Qualitative properties of the effective Hamiltonian

In this subsection, we list the important qualitative properties of the effective Hamiltonian
defined thanks to Theorem 1.5. Keeping in mind the first FK model we described (1.1), we
are in particular interested in the behaviour of F when it is computed by replacing F with
F + L. We will give several results about the function F seen as a function of L. Let us
state a precise result.
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Theorem 1.6. (Qualitative properties of F for general F )
Consider a non-linearity F satisfying (A1),(A2),(A3). Given p > 0 and L ∈ R, let F (L, p)
denote the effective Hamiltonian defined thanks to Theorem 1.5 where F is replaced with
F + L.

Then F : R
2 → R is continuous and we have the following properties:

a1. (Bound) There exists a constant C > 0 such that for all (L, p) ∈ R × (0, +∞)

|F (L, p) − L| ≤ C(1 + p) .

a2. (Monotonicity in L)

F (L, p) is non-decreasing in L .

a3. (Antisymmetry in V )

If for all (τ, V ) ∈ R × R
2m+1, F (τ,−V ) = −F (τ, V ), then

F (0, p) = 0 for any p > 0 .

a4. (Periodicity in p) Assume that for all (τ, V ) ∈ R × R
2m+1

(1.8) F (τ, V−m − m, ..., Vm + m) = F (τ, V−m, ..., Vm) ,

then
F (L, p + 1) = F (L, p) .

a5. (Continuous hull function / no plateau of L 7→ F (L, p))

Assume that for some (L0, p) ∈ R × (0, +∞), there exists a continuous hull function
h(τ, z). Then for all L 6= L0

F (L, p) 6= F (L0, p) .

We next say more about Property (a5) about the characterization of plateaux of the
function F seen as a function of L. Let us first consider the following example for m = 1

(1.9) F = F (τ, V−1, V0, V1) = α (V1 − 2V0 + V−1) + β sin (2πV0) + γ cos (2πτ)

which satisfies in particular condition (1.8). In particular for this model, the full picture is
1-periodic in p. For some suitable constants α, β, γ > 0, numerical simulations (see Braun
[8] page 334 and the references cited therein), seem to show that the map L 7→ F (L, p) may
have many plateaux as illustrated on figure 2. See also Hu, Qin, Zheng [14] and chapter 11
(homeomorphism of the circle) of the book [17] of Katok and Hasselblatt, for an interesting
attempt of explanation of this behaviour. From (a5), we deduce in particular that the hull
function is not continuous in space at points corresponding to these plateaux.

Here are further results related to this issue in the case where F does not depend on time
τ .
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L

F

Figure 2: Sketch of F as a function of L when F depends on τ

Theorem 1.7. (Further plateau properties when F does not depend on τ)
Under the assumptions of Theorem 1.6, assume moreover that F does not depend on τ . Then
we have the following properties:

b1. (No plateau in L if F 6= 0) There exists a constant C > 0 such that for all (L, p) ∈
R × (0, +∞)

∂F

∂L
(L, p) ≥ |F (L, p)|

|L| + C(1 + p)
.

b2. (0-plateau property) Assume that the map v 7→ F (v, ..., v) is not constant and that
F satisfies property (1.8). Then there exists L0 ∈ R and δ > 0 such that

F (L, p) = 0 for all (L, p) s.t. L ∈ (L0 − δ, L0 + δ), p ∈ N \ {0} .

In the case where F does not depend on the time τ , we see from (b1) that the map
L 7→ F (L, p) has at most a single plateau at the level F = 0, as illustrated on figure 3.

L

F

Figure 3: Sketch of F as a function of L for F independent on τ

Let us now turn to some comments on the 0-plateau. For model (1.9) with α = 1, γ = 0,
more is known when p is a Diophantine number, i.e. satisfies for some κ, ν > 0

∀a ∈ Z, ∀b ∈ Z \ {0} , |bp − a| ≥ κ|b|−ν .
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These Diophantine numbers (when considered for any κ, ν > 0) have full measure. It is
proven in De La Llave [10], that if p is Diophantine, then there exists an analytic hull
function for L = 0 with F (0, p) = 0 as soon as |β| is smaller than a constant depending on
κ, ν. In particular, we deduce from (a5), that the map L 7→ F (L, p) has no plateau at all in
this case.

As it is well-known (see [1]), this result is only valid for β small enough, because the hull
function has to satisfy (see (1.7) and recall that λ = F (0, p) = 0)

(h(z + p) − h(z)) − (h(z) − h(z − p)) = −β sin (2πh(z)) .

Moreover h satisfies h(z+1) = h(z)+1 and is non-decreasing, which for instance for p ∈ (0, 1],
implies that

|β sin (2πh(z)) | ≤ 2.

Therefore h can not take the value 1/4 for |β| > 2, and then h has to be discontinuous for
|β| > 2. This is the well-known breaking of analyticity. See also [2, 16] for some explicit
computations of the hull functions for particular potentials.

Even for |β| 6= 0 arbitrarily small, (b2) shows that the map L 7→ F (L, p) has a 0-plateau
for integers p > 0. From (a5), this implies in particular the breaking of continuity for the
hull function corresponding to such p and L.

As an example, in model (1.9) with α = 1, γ = 0, for any β > 0 and L = β > 0, p = 1,
the following function

h(z) = −1

4
+ ⌊z⌋

is a discontinuous hull function with F (L, p) = 0.
This shows that for the same model, the 0-plateau property of the map L 7→ F (L, p) can

be very sensitive to the values of p (and of its irrationality).

1.5 Organization of the article

In Section 2, we recall the notion of viscosity solutions. In Section 3, we prove the homog-
enization results, namely Theorems 1.1 and 1.3. In Section 4, we prove the ergodicity of
the problem; precisely, we prove Theorem 1.5 on the hull function. In Section 5, we build
Lipschitz sub- and super-hull function, using an approximate Hamiltonian. In Section 6,
we prove Theorems 1.6 and 1.7 on the qualitative properties of the effective Hamiltonian.
Finally in the appendix A, we propose a discussion on the relation between the hull func-
tion for our problem and the correctors for a “dual” approach of the problem: the so-called
Slepčev formulation.

2 Viscosity solutions

This section is devoted to the definition of viscosity solutions for equations such as (1.5),
(1.6) and (1.7). In order to construct hull functions when proving Theorem 1.5, we will also
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need to consider a perturbation of (1.7) with linear plus bounded initial data. For all these
reasons, we define a viscosity solution for a generic equation whose Hamiltonian G satisfies
proper assumptions.

Before making precise assumptions, definitions and fundamental results we will need later
(such as stability, comparison principle, existence), we refer the reader to Barles [5] and the
user’s guide of Crandall, Ishii, Lions [9] for an introduction to viscosity solutions.

2.1 Main assumptions and definitions

Consider for 0 < T ≤ +∞ the following Cauchy problem
(2.10){

uτ = G(τ, [u(τ, ·)]m, infy′∈R (u(τ, y′) − py′) + py − u(τ, y), uy) for (τ, y) ∈ (0, T ) × R

u(0, y) = u0(y) for y ∈ R

for a general non-linearity G. The most important example we have in mind is the following

G(τ, V, a, q) = F (τ, V ) + δ(a0 + a)q

for some constants η, δ ≥ 0, a0, a, q ∈ R and where F appears in (1.5),(1.6), (1.7).

We make the following assumptions on G.

(A1’) Regularity




G is continuous ,
For all R > 0,
G(τ, V, a, q) is Lispchitz continuous in (V, a) uniformly in (τ, q) ∈ R × [−R,R] .

(A2’) Monotonicity

G(τ, V−m, ..., Vm, a, q) is non-decreasing in a and Vi for i 6= 0 .

(A3’) Periodicity For all (τ, V, a, q) ∈ R × R
2m+1 × R × R

G(τ, V−m + 1, V−m+1 + 1, ..., Vm + 1, a, q) = G(τ, V−m, V−m+1, ..., Vm, a, q)

G(1 + τ, V, a, q) = G(τ, V, a, q)

In view of (2.10), it is clear that, if G effectively depends on the variable a, solutions must
be such that the infimum of u(τ, y)− p · y is finite for all time τ . We will even only consider
solutions u satisfying for some C(T ) > 0: for all τ ∈ [0, T ) and all y, y′ ∈ R

(2.11) |u(τ, y + y′) − u(τ, y) − py′| ≤ C .

When T = +∞, we may assume that (2.11) holds true for all time T0 > 0 for a family of
constants C0 > 0.

Since we have to solve a Cauchy problem, we have to assume that the initial datum
satisfies the assumption
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(A0’) (Initial condition)

u0 satisfies (A0); it also satisfies (2.11) if G depends on a.

Finally, we recall the definition of the upper and lower semi-continuous envelopes, u∗ and
u∗, of a locally bounded function u

u∗(τ, y) = lim sup
(t,x)→(τ,y)

u(t, x) and u∗(τ, y) = lim inf
(t,x)→(τ,y)

u(t, x) .

We can now define viscosity solutions for (2.10).

Definition 2.1. (Viscosity solutions)
Let u0 : R → R be a continuous function and u : R

+ × R → R be a locally bounded function
such that (2.11) holds true if G depends on a.

– The function u is a subsolution (resp. a supersolution) of (2.10) on an open set
Ω ⊂ (0, T ) × R if u is upper semi-continuous (resp. lower semi-continuous) and for
all (τ, y) ∈ Ω and all test function φ ∈ C1(Ω) such that u − φ attains a strict local
maximum (resp. a local minimum) at the point (τ, y), then we have
(2.12)

φτ (τ, y) ≤ G(τ, [u(τ, ·)]m, inf
y′∈R

(u(τ, y′) − py′) + py − u(τ, u), φy(τ, y)) (resp. ≥) .

– The function u (resp. v) is said to be a subsolution (resp. supersolution) on [0, T )×R,
if u is a subsolution (resp. v is a supersolution) on Ω = (0, T ) × R and if moreover it
satisfies for all y ∈ R

u(0, y) ≤ u0(y) (resp. ≥) .

– A function u is said a viscosity solution of (2.10) if u∗ is a subsolution and u∗ is a
supersolution.

Remark 2.2. A locally bounded function u is also (classically) called a subsolution (resp.
supersolution) if its upper semi-continuous envelope (resp. lower semicontinuous envelope)
is a subsolution in the sense of the previous definition.

The first main property of this notion of solution is its stability when passing to the limit.
More precisely, a family of subsolutions (uε)ε>0 that is uniformly locally bounded from above
is stable when passing to the so-called relaxed upper semi-limit u defined as follows

u(τ, y) = lim sup
ε

∗uε(τ, y) = lim sup
(t,x)→(τ,y), ε→0

uε(t, x).

Such a relaxed upper semi-limit is well-defined as soon as the family of functions uε is
uniformly locally bounded from above. Remark that u is upper semicontinuous and if uε

does not depend on ε (uε = u for all ε > 0), we recover the upper semi-continuous envelope
of the function u. In the same way, we can define the relaxed lower semi-limit of a family of
lower semicontinuous functions that are uniformly locally bounded from below. The main
discontinuous stability result for viscosity solutions is stated as follows.
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Proposition 2.3. (Stability of viscosity solutions)
Assume (A1’), (A2’) and T < +∞. Assume that (uε)ε is a sequence of subsolutions (resp.
supersolutions) of Eq. (2.10) on (0, T ) × R satisfying (2.11) with the same constant C > 0.
Then the relaxed upper semi-limit u is a subsolution (resp. u is a supersolution) of (2.10)
on (0, T ) × R.

We will also use stability of subsolutions by passing to the supremum. Let us be more
specific.

Proposition 2.4. (Stability of viscosity solutions (II))
Assume (A1’), (A2’) and T < +∞. Assume that (uα)α∈A is a family of subsolutions (resp.
supersolutions) of Eq. (2.10) on (0, T ) × R satisfying (2.11) with the same constant C > 0.
Then supα∈A uα is a subsolution (resp. u is a supersolution) of (2.10) on (0, T ) × R.

We skip the proofs of both propositions since they are straightforward adaptations of
classical ones (see for instance [5]).

2.2 Comparison principles and existence

This subsection is devoted to state comparison principles that are used throughout the paper
and to get the main existence results for the PDEs at stake.

We first state two comparison principles for the generic Hamilton-Jacobi equation (2.10).
One is stated on the whole space while the second one is stated on bounded sets.

Proposition 2.5. (Comparison principle)
Assume (A0’), (A1’) and (A2’). Assume that u and v are respectively a subsolution and a
supersolution of (2.10) on [0, T ) × R. Then we have u ≤ v on [0, T ) × R.

For a given point (τ0, y0) ∈ (0, T ) × R and for all r, R > 0, let us set

Qr,R = (τ0 − r, τ0 + r) × (y0 − R, y0 + R) .

Proposition 2.6. (Comparison principle on bounded sets)
Assume (A1’) and (A2’) and that G(τ, V, a, q) does not depend on the variable a. Assume
that u is a subsolution (resp. v a supersolution) of (2.10) on the open set Qr,R ⊂ (0, T )×R.
Assume also that

u ≤ v on Qr,R+m \ Qr,R .

Then u ≤ v on Qr,R.

Remarks 2.7. – Here we need to increase the domain with a distance m, because the
equation is non-local in space (recall that each particle has interactions with its m
nearest neighbors on the left and on the right).

– We could ask to have only u ≤ v on
(
Qr,R+m \ Qr,R

)
∩ {τ < τ0 + r}.

We now turn to the construction of solution. We recall the celebrated Perron’s method.
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Proposition 2.8. (Existence by Perron’s method)
Assume (A1’) and (A2’). Assume that u is a subsolution (resp. v is a supersolution) of
(2.10) on (0, T ) × R such that

u ≤ v on (0, T ) × R .

Let C be the set of all supersolutions ṽ of (2.10) on (0, T ) × R satisfying (2.11) with C
corresponding to u and v and such that ṽ ≥ u . Let

w(τ, y) = inf {ṽ(τ, y) such that ṽ ∈ C} .

Then w is a (discontinuous) solution of (2.10) on (0, T ) × R satisfying u ≤ w ≤ v and
(2.11).

We skip the proofs of Propositions 2.5, 2.6 and 2.8 since they are completely classical.

The important corollary of the proposition is the following well-posedness result for (2.10).

Corollary 2.9. (Existence and uniqueness for the Cauchy problem)
Assume (A0’), (A1’), (A2’) and (A3’). Then there exists a unique solution u of (2.10) on
[0, +∞) × R. Moreover u is continuous.

Remark 2.10. As we will see in the proof, the solution u we construct satisfies (2.11) with a
constant C that depends on the one corresponding to the barriers we will construct. Hence,
the constant C in (2.11) for u depends on u0

Proof of Corollary 2.9. In order to apply Proposition 2.8, we need to construct barriers. In
view of assumptions (A1’) and (A3’), the constant G0 defined by

(2.13) G0 = sup
τ∈R, |q|≤K0

|G(τ, 0, 0, q)|

is finite. Moreover, using (A1’), let us introduce the constants K1 and K2 such that for all
τ, a, b ∈ R, V,W ∈ R

2m+1, q ∈ (−K0, K0),

(2.14) |G(τ, V, a, q) − G(τ,W, b, q)| ≤ K1|V − W |∞ + K2|a − b|

with |W |∞ = supk=−m,...,m |Wk|. Then we have the following lemma whose proof is postoned.

Lemma 2.11. (Existence of barriers)
Assume (A0’), (A1’), (A2’) and (A3’). There exists a constant C > 0 such that

u+(τ, y) = u0(y) + Cτ and u−(τ, y) = u0(y) − Cτ

are respectively supersolution and subsolution of (2.10) on [0, T ) × R for any T > 0.
Moreover, we can choose

(2.15) C = K2C1 + C0(m,K0, K1, G0)

where K2, K1 and G0 are given respectively in (2.14) and (2.13). Here C1 is given in (A0’).
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From Lemma 2.11 and Proposition 2.8, we get the existence of a function u which is a
solution of (2.10) on (0, +∞)×R and satisfies u− ≤ u ≤ u+. Therefore the initial condition
is satisfied. Moreover u∗(0, ·) = u∗(0, ·) and from the comparison principle (Proposition 2.5),
we get that u∗ ≤ u∗ for all time which implies that u is continuous. Finally, still from
Proposition 2.5, we deduce the uniqueness of the solution of (2.10) on [0, +∞) × R.

We now turn to the proof of the Lemma.

Proof of Lemma 2.11. We set u±(τ, y) = u0(y) ± Cτ for some C to be fixed later. We have

|G(τ, [u±(τ, ·)]m(y)), inf
y′∈R

(
u±(τ, y′) − py′

)
+ py − u±(τ, y), u±

y (τ, y))|
= |G(τ, [u±(τ, ·) − ⌊u±(τ, y)⌋]m(y), inf

y′∈R

(u0(y
′) − py′) + py − u0(y), (u0)y(y))|

≤ K2C1 + K1 + |G(τ, [u±(τ, ·) − u±(τ, y)]m(y), 0, (u0)y(y))|
≤ K2C1 + K1 + G0 + K1mK0 =: K2C1 + C0

where we have used the periodicity assumption (A3’) for the second line, assumption (A0’)
for the third line, and for the last line, we have used |u±(τ, y′) − u±(τ, y)| ≤ K0|y′ − y|.

When G(τ, V, a, q) is independent on a, we can simply choose K2 = 0. This ends the
proof of the Lemma.

3 Convergence

This section is devoted to the proof of the main homogenization result (Theorem 1.3). The
proof relies on the existence of hull functions (Theorem 1.5) and qualitative properties of
the effective Hamiltonian (Theorem 1.6). As a matter of fact, we will use the existence of
Lipschitz sub- and super-hull functions for (see Proposition 5.3). All these results are proved
in the next sections.

We start with some preliminary results. The following result is a straightforward corollary
of Lemma 2.11 by a change of variables:

Lemma 3.1. (Barriers uniform in ε)
Assume (A0),(A1),(A2) and (A3). Then there is a constant C > 0, such that for all ε > 0,
the solution uε to (1.6) satisfies for all t > 0 and x ∈ R

|uε(t, x) − u0(x)| ≤ Ct .

We have

Lemma 3.2. (ε-bounds on the gradient)
Assume (A0),(A1),(A2) and (A3). Then the solution uε of (1.6) satisfies for all t > 0,
x ∈ R, z > 0

(3.16) ε

⌊
z

εK0

⌋
≤ uε(t, x + z) − uε(t, x) ≤ ε

⌈
zK0

ε

⌉
for all (t, x) ∈ [0, +∞) × R
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Remark 3.3. In particular we find that the solution u(t, x) is non-decreasing in x.

Proof of Lemma 3.2. We prove the bound from below (the proof is similar for the bound
from above). We first remark that (A0) implies that the initial condition satisfies

(3.17) u0(x + z) ≥ u0(x) + z/K0 ≥ u0(x) + kε with k =

⌊
z

εK0

⌋

From (A3), we know that for ε = 1, the equation is invariant by addition of integer to the
solutions. After the rescaling, equation (1.6) is invariant by addition of constants kε with k
an integer. For this reason the solution with initial data u0 + kε is uε + kε. Similarly the
equation is invariant by translations. Therefore the solution with initial data u0(x + z) is
uε(t, x + z). Finally, from (3.17) and the comparison principle (Proposition 2.5), we get

uε(t, x + z) ≥ uε(t, x) + kε

which proves the bound from below. This ends the proof of the lemma.

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let u (resp. u) denote the relaxed upper (resp. lower) semi-limit
associated with the family of functions (uε)ε>0. These functions are well defined thanks to
Lemma 3.1. We also get from this lemma and Lemma 3.2 that both functions w = u, u
satisfy for all t > 0, x, x′ ∈ R

|w(t, x) − u0(x)| ≤ Ct ,

K−1
0 |x − x′| ≤ w(t, x) − w(t, x′) ≤ K0|x − x′| .(3.18)

We are going to prove that u is a subsolution of (1.3) on R
+ × R. Similarly, we can prove

that u is a supersolution of the same equation. Therefore, from the comparison principle
for (1.3), we get that u0 ≤ u ≤ u ≤ u0. And then u = u = u0, which shows the expected
convergence of the full sequence uε towards u0.

We now prove in several steps that u is a subsolution of (1.3) on (0, +∞) × R. We
classically argue by contradiction by assuming that u is not a subsolution on (0, +∞) × R.
Then there exists (t, x) ∈ (0, +∞) × R and a test function φ ∈ C1 such that

(3.19)





u(t, x) = φ(t, x)
u ≤ φ on Qr,2r(t, x), with r > 0
u ≤ φ − 2η on Qr,2r(t, x) \ Qr,r(t, x), with η > 0
φt(t, x) = F (φx(t, x)) + θ, with θ > 0

where we recall that Qr,R(t, x) denotes for r, R > 0

Qr,R(t, x) = (t − r, t + r) × (x − R, x + R) .
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Let p denote φx(t, x). From (3.18), we get

(3.20) 0 < 1/K0 ≤ p ≤ K0 .

Combining Theorems 1.5 and 1.6 (in particular a.1 and a.2), we get the existence of a hull
function h associated with p such that

λ = F (p) +
θ

2
= F (L, p) with L > 0 .

Indeed, we know from these results that the effective Hamiltonian is non-decreasing in L,
continuous and goes to ±∞ as L → ±∞.

We now apply the perturbed test function method introduced by Evans [11] in terms
here of hull functions instead of correctors. Precisely, let us consider the following twisted
perturbed test function

φε(t, x) = εh

(
t

ε
,
φ(t, x)

ε

)
.

Here the test function is twisted similarly as in [15]. In order to get a contradiction, we first
assume that h is smooth and is continuous in z uniformly in τ ∈ R. In view of the third line
of (1.7), we see that this implies that h is uniformly continuous in z (uniformly in τ ∈ R).
For simplicity, and since we will construct approximate hull functions with such a regularity,
we just assume that h is Lipschitz continuous in z (uniformly in τ ∈ R). We will next see
how to treat the general case.

Case 1: h is smooth and Lipschitz continuous in z

Step 1.1: φε is a supersolution of (1.6) on a neightbourhood of (t, x)
When h is smooth enough (i.e. C1 here), it is sufficient to check directly the supersolution
property of φε for (t, x) ∈ Qr,r(t, x). We have, with τ = t/ε and z = φ(t, x)/ε,

(3.21) φε
t(t, x) − F

(
τ,

[
φε(t, ·)

ε

]ε

m

(x)

)

= hτ (τ, z) + φt(t, x)hz(τ, z) − F

(
τ,

[
h

(
τ,

φ(t, ·)
ε

)]ε

m

(x)

)

= (φt(t, x) − λ) hz(τ, z) + L + F (τ, [h(τ, ·)]pm(z)) − F

(
τ,

[
h

(
τ,

φ(t, ·)
ε

)]ε

m

(x)

)

≥ (φt(t, x) − λ) hz(τ, z) + L − LF

∣∣∣∣[h(τ, ·)]pm(z) −
[
h

(
τ,

φ(t, ·)
ε

)]ε

m

∣∣∣∣
∞

where we have used that Equation (1.7) is satisfied by h to get the third line and (A1) to
get the fourth one; here, LF denotes the Lipschitz constant of F with respect to V for the
norm | · |∞ on R

2m+1. Let us next estimate, for j ∈ {−m, . . . ,m} and ε such that mε ≤ r,

h(τ, z + jp) − h

(
τ,

φ(t, x + jε)

ε

)
= h(τ, z + jp) − h(τ, z + jp + or(1))
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where or(1) only depends on the modulus of continuity of φx on Qr,r(t, x). Hence, if h is
Lipschitz continuous with respect to z uniformly in τ , we conclude that we can choose ε
small enough so that

(3.22) L − LF

∣∣∣∣[h(τ, ·)]pm(z) −
[
h

(
τ,

φ(t, ·)
ε

)]ε

m

∣∣∣∣
∞

≥ 0 .

Combining (3.21) and (3.22), we obtain

φε
t(t, x) − F

(
τ,

[
φε(t, x)

ε

]ε

m

(x)

)
≥ (φt − λ) hz(τ, z)

=

(
θ

2
+ φt(t, x) − φt(t, x)

)
hz(τ, z) =

(
θ

2
+ or(1)

)
hz(τ, z) ≥ 0 .

We used the non-negativity of hz, the fact that θ > 0 and again the fact that φ is C1, to get
the result on Qr,r(t, x) for r > 0 small enough. Therefore, when h is smooth and Lipschitz
continuous on z uniformly in τ , φε is a viscosity supersolution of (1.6) on Qr,r(t, x).

Step 1.2: getting the contradiction
By construction, we have φε → φ as ε → 0, and therefore from (3.19), we get for ε small
enough

uε ≤ φε − η ≤ φε − εkε on Qr,2r(t, x) \ Qr,r(t, x)

with the integer
kε = ⌊η/ε⌋ .

Therefore, for mε ≤ r, we can apply the comparison principle on bounded sets (Proposition
2.6) to get

(3.23) uε ≤ φε − εkε on Qr,r(t, x) .

Passing to the limit as ε goes to zero, we get

u ≤ φ − η on Qr,r(t, x)

which gives a contradiction with u(t, x) = φ(t, x) in (3.19). Therefore u is a subsolution of
(1.3) on (0, +∞) × R and this ends the proof of the theorem.

Case 2: general case for h
In the general case, we can not check by a direct computation that φε is a supersolution on
Qr,r(t, x). The difficulty is due to the fact that h(τ, z) may not be Lipschitz continuous in
the variable z.

This kind of difficulties was overcomed in [15] by using Lipschitz super-hull functions, i.e.
functions satisfying (1.7) with ≥ instead of = in the first line. Indeed, it is clear from the
previous computations that it is enough to conclude. In [15], such regular super-hull functions
(as a matter of fact, regular super-correctors) were build as exact solutions of an approximate

16



Hamilton-Jacobi equation. Moreover this Lipschitz hull function is a supersolution for the
exact hamiltonian with a slightly bigger λ.

Here we conclude using a similar result, namely Proposition 5.3. Notice that the fact
that h is smooth is not a restriction, the previous argument being completely valid in the
viscosity sense since p satisfies (3.20). See [15] for further details. This ends the proof of the
theorem.

We continue with the proof of Theorem 1.1.

Proof of Theorem 1.1. Remark that the initial condition satisfies

u0(y) − ε⌈K0⌉ ≤ uε(0, y) ≤ u0(y)

Therefore the comparison with the solution uε of (1.6) gives

uε − ε⌈K0⌉ ≤ uε ≤ uε on [0, +∞) × R .

Using the convergence of uε to u0 given in Theorem 1.3, we deduce that uε → u0. This ends
the proof of the theorem.

4 Ergodicity and construction of hull functions

In this section, we prove Theorem 1.5 that defines the effective Hamiltonian F̄ and states
the existence of hull functions.

As we shall see, for given real numbers (L, p), the constant F̄ (L, p) is (classically) defined
as the “time slope” (in a sense to be made precise, see Proposition 4.1) of the solution of an
initial Cauchy problem. This is the reason why the Hamiltonian is said to be ergodic.

Since approximate Lipschitz continuous hull functions must be constructed (see the proof
of convergence in the preceding section), we work with the general (approximate) Hamilto-
nian G considered in Section 2. Hence, the Cauchy problem we work with is (2.10).

4.1 Ergodicity

In this subsection, we successively prove two propositions. The first one (Proposition 4.1)
asserts that ergodicity holds true for G as soon as we are able to control space oscillations
of the solution u of (2.10). The next proposition (Proposition 4.2) asserts that we are
indeed able to control space oscillations and that the solution u satisfies additional important
properties.

Let us first start with

Proposition 4.1. (Time oscillations controlled by space oscillations)
Assume (A0’), (A1’), (A2’) and (A3’), and let u be a solution of (2.10) on R

+×R. Assume
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that there exists constants p > 0 and an integer C1 ≥ 1 such that we have the following
control on the space oscillations: for all τ > 0, y, y′ ∈ R,

(4.24) |u(τ, y + y′) − u(τ, y) − py′| ≤ C1

Then there exists λ ∈ R such that for all τ > 0, y ∈ R

(4.25) |u(τ, y) − u(0, 0) − py − λτ | ≤ C2 with C2 = 8C1 + 2M

where
(4.26)

M = sup {|G(τ, V−m, ..., Vm,±C1, p)| : τ > 0, V0 ∈ R, Vk = kp ± C1 + V0 for k 6= 0} .

Moreover we have

(4.27) |λ| ≤ M .

Proof of Proposition 4.1. The proof follows line by line the one given in [15] in a different
context. For the reader’s convenience, we write all the details below.

In order to control time oscillations, let us introduce the following two continuous func-
tions defined for T > 0

λ+(T ) = sup
τ≥0

u(τ + T, 0) − u(τ, 0)

T
and λ−(T ) = inf

τ≥0

u(τ + T, 0) − u(τ, 0)

T

which satisfy −∞ ≤ λ−(T ) ≤ λ+(T ) ≤ +∞.

Step 1: Estimate on the time derivative of the space oscillations
Let us consider

(4.28) m(τ) = sup
y∈R

(u(τ, y) − py) = u(τ, y(τ)) − py(τ)

if the supremum is reached at some y(τ) ∈ R. Then we have in the viscosity sense

mτ ≤ G(τ, [u(τ, ·)]m(y(τ)), C1, p) .

If the supremum in (4.28) is reached at infinity, we get the same result, up to replace u with
u∞(τ, y) = lim sup∗(u(τ, y + cn))n≥1 for some suitable sequence (cn)n≥1 going to infinity.

Using moreover that (4.24) implies

|u(τ, y(τ) + k) − u(τ, y(τ)) − kp| ≤ C1 ,

we deduce that

mτ ≤ G(τ, V−m, ..., Vm, C1, p) with

{
V0 = u(τ, y(τ)) ,
Vk = kp + C1 + V0 for k 6= 0 .
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Finally, from the definition (4.26) of M , we get

(4.29) mτ ≤ M .

Similarly we have

(4.30) mτ ≥ −M

with
m(τ) = inf

y∈R

(u(τ, y) − py) .

Finally from (4.29),(4.30) and (4.24), we deduce that λ±(T ) are finite.
Step 2: Estimate on λ+ − λ−

By definition of λ±(T ), for all δ > 0, there exists t± ≥ 0 such that

∣∣∣∣λ
±(T ) − u(t± + T, 0) − u(t±, 0)

T

∣∣∣∣ ≤ δ .

Let us pick l ∈ Z such that
0 ≤ a := t− + l − t+ < 1

and let us set
ũ(τ, y) = u(τ − l, y) .

Case 1: T ≥ 1
Then we have

t+ ≤ t− + l < t+ + T ≤ t− + l + T .

Let us define k ∈ Z such that 2C1 < ũ(t− + l, 0) + k − u(t+ + a, 0) ≤ 3C1. Then from (4.24)
and the invariance of the equation by addition of integers (see assumption (A3)), we deduce
that for all y ∈ R, we have

(4.31) 0 < ũ(t− + l, y) + k − u(t+ + a, y) ≤ 5C1

Therefore from the comparison principle (Proposition 2.5), we deduce with T ′ = T − a

0 ≤ ũ(t− + l + T ′, y) + k − u(t+ + a + T ′, y) ≤ 5C1

and then from (4.31), we get

(4.32) −5C1 ≤ ũ(t− + l + T ′, y) − ũ(t− + l, y) − (u(t+ + a + T ′, y) − u(t+ + a, y)) ≤ 5C1 .

Let us consider
m̃(τ) = sup

y∈R

(ũ(τ, y) − py)

and
m̃(τ) = inf

y∈R

(ũ(τ, y) − py) .
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From (4.29), we deduce that

m̃(t− + l + T ) ≤ m̃(t− + l + T ′) + Ma ≤ C1 + m̃(t− + l + T ′) + Ma

which implies that

ũ(t− + l + T, y) − py ≤ ũ(t− + l + T ′, y) − py + Ma + C1

i.e.
ũ(t− + l + T, y) ≤ ũ(t− + l + T ′, y) + Ma + C1 .

Similarly, using (4.30), we get

ũ(t− + l + T, y) ≥ ũ(t− + l + T ′, y) − Ma − C1

and even

(4.33) |u(t+ + a, y) − u(t+, y)| ≤ Ma + C1 .

Together with (4.32), we get

−7C1 − 2Ma ≤ ũ(t− + l + T, y) − ũ(t− + l, y) − (u(t+ + T, y) − u(t+, y)) ≤ 7C1 + 2Ma

which implies, for y = 0,

|λ+(T ) − λ−(T )| ≤ 2δ +
7C1 + 2Ma

T
.

Because δ > 0 is arbitrary small and a ∈ [0, 1), we deduce that

(4.34) |λ+(T ) − λ−(T )| ≤ 7C1 + 2M

T

Case 2: T < 1
Using (4.33) with a = T , we deduce that

|u(t+ + T, y) − u(t+, y)| ≤ C1 + MT .

Similarly, we have
|ũ(t− + l + T, y) − ũ(t− + l, y)| ≤ C1 + MT .

Therefore

|λ+(T ) − λ−(T )| ≤ 2δ +
2C1 + 2MT

T
.

Again, because δ > 0 is arbitrary small, we deduce in particular that (4.34) is still true for
T ∈ [0, 1).
Step 3: (λ±(T ))T is a Cauchy sequence
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Let us consider T1, T2 > 0 such that T2/T1 = P/Q with P,Q ∈ N \ {0}. Remark that the
following inequality holds true

λ+(PT1) = sup
τ≥0

∑

i=1,...,P

u(τ + iT1, 0) − u(τ + (i − 1)T1, 0)

PT1

≤
∑

i=1,...,P

λ+(T1)

P
= λ+(T1) .

Similarly, we get λ−(QT2) ≥ λ−(T2). Then we have

λ+(T1) ≥ λ+(PT1) = λ+(QT2) ≥ λ−(QT2) ≥ λ−(T2) ≥ λ+(T2) −
7C1 + 2M

T2

.

By symmetry, we deduce that

(4.35) |λ+(T2) − λ+(T1)| ≤ max

(
7C1 + 2M

T1

,
7C1 + 2M

T2

)

and similarly

(4.36) |λ−(T2) − λ−(T1)| ≤ max

(
7C1 + 2M

T1

,
7C1 + 2M

T2

)
.

Since the functions T 7→ λ±(T ) are continuous, inequalities (4.35)-(4.36) remain valid in the
case T2/T1 ∈ (0, +∞).
Step 4: Conclusion
Therefore inequalities (4.35)-(4.36) and (4.34) imply the existence of the following limits

lim
T→+∞

λ+(T ) = lim
T→+∞

λ−(T ) = λ

and we deduce that

(4.37) |λ±(T ) − λ| ≤ 7C1 + 2M

T
.

Combining (4.37) with (4.24), we get with T = τ

|u(τ, y) − u(0, 0) − py − λτ | ≤ 8C1 + 2M .

Finally, we deduce easily from (4.29)-(4.30) that |λ| ≤ M . This ends the proof of the
proposition.
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Proposition 4.2. (Ergodicity)
Assume (A0’), (A1’), (A2’) and (A3’), and let u be a solution of (2.10) on [0, +∞)×R with
initial data u0(y) = py with p > 0. Then there exists λ ∈ R such that

|λ| ≤ M

where M is defined in (4.26) with C1 = 1 and for all (τ, y) ∈ [0, +∞) × R,

(4.38) |u(τ, y) − py − λτ | ≤ C3 = 2M + 8 .

Moreover we have for all τ ≥ 0, y, y′ ∈ R,

u(τ, y + 1/p) = u(τ, y) + 1

uy(τ, y) ≥ 0

|u(τ, y + y′) − u(τ, y) − py′| ≤ 1 .(4.39)

Proof of Proposition 4.2. We perform the proof in three steps.
Step 1: u(τ, y) is non-decreasing in y
First, remark that the equation satisfied by u is invariant by translations in y and for all
b ≥ 0, we have

u0(y + b) ≥ u0(y) .

Therefore, from the comparison principle, we get

u(τ, y + b) ≥ u(τ, y)

which shows that the solution u(τ, y) is non-decreasing in y.
Step 2: control of the space-oscillations
We have

u0(y + 1/p) = u0(y) + 1 .

Therefore from the comparison principle and from the integer periodicity (A3’) of G, we get
that

u(τ, y + 1/p) = u(τ, y) + 1 .

Because u(τ, y) is non-decreasing in y, we deduce that for all b ∈ [0, 1/p]

0 ≤ u(τ, b) − u(τ, 0) ≤ 1

Let now y ∈ R, that we write py = k + a with k ∈ Z and a ∈ [0, 1). Then we have

u(τ, y) − u(τ, 0) = k + u(τ, a/p) − u(τ, 0)

which implies, for b ∈ [0, 1/p),

u(τ, y) − u(τ, 0) − py = −a + u(τ, b) − u(τ, 0)
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and then
|u(τ, y) − u(τ, 0) − py| ≤ 1 .

Finally, we deduce (4.39) by using the invariance by translations in y of the problem.
Step 3: control of the time-oscillations
We can now apply Proposition 4.1 to control the time-oscillations by the space-oscillations.
We get the existence of some λ ∈ R such that

|u(τ, y) − u(0, 0) − py − λτ | ≤ 8 + 2M = C3 .

This ends the proof of the proposition.

4.2 Construction of hull functions for general Hamiltonians

In this subsection, we construct hull functions for the genreal Hamiltonian G. As we shall
see, this is straightforward after we constructed time-space periodic solutions of (4.40) below;
see Proposition 4.3 and Corollary 4.4 below. We conclude this subsection by proving that the
time slope we constructed in Proposition 4.2 is unique and that the map p 7→ λ is continuous.

Given p > 0, we consider the equation in R × R

(4.40) uτ = G(τ, [u(τ, ·)]m, inf
y′∈R

(u(τ, y′) − py′) + py − u(τ, y), uy) .

Then we have the following result

Proposition 4.3. (Existence of time-space periodic solutions of (4.40))
Assume (A1’), (A2’) and (A3’) and consider p > 0. Then there exists a function u∞ solving
(4.40) on R × R and a real number λ ∈ R satisfying for all τ, y ∈ R,

|u∞(τ, y) − py − λτ | ≤ 2⌈2M + 8⌉(4.41)

|λ| ≤ M

with M defined by (4.26) with C1 = 1. Moreover u∞ satisfies

(4.42)





u∞(τ, y + 1/p) = u∞(τ, y) + 1
u∞(τ + 1, y) = u∞(τ, y + λ/p)
(u∞)y(τ, y) ≥ 0
|u∞(τ, y + y′) − u∞(τ, y) − py′| ≤ 1 .

Eventually, when G is independent on τ , we can choose u∞ independent on τ .

By considering h(τ, z) = u∞(τ, (z − λτ)/p), we immediately get the following corollary
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Corollary 4.4. (Existence of hull functions)
Assume (A1’), (A2’) and (A3’). There exists a hull function h for (2.10) satisfying

|h(τ, z) − z| ≤ 2⌈2M + 8⌉ = 2⌈C3⌉

where M is given by (4.26) with C1 = 1.

Remark 4.5. The definition of hull function for (2.10) is very similar to Definition 1.4. The
only difference is the equation satisfied by h which is replaced here by

hτ + λhz = G(τ, h(τ, z − mp), . . . , h(τ, z + mp), inf
z′

(h(τ, z′) − z′) + z − h(τ, z), phz).

Proof of Proposition 4.3. The proof is performed in three steps. In the first one, we construct
sub- and supersolutions of (4.40) in R × R with good translation invariance properties (see
the first two lines of (4.42)). We next apply Perron’s method in order to get a (discontinuous)
solution satisfying the same properties. Finally, in step 3, we prove that if G does not depend
on τ , then we can construct such a solution such that it does not depend on τ either.

Step 1: global sub- and supersolution
By Proposition 4.2, we know that the solution u of (2.10) with initial data u0(y) = py
satisfies on [0, +∞) × R

(4.43)





uy ≥ 0,
|u(τ, y) − py − λτ | ≤ 2M + 8 = C3,
|u(τ, y + y′) − u(τ, y) − py′| ≤ 1 .

We first construct a subsolution and a supersolution of (4.40) for τ ∈ R (and not only
τ ≥ 0) that also satisfy the first two lines of (4.42), i.e. satisfy for all k, l ∈ Z,

(4.44) U(τ + k, y) = U(τ, y + λ
k

p
) and U(τ, y +

l

p
) = U(τ, y) + l .

To do so, we consider the sequence, for n ∈ N,

un(τ, y) = u(τ + n, y) − λn

and consider
u = lim sup

n→+∞

∗un

u = lim inf
n→+∞

∗un .

Now a way to construct semi-solutions satisfying (4.44) is to consider

(4.45) u∞(τ, y) = sup
k,l∈Z

(u(τ + k, y − kλ/p + l/p) − l)

(4.46) u∞(τ, y) = inf
k,l∈Z

(u(τ + k, y − kλ/p + l/p) − l)

24



Notice that u∞ and u∞ satisfy moreover (4.43) on R × R. Therefore we have in particular

u∞ ≤ u∞ + 2⌈C3⌉ .

Step 2: existence by Perron’s method
Applying Perron’s method we see that the lowest supersolution u∞ above u∞ is a solution
of (4.43) on R × R and satisfies

u∞ ≤ u∞ ≤ u∞ + 2⌈C3⌉ .

We next prove that u∞ satisfies (4.42).
Moreover let us consider

(4.47) ũ∞(τ, y) = inf
k,l∈Z

(u∞(τ + k, y − kλ/p + l/p) − l)

By construction ũ∞ is a supersolution and is again above the subsolution u∞. Therefore
from the definition of u∞, we deduce that

ũ∞ = u∞

which implies that u∞ satisfies (4.44), i.e the first two equalities of (4.42).
Similarly, we can consider

û∞(τ, y) = inf
b∈[0,+∞)

u∞(τ, y + b)

which is again a supersolution above the subsolution u∞. Therefore

û∞ = u∞

which implies that u∞ is non-decreasing, i.e. the third line of (4.42) is satisfied.
Finally, the function u∞ − ⌈C3⌉ still satisfies (4.42) but also (4.41).

Step 3: Further properties when G is independent on τ
When G does not depend on τ , we can apply Steps 1 and 2 with k ∈ Z in (4.45), (4.46)
and (4.47) replaced with k ∈ R. This implies that the hull function h does not depend on τ .
This ends the proof of the proposition.

Proposition 4.6. (Definition and continuity of the effective Hamiltonian)
Given p > 0, and under the assumptions (A1’), (A2’) and (A3’),

– there exists a unique λ such that there exists a function u∞ ∈ L∞
loc(R × R) solution of

(4.40) on R × R and satisfying

(4.48) |h(0, z) − z| ≤ 1 ;
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– if λ is seen as a function G of p (λ = G(p)), then this function G : (0, +∞) → R is
continuous.

Proof of Proposition 4.6. Step 1: Uniqueness of λ
Given some p ∈ (0, +∞), assume that there exist λ1, λ2 ∈ R with their corresponding hull
functions h1, h2. Then define for i = 1, 2

ui(τ, y) = hi(τ, λiτ + py)

which are both solutions of equation (2.10) on [0, +∞)×R. Using the fact that hi(τ, z+1) =
hi(τ, z) + 1 and the monotonicity of the hull functions in the variable z, we see that for each
hi (up to a substraction of an integer and a translation of hi in the variable z) we can assume
that (4.48) holds true. Then we have

u1(0, y) ≤ u2(0, y) + 2

which implies (from the comparison principle) for all (τ, y) × [0, +∞) × R

u1(τ, y) ≤ u2(τ, y) + 2 .

Using the fact that hi(τ + 1, z) = hi(τ, z), we deduce that for τ = k ∈ N and y = 0 we have

h1(0, λ1k) ≤ h2(0, λ2k) + 2

which implies by (4.48)
λ1k ≤ λ2k + 4 .

Because this is true for any k ∈ N, we deduce that

λ1 ≤ λ2 .

The reverse inequality is obtained exchanging h1 and h2. We finally deduce that λ1 = λ2,
which proves the uniqueness of the real λ, that we call G(p).
Step 2: Continuity of the map p 7→ G(p)
Let us consider a sequence (pn)n such that pn → p > 0. Let λn = G(pn) and hn be the
corresponding hull functions. From Corollary 4.4, we can choose these hull functions such
that

|hn(τ, z) − z| ≤ 2⌈2M(pn) + 8⌉
and we have

|λn| ≤ M(pn)

where we recall that M(p) is defined in (4.26). We deduce in particular that there exists a
constant C4 > 0 such that

|hn(τ, z) − z| ≤ C4 and |λn| ≤ C4 .
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Let us consider a limit λ∞ of (λn)n, and let us define

h = lim sup
n→+∞

∗hn .

This function h is such that
u(τ, y) = h(τ, λ∞τ + py)

is a subsolution of (4.40) on R × R. On the other hand, if h denotes the hull function
associated with p and λ = G(p), then

u(τ, y) = h(τ, λτ + py)

is a solution of (4.40) on R × R. Finally, as in Step 1, we conclude that

λ∞ ≤ λ .

Similarly, considering
h = lim inf

n→+∞
∗hn

we can show that
λ∞ ≥ λ .

Therefore λ∞ = λ and this proves that G(pn) → G(p); the continuity of the map p 7→ G(p)
follows and this ends the proof of the proposition.

Proof of Theorem 1.5. Just apply Proposition 4.6 with G = F .

5 Construction of Lipschitz approximate hull functions

When proving the convergence Theorem 1.3, we explained that, on one hand, it is necessary in
order to apply Evans’ perturbed test function method, to deal with hull functions h(τ, z) that
are uniformly continuous in z (uniformly in τ).; on the other hand, given some p > 0, we also
know some Hamiltonian F , with effective hamiltonian F (p), such that every corresponding
hull function h is necessarily discontinuous in z (see the end of the introduction). Recall
that a hull function h solves, with λ = F (p),

hτ + λhz = F (τ, [h(τ, ·)]pm(z)) .

We overcome this difficulty as in [15]. As a matter of fact, the argument is simplified here:
approximate Hamiltonians are defined in a simpler way.
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Let us be more specific now. We show in this section that we can build approximate
Hamiltonian Gδ with corresponding effective Hamiltonian λδ = Gδ(p), and corresponding
hull functions hδ, such that





hδ is Lipschitz continuous wrt z uniformly in τ
Gδ(p) → F (p) as δ → 0
hδ is a subsolution (resp. a supersolution) of
(hδ)τ + λδ(hδ)z = F (τ, [hδ(τ, ·)]pm(z))

We will show that it is enough to choose

(5.49) Gδ(τ, V, a, q) = F (τ, V ) + δ(a0 + a)q

with a0 ∈ R (in fact, we will consider a0 = ±1).
Using (A1), we know that there exists a constant K1 > 0 such that for all V,W ∈ R

2m+1,
τ ∈ R,

(5.50) |F (τ, V + W ) − F (τ, V )| ≤ K1|W |∞

with |W |∞ = maxk=−m,...,m |Wk|.
We have the following regularity result

Proposition 5.1. (Bound on the gradient)
Assume (A1), (A2), (A3) and p > 0. Then the solution u of (2.10) with G = Gδ defined by
(5.49) and u0(y) = py satisfies

(5.51) 0 ≤ uy ≤ p + K1/δ on [0, +∞) × R .

Proof of Proposition 5.1. For all η ≥ 0, we consider the more general equation
(5.52){

uτ = Gδ(τ, [u(τ, ·)]m, infy′∈R (u(τ, y′) − py′) + py − u(τ, y), uy) + ηuyy on (0, +∞) × R

u(0, y) = py for y ∈ R

Case A: η > 0 and F ∈ C1

For η > 0, it is possible to show by the classical fixed point method that there exists a unique
solution u of (5.52) in C2+α,1+α for any α ∈ (0, 1). Moreover u satisfies

u(τ, y + 1/p) = u(τ, y) + 1

Then, if we define v = uy we see by derivation with respect to y, that v solves
(5.53)

vτ − ηvyy = F ′
V (τ, [u(τ, ·)]m(y)) · [v(τ, ·)]m(y) − δ(v − p)v

+δ (a0 + infy′∈R (u(τ, y′) − py′) + py − u(τ, y)) vy

∣∣∣∣ on (0, +∞) × R

v(0, y) = p for y ∈ R

Again we see that v is in C2+α,1+α. In particular v is a viscosity solution of (5.53).
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Step 1: bound from below on the gradient
Let us now define

m(τ) = inf
y∈R

v(τ, y) .

Then we have in the viscosity sense:
{

mτ ≥ K1 min(0,m) − K1m − δ(m − p)m
m(0) = p > 0

where we have used the monotonicity assumption (A2) to get the term K1 min(0,m). The
fact that 0 is subsolution implies that

v ≥ m ≥ 0 .

Step 2: bound from above on the gradient
Similarly we define

m(τ) = sup
y∈R

v(τ, y) .

Then we have in the viscosity sense
{

mτ ≤ K1m − δ(m − p)m
m(0) = p > 0

where we have used Step 1 to ensure that |v| ≤ m. The fact that p+K1/δ is a supersolution
implies that

v ≤ m ≤ p + K1/δ .

Case B: η = 0 and F general
We simply consider a C1 approximation F η of F and call uη the solution of (5.52) with F
replaced with F η, for η > 0. From Case A, we have

(5.54) 0 ≤ (uη)y ≤ p + K1/δ + oη(1)

Then we call
u = lim sup

η→0

∗uη

u = lim inf
η→0

∗u
η

Then u and u are respectively sub and supersolutions of (5.52) with η = 0. Therefore

u ≤ u ≤ u

But by construction we have u ≤ u. Therefore

u = u = u

and passing to the limit in (5.54), we see that u satisfies (5.51). This ends the proof of the
proposition.
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Then we have

Proposition 5.2. (Existence of Lipschitz approximate hull functions)
Assume (A1), (A2) and (A3). Given p > 0, δ > 0 and a0 ∈ R, then there exists a Lipschitz
hull function h(τ, z) satisfying

(5.55)





0 ≤ hz ≤ 1 + K1/(pδ)
h(τ, z + 1) = h(τ, z) + 1
h(τ + 1, z) = h(τ, z)

and there exists λ ∈ R such that

(5.56) hτ + λhz = F (τ, [h(τ, ·)]pm) + δp

{
a0 + inf

z′∈R

(h(τ, z′) − z′) + z − h(τ, z))

}
hz

and

(5.57) |h(τ, z′) − z′ + z − h(τ, z)| ≤ 1 .

Moreover there exists a constant M0 > 0, only depending on F and p > 0, such that

(5.58) |λ| ≤ M0 + δ(|a0| + 1)p

and for all (τ, z) ∈ R × R,

(5.59) |h(τ, z) − z| ≤ M0 + 4δ(|a0| + 1)p .

Moreover, when F does not depend on τ , we can choose the hull function h such that it does
not depend on τ either.

Proof of Proposition 5.2. This is a simple corollary of Proposition 4.2, Proposition 4.3 and
Proposition 5.1; this leads to an improvement of the statement of Corollary 4.4. This proves
in particular the bound on hz. Lipschitz continuity in time of h follows from the PDE
satisfied by h. Indeed, it permits to get a uniform bound on hτ . This ends the proof of the
proposition.

We finally have

Proposition 5.3. (Sub- and super- Lipschitz hull functions)
For any δ > 0, let h±

δ be the Lipschitz hull function obtained in Proposition 5.2 for a0 = ±1,
and λ±

δ the corresponding value of the effective Hamiltonian. Then we have

(h+
δ )τ + λ+

δ (h+
δ )z ≥ F (τ, [h+

δ (τ, ·)]pm) and λ ≤ λ+
δ → λ as δ → 0

(h−
δ )τ + λ−

δ (h−
δ )z ≤ F (τ, [h−

δ (τ, ·)]pm) and λ ≥ λ−
δ → λ as δ → 0

where λ = F (p).

Proof of Proposition 5.3. Inequalities ±λ±
δ ≥ ±λ follow from the comparison principle. In

view of the bounds (5.58) and (5.59) on λ±
δ and h±

δ we have (in particular they are uniform
as δ goes to zero), it is clear that the convergence λ±

δ → λ holds true as δ → 0. It suffices to
adapt Step 2 of the proof of Proposition 4.6.
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6 Qualitative properties of the effective Hamiltonian

Proof of Theorem 1.6: a1,a2,a3,a4. We recall that we have hull functions h solutions of

hτ + λhz = L + F (τ, [h(τ, ·)]pm)

with λ = F (L, p).
The continuity of the map (L, p) 7→ F (L, p) is easily proved as in step 2 of the proof of
Proposition 4.6.
a1. Bound
This is a straightforward adaptation of step 1 of the proof of Proposition 4.1.
a2. Monotonicity in L
The monotonicity of the map L 7→ F (L, p) follows from the comparison principle on u(τ, y) =
h(τ, λτ + py) where h is the hull function and λ = F (L, p).
a3. Antisymmetry in V
We just remark that if a hull function h solves

hτ + λhz = F (τ, [h(τ, ·)]pm)

then h̃(τ, z) = −h(τ,−z) satisfies

h̃τ − λh̃z = −F (τ,−h̃(τ, z + mp), ...,−h̃(τ, z − mp)) = F (τ, [h̃(τ, ·)]pm)

By the uniqueness of λ, we deduce that λ = −λ and then F (0, p) = λ = 0.
a4. Periodicity in p
It is sufficient to remark that, given p > 0, if h is a hull function for λ = F (L, p), then h is
also a hull function for p + 1 with the same λ.

Before to prove the point (a5) of Theorem 1.6, let us prove the following easier result,
which also shows that the Lipschitz constant of the hull function is related to the inverse of
the bound from below of the gradient in L of the effective hamiltonian

Proposition 6.1. (Lipschitz hull function / bound from below on ∂F
∂L

)
Given (L0, p) ∈ R×(0, +∞), asssume that there exists a corresponding hull function h which
satisfies for some K3 ≥ 1

0 ≤ h(τ, z + a) − h(τ, z) ≤ K3a for any (a, z) ∈ [0, +∞) × R .

Then we have for all L ∈ R

|F (L + L0, p) − F (L0, p)| ≥ |L|
K3

.
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Proof of Proposition 6.1. Up to redefine F , we can assume that L0 = 0. Then we have with
λ = F (0, p):

hτ + λhz = F (τ, [h(τ, ·)]pm(z))

This implies
hτ + λ̃hz ≤ L + F (τ, [h(τ, ·)]pm(z))

with L = (λ̃ − λ)K3. From the comparison principle, we deduce that λ̃ ≤ F (L, p), i.e.

L/K3 ≤ F (L, p) − F (0, p)

which gives the result for positive L. We get similarly the corresponding inequality for
negative L. This ends the proof of the proposition.

Proof of Theorem 1.6: a5. Continuous hull function/no plateau of L 7→ F (L, p)
Up to redefine F , we can assume that L0 = 0. We assume that h is continuous with the
following space-modulus of continuity ω: for all τ ≥ 0, z′ ≥ 0, z ∈ R,

(6.60) 0 ≤ h(τ, z + z′) − h(τ, z) ≤ ω(z′)

and solves, for λ = F (0, p),

(6.61) hτ + λhz = F (τ, [h(τ, ·)]pm(z)) .

Then we define for α > 0 the sup-convolution (in space only)

hα(τ, z) = sup
y∈R

(
h(τ, y) − |z − y|2

2α

)
.

We (classically) show that hα is a Lipschitz continuous subsolution of equation (6.61) per-
turbed by some error term.

Step 1: the basic viscosity inequality satisfied by hα

More precisely, let ϕ ∈ C1(R2) such that

hα ≤ ϕ with equality at (τ0, z0)

and let y0 ∈ R be such that

(6.62) h(τ0, z0) ≤ hα(τ0, z0) = h(τ0, y0) −
|z0 − y0|2

2α
.

Then we have

h(τ, y) ≤ ϕ(τ, z0) +
|z0 − y|2

2α
=: ϕ̃(τ, y) with equality at (τ0, y0) .
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This implies
ϕ̃τ + λϕ̃y ≤ F (τ0, [h(τ0, ·)]pm(y0)) at (τ0, y0) .

By definition of hα, we have

hα(τ0, z0 + kp) ≥ h(τ0, y0 + kp) − |z0 − y0|2
2α

.

We deduce that

ϕτ (τ0, z0) + λ

(
y0 − z0

α

)
≤ F

(
τ0,

[ |z0 − y0|2
2α

+ hα(τ0, ·)
]p

m

(z0)

)

where we have used (6.62) and the monotonicity assumption (A2) on F . We classically have
ϕz(τ0, z0) = (y0 − z0)/α ≥ 0 (recall that h is non-decreasing). This gives the basic viscosity
inequality satisfied by hα

(6.63) ϕτ (τ0, z0) + λϕz(τ0, z0) ≤ F

(
τ0,

[ |z0 − y0|2
2α

+ hα(τ0, ·)
]p

m

(z0)

)
.

Step 2: getting a bound from below on the effective Hamiltonian
Using the Lipschitz constant K1 > 0 defined in (5.50), we get, from (6.63),

ϕτ (τ0, z0) + λϕz(τ0, z0) ≤ K1
|z0 − y0|2

2α
+ F (τ0, [h

α(τ0, ·)]pm (z0)) .

This implies
ϕτ (τ0, z0) + λ̃ϕz(τ0, z0) ≤ L + F (τ0, [h

α(τ0, ·)]pm (z0))

for any (λ̃, L) such that

(6.64) L ≥ K1
|z0 − y0|2

2α
+ (λ̃ − λ)

(
y0 − z0

α

)
.

Now using (5.57) and (6.62), we get

|z0 − y0|2
2α

≤ h(τ0, y0) − h(τ0, z0) ≤ ω(y0 − z0) ≤ 1 + |y0 − z0|

which implies |y0 − z0| ≤ 4
√

α for α ≤ 2. Consider now L > 0 and λ̃ such that (6.64) holds
true and

λ̃ ≥ λα := λ +

√
α

4

(
L − K1ω(4

√
α)

)
.

We then have, in the viscosity sense, for all (τ, z) ∈ R
2,

hα
τ + λαhα

z ≤ L + F (τ, [hα(τ, ·)]pm (z)) .
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Therefore, for any L > 0, we have

F (L, p) ≥ λα > λ = F (0, p)

for α small enough.

Step 3: the bound from above on the effective Hamiltonian
Proceeding by inf-convolution, we get similarly the expected result for negative L. This ends
the proof of the theorem.

Remark 6.2. We can also get explicit estimates to bound |F (L, p) − F (0, p)| from below,
using the modulus of continuity ω(·).

Proof of Theorem 1.7. b1. No plateau in L if F 6= 0
Consider L2 > L1 and the corresponding hull functions hi(z) independent on time and
satisfying

λi(hi)z = Li + F ([hi(·)]pm(z)), i = 1, 2

for the corresponding λi = F (Li, p). We assume that λ1 > 0 and we already know that
λ2 ≥ λ1 > 0. Let us define

F0 = sup
V0∈R

|F (V0, ..., V0)| .

Remark now that (5.57) implies

|hi(z + kp) − hi(z) − kp| ≤ 1

and then
|F ([hi(·)]pm(z))| ≤ F0 + K1(mp + 1)

Therefore
0 ≤ (h1)z ≤ λ−1

1 (|L1| + F0 + K1(mp + 1)) .

Hence
(λ1 + δ(L2 − L1))(h1)z ≤ L2 + F ([h1(·)]pm(z))

for δ ≤ λ1 (|L1| + F0 + K1(mp + 1))−1. This implies that λ2 ≥ λ1 + δ(L2 − L1), i.e.

λ2 − λ1

L2 − L1

≥ λ1 (|L1| + F0 + K1(mp + 1))−1

This implies the result for F > 0. We get a similar result for F < 0.
b2. 0-plateau property
Because V0 7→ F (V0, ..., V0) is assumed not constant, we see that there exists L0 ∈ R such
that

inf
V0∈R

F (V0, ..., V0) < −L0 < sup
V0∈R

F (V0, ..., V0)
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Up to redefine F , we can assume that L0 = 0 to simplify. Recall also that for (L, p), the
(possibly discontinuous) hull function h satisfies

λhz = L + F ([h(·)]pm(z))

Now for p ∈ N \ {0}, and using property (1.8), we deduce that

λhz = L + F (h(z), ..., h(z)) .

Consider λ 6= 0. Assume for instance that λ > 0. Then h is Lipschitz continuous. Moreover,
h is non-decreasing. Then using a test function φ which touches h at z in a region where
F (h(z), ..., h(z)) < 0, we get a contradiction for |L| small enough. This shows that λ ≤ 0.
Similarly, we show that λ ≥ 0. Therefore F (L, p) = λ = 0 for L small enough. This ends
the proof of the theorem.

We have moreover the following result

Proposition 6.3. (Uniqueness of the continuous hull functions)
Assume (A1), (A2) and (A3). Assume also that there exist δ0 > 0 and k0 ∈ {−m, ...,m}\{0}
such that

(6.65)
∂F

∂Vk0

(τ, V ) ≥ δ0 > 0 for any V = (V−m, ..., Vm) ∈ R
2m+1

and we consider hull functions for some fixed irrational p > 0.
If there exists a continuous hull function h(τ, z), then every hull function is continuous and
is equal to h, up to a fixed translation in z. In that case, the hull function is moreover stricly
monotone in z, i.e. satisfies

h(τ, z′) > h(τ, z) if z′ > z

Remark 6.4. WE DO NOT KNOW IF PROPOSITION 6.3 IS STILL TRUE WITHOUT
ASSUMING THE CONTINUITY OF THE HULL FUNCTION, BUT ONLY ASSUMING
THAT p IS IRRATIONAL.

Remark 6.5. The classical FK model (1.4) gives an example of non-uniqueness of hull
functions which can be discontinuous for F (p) = 0. Indeed for f = 0 and p = 1, the
following functions (for any a ∈ (0, 1))

h1(z) = ⌊z⌋ and h2(z) =

{ ⌊z⌋ if 0 ≤ z − ⌊z⌋ < a,
1

2
+ ⌊z⌋ if a ≤ z − ⌊z⌋ < 1

are two admissible discontinuous hull functions.
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Proof of Proposition 6.3. i) Uniqueness of the hull function
Assume that h1 and h2 are two hull functions, with h2 continuous. We can slide h2(τ, z + a)
above h∗

1(τ, z) for a large enough. Then we decrease a until some a∗ to get a contact between
h2(τ, z+a∗) and h∗

1(τ, z) at some point (τ0, z0). Up to redefine h2, we can assume that a∗ = 0.
Step 1: strong maximum principle at the contact point
Let us consider

b(τ) = inf
z∈R

(h2(τ, z) − h∗
1(τ, z)) = h2(τ, z(τ)) − h∗

1(τ, z(τ))

for some z(τ) ∈ R. Recall that we have in the viscosity sense

(hi)τ + λ(hi)z = F (τ, [hi(τ, ·)]pm(z))

Then up to a dedoubling of variable in time and in space, we can indentify the space deriva-
tives at (τ, z(τ)) of h2 and h1 which implies (this is a routine exercice to justify this in the
viscosity framework):

d
dτ

b(τ) ≥ F (τ, [h2(τ, ·)]pm(z(τ))) − F (τ, [h∗
1(τ, ·)]pm(z(τ)))

≥ δ0 (h2(τ, z(τ) + k0p) − h∗
1(τ, z(τ) + k0p))

≥ δ0b(τ) .

In particular, from the fact that b(τ0) = 0, we deduce that

b(τ) = 0 for τ ≤ τ0 .

Moreover, we deduce that the function g(τ, z) = h2(τ, z) − h∗
1(τ, z) satifies

g(τ, z(τ) + k0p) = 0 for τ ≤ τ0

Step 2: conclusion
We can now reapply step 1 iteratively to z(τ) + k0pl for l = 1, 2, .... We deduce that for all
l ∈ N and for τ ≤ τ0,

g(τ, z(τ) + k0pl) = 0 .

Because p is irrational, we deduce that h∗
1 is equal to the continuous function h2 on a set

which is dense in (−∞, τ0]×R. Therefore h∗
1 is continuous on (−∞, τ0]×R. But recall that

u1(τ, y) = h1(τ, λτ + py) solves

(u1)τ = F (τ, [u1(τ, ·)m(z)] .

Because the right hand side is bounded, this implies that u1 is Lipschitz in time. On the
other hand, we have u1(τ, y) is non-decreasing in y, so u1 6= u∗

1 only if u1 has a jump in space
at some point (τ1, y1). This would imply that u∗

1 has also a jump at the same point. This is
impossible, because u∗

1 is continuous as a consequence of the continuity of h∗
1. Therefore u1

and h1 are continuous. Hence h1 = h∗
1 = h2 on (−∞, τ0] × R and then on R × R, using the

periodicity in time of the hull functions.
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ii) Strict monotonicity of the hull function
We simply apply i) with h1(τ, z) = h(τ, z) and h2(τ, z) = h(τ, z + a0) ≥ h1(τ, z) for some
a0 > 0. Assume by contradiction, the existence of a contact point between h1 and h2. Point
i) implies that h1 = h2, i.e. h(τ, z + a0) = h(τ, z). This implies that

h(τ, z + ka0) = h(τ, z) for any k ∈ Z

which is impossible. Therefore, we have

h(τ, z + a0) > h(τ, z) for a0 > 0

which ends the proof of the proposition.

Finally, let us give the following result

Proposition 6.6. (Potential with zero mean value)
Let us consider a 1-periodic g0 ∈ W 2,∞(R; R) and convex functions gi ∈ W 2,∞(R; R) for
i = 1, ...,m. Let us set

F (V ) = −g′
0(V0) +

∑

i=1,...,m

−g′
i(V0 − V−i) + g′

i(V0 − Vi)

Then F satisfies (A1)-(A2)-(A3) and F (0, p) = 0.

Proof of Proposition 6.6. The proof follows simply the lines of the proof of point 3 of Theo-
rem 2.6 in [12].

A VERIFIER

A Appendix: the hull function versus Slepčev formu-

lation

In this Section we present a kind of “dual formulation” of the equations, called the Slepčev
formulation and satisfied by the inverse in space of the functions. This presentation is done
formally, but can be made rigorous.

1.1 The classical FK model

Let us start with the solution Ui(τ) of (1.1). Then we can define the “cumulative distribution
of particles”

ρ(τ, Y ) =
∑

i≥0

H(Y − Ui(τ)) +
∑

i<0

(−1 + H(Y − Ui(τ)))

where H is the Heavyside function defined by

H(x) =

{
1 if x ≥ 0
0 if x < 0
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Figure 4: The function ρ as the inverse of u

Here ρ(τ, ·) is nothing else than the inverse (in space) of the function

y 7→ U⌊y⌋(τ)

Then we can check that the discontinuous function ρ solves the following equation

(1.66) ρτ = |∇ρ| {M [ρ(τ, ·)](Y ) − sin (2πY ) − f}

where the non-local operator M is defined for v(Y ) by

M [v](Y ) = lim
a→+∞

Ma[v](Y )

where for any a > 0 we set

Ma[v](Y ) =

∫

[−a,a]

dZ E−1,1 (v(Y + Z) − v(Y ))

with

E−1,1(x) =





−3

2
if x < −1

−1

2
if −1 ≤ x < 0

1

2
if 0 ≤ x < 1

3

2
if 1 ≤ x

Remark that Ma[v](Y ) is independent on a for any a sufficiently large (depending on v and
Y ).

Equation (1.66) has to be understood in the sense of Slepčev viscosity solutions as in
Forcadel, Imbert, Monneau [12].

More generally, if a continuous function ρ solves equation (1.66) and satisfies for some
δ > 0

ρY ≥ δ > 0
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then the sequence (Ui(τ))i defined by

ρ(τ, Ui(τ)) = i

solves (1.1).
Another approach to the homogenization of system (1.1) consists in doing the homoge-

nization of equation (1.66) following the lines of [12]. Consider the rescaled function

ρε(t,X) = ερ(ε−1t, ε−1X)

where ρε(t, ·) appears to be the inverse (in space) of uε(t, ·) defined in (1.2). Under suitable
assumptions, it is possible to show that ρε converges to ρ0 which solves the following equation:

(1.67) ρ0
t = H(ρ0

X)

Here ρ0(t, ·) is the inverse (in space) of the function u0(t, ·) which solves (1.3). Taking the
derivatives of the identity:

ρ0(t, u0(t, x)) = x,

a simple computation shows that

(1.68) H(q) = −qF (1/q)

Moreover the quantity θ = ρ0
X can be interpreted as the density of particles and satisfies the

following conservation law (the derivative of (1.67)):

θt =
(
H(θ)

)
X

The cell equation corresponding to equation (1.66) is found setting ρ(τ, Y ) = µτ +qY +v(Y ).
We see that the corrector v satisfies

µ = |q + vY | (M [v](Y ) − sin (2πY ) − f)

with µ = H(q) and v is 1-periodic. Therefore, if we set

w(Y ) = Y +
v(Y )

q

and if w satisfies for some δ > 0:

0 < δ ≤ wY ≤ 1/δ

then we see (from (1.7)) that the hull function h is nothing else than the inverse of w, i.e.

(1.69) h(w(Y )) = Y

and −µ/q = λ with p = 1/q which again is exactly the relation (1.68).
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If both w and h are monotone, then a discontinuity of the hull function corresponds to
a zero gradient of w and a discontinuity of w corresponds to a zero gradient of h. But in
general, we do not know how to exclude the possibility for h and for w to be non-monotone
and then (1.69) could be no longer true.

Let us also remark that, while the case p → +∞ seems difficult to deal with in the “hull
function approach”, this corresponds to a density q = 1/p going to zero with a corresponding
effective Hamiltonian H(0) = 0 (because F is bounded). Therefore this case is well-posed for
the formulation in ρε and could be proven naturally using directly the “Slepčev formulation”.
Another proof should be possible working in the “hull function approach” with initial data in
BUCloc with gradient bounded from below. Using the relation (1.68), it should be possible
to show that uε converges to u0 whose the inverse is a solution of (1.67). The case of infinite
gradient should be treated by an approximation argument by comparison with functions
with large, but finite, gradient.

Similarly the case p → 0 could be treated following the lines of Imbert, Monneau [15] in
the hull function approach. This could also be treated in the “Slepčev formulation” dealing
with solutions with initial data in BUCloc, rather than Lipschitz initial data.

1.2 The generalized FK model

We define for any k ∈ Z \ {0}

Ek(x) = H(x) + H(x − k) − 1

and
E0 = 0

and the operator for v(Y )
Mk[v](Y ) = lim

a→+∞
Ma

k [v](Y )

where for any a > 0 we set

Ma
k [v](Y ) =

∫

[−a,a]

dZ Ek (v(Y + Z) − v(Y ))

Then we see that if u(τ, y) solves (1.5), then its inverse (in space) ρ(τ, Y ) solves the following
non-local and non linear equation

(1.70) ρτ = −|ρY |F (τ, Y − M−m[ρ(τ, ·)](Y ), ..., Y − Mm[ρ(τ, ·)](Y ))

This equation is still monotone in ρ and could be treated directly with a suitable “Slepčev
formulation”.
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