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Global 
ontinuous solutionsto diagonalizable hyperboli
 systemswith large and monotone dataA. El Hajj12, R. Monneau1April 25, 2008Abstra
tIn this paper, we study diagonalizable hyperboli
 systems in one spa
e dimension. Based on anew gradient entropy estimate, we prove the global existen
e of a 
ontinuous solution, for largeand nonde
reasing initial data. Moreover, we show in parti
ular 
ases some uniqueness results.We also remark that these results 
over the 
ase of systems whi
h are hyperboli
 but not stri
tlyhyperboli
. Physi
ally, this kind of diagonalizable hyperboli
 systems appears naturally in themodelling of the dynami
s of dislo
ation densities.AMS Classi�
ation: 35L45, 35Q35, 35Q72, 74H25.Key words: Global existen
e, system of Burgers equations, system of nonlinear transportequations, nonlinear hyperboli
 system, dynami
s of dislo
ation densities.
1 Introdu
tion and main result1.1 Setting of the problemIn this paper we are interested in 
ontinuous solutions to hyperboli
 systems in dimensionone. Our work will fo
us on solution u(t, x) = (ui(t, x))i=1,...,M , where M is an integer,of hyperboli
 systems whi
h are diagonal, i.e.

∂tu
i + ai(u)∂xu

i = 0 on (0, T ) × R and for i = 1, ...,M, (P)1É
ole Nationale des Ponts et Chaussées, CERMICS, 6 et 8 avenue Blaise Pas
al, Cité Des
artesChamps-sur-Marne, 77455 Marne-la-Vallée Cedex 2, Fran
e2Université de Marne-la-Vallée 5, boulevard Des
artes Cité Des
artes - Champs-sur-Marne 77454Marne-la-Vallée 
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with the initial data:
ui(0, x) = ui

0(x), x ∈ R, for i = 1, . . . ,M. (ID)For real numbers αi ≤ βi, let us 
onsider the box
U = ΠM

i=1[α
i, βi]. (1.1)We 
onsider a given fun
tion a = (ai)i=1,...,M : U → R

M , whi
h satis�es the followingregularity assumption:
(H1)







the fun
tion a ∈ C∞(U),there exists M0 > 0 su
h that for i = 1, ...,M,
|ai(u)| ≤M0 for all u ∈ U,there exists M1 > 0 su
h that for i = 1, ...,M,
|ai(v) − ai(u)| ≤M1|v − u| for all v, u ∈ U.We assume, for all u ∈ R

M , that the matrix
(ai

,j(u))i,j=1,...,M , where ai
,j =

∂

∂uj
ai,is non-negative in the positive 
one, namely

(H2)

∣
∣
∣
∣
∣
∣
∣
∣

for all u ∈ U, we have
∑

i,j=1,...,M

ξiξja
i
,j(u) ≥ 0 for every ξ = (ξ1, ..., ξM) ∈ [0,+∞)M .In (ID), ea
h 
omponent ui

0 of the initial data u0 = (u1
0, · · · , u

M
0 ) is assumed satisfy thefollowing property:

(H3)







ui
0 ∈ L∞(R),
ui

0 is nonde
reasing,
∂xu

i
0 ∈ L logL(R),

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for i = 1, · · · ,M ,where L logL(R) is the following Zygmund spa
e:
L logL(R) =

{

f ∈ L1(R) su
h that ∫
R

|f | ln (1 + |f |) < +∞

}

.This spa
e is equipped by the following norm:2



‖f‖L log L(R) = inf

{

λ > 0 :

∫

R

|f |

λ
ln

(

1 +
|f |

λ

)

≤ 1

}

,This norm is due to Luxemburg (see Adams [1, (13), Page 234℄).Our purpose is to show the existen
e of a 
ontinuous solution, su
h that ui(t, ·) satis�es
(H3) for all time.1.2 Main resultIt is well-known that for the 
lassi
al Burgers equation, the solution stays 
ontinuouswhen the initial data is Lips
hitz-
ontinuous and non-de
reasing. We want somehow togeneralize this result to the 
ase of diagonal hyperboli
 systems.Theorem 1.1 (Global existen
e of a nonde
reasing solution)Assume (H1), (H2) and (H3). Then, for all T > 0, we have:i) Existen
e of a weak solution:There exists a fun
tion u solution of (P)-(ID) (in the distributional sense), where
u ∈ [L∞((0, T ) × R)]M ∩ [C([0, T );L logL(R))]M and ∂xu ∈ [L∞((0, T );L logL(R))]M ,su
h that for a.e t ∈ [0, T ) the fun
tion u(t, ·) is nonde
reasing in x and satis�es thefollowing L∞ estimate:

‖ui(t, ·)‖L∞(R) ≤ ‖ui
0‖L∞(R), for i = 1, . . . ,M, (1.2)and the gradient entropy estimate:

∫

R

∑

i=1,...,M

f
(
∂xu

i(t, x)
)
dx+

∫ t

0

∫

R

∑

i,j=1,...,M

ai
,j(u)∂xu

i(s, x)∂xu
j(s, x) dx ds ≤ C1,(1.3)where

f(x) =

{
x ln(x) + 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,
(1.4)and C1(T,M,M1, ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M ).ii) Continuity of the solution:The solution u 
onstru
ted in (i) belongs to C([0, T )× R) and there exists a modulus of
ontinuity ω(δ, h), su
h that for all (t, x) ∈ (0, T ) × R and all δ, h ≥ 0, we have:

|u(t+ δ, x+ h) − u(t, x)| ≤ C2 ω(δ, h) with ω(δ, h) =
1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)
. (1.5)where C2(T,M1,M0, ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M ).3



Remark 1.2Here, we 
an easily extend the solution u of (P)-(ID), given by Theorem 1.1, on the timeinterval [0,+∞).Our method is based on the following simple remark: if the initial data satis�es (H3)then the solution satis�es (H3) for all t. What seems new is the gradient entropy in-equality. The prove of Theorem 1.1 is rather standard. First we regularize the initialdata and the system with the addition of a vis
osity term, then we show that this regu-larized system admits a 
lassi
al solution for short time. We prove the bounds (1.2) andthe fundamental gradient entropy inequality (1.3) whi
h allow to get a solution for alltime. Finally, these a priori estimates ensure enough 
ompa
tness to pass to the limitwhen the regularization varnishes and to get the existen
e of a solution.Remark 1.3To guarantee the L logL bound on the gradient of the solutions. We assumed in (H2) asign on the left hand side of gradient entropy inequality (1.3).In the 
ase of 2 × 2 stri
tly hyperboli
 systems, whi
h 
orresponds in (P) to the 
aseof a1(u1, u2) < a2(u1, u2). Lax [30℄ proved the existen
e of smooth solution of (P)-(ID).This result was also proven by Serre [36, Vol II℄ in the 
ase of M ×M ri
h hyperboli
systems (see also Subse
tion 1.4 for more related referen
es). Their result is limitedto the 
ase of stri
tly hyperboli
 systems, here in Theorem 1.1, we treated the 
ase ofsystems whi
h are hyperboli
 but not stri
tly hyperboli
. See the following Remark fora quite detailed example.Remark 1.4 (Crossing eigenvalues)Condition (1.9) on the eigenvalues is required in our framework (Theorem 1.1). Here isa simple example of a 2 × 2 hyperboli
 but not stri
tly hyperboli
 system. We 
onsidersolution u = (u1, u2) of






∂tu
1 + cos(u2)∂xu

1 = 0,

∂tu
2 + u1sin(u2)∂xu

2 = 0,

∣
∣
∣
∣
∣
∣

on (0, T ) × R. (1.6)Assume:i) u1(−∞) = 0, u1(+∞) = 1 and ∂xu
1 ≥ 0,ii) u2(−∞) = −π

2
, u2(+∞) = π

2
and ∂xu

2 ≥ 0.Here the eigenvalues λ1(u
1, u2) = cos(u2) and λ2(u

1, u2) = u1sin(u2) 
ross ea
h otherat the initial time (and indeed for any time). Nevertheless for a1(u1, u2) = cos(u2) and
a2(u1, u2) = u1sin(u2), we 
an 
ompute 4



(ai
,j(u

1, u2))i,j=1,2 =

(
0 −sin(u2)

sin(u2) u1cos(u2)

)

,whi
h satis�es (H2) (under assumptions (i) and (ii)). Therefor Theorem 1.1 gives theexisten
e of a solution to (1.6) with (i) and (ii).Based on the same type of gradient entropy inequality (1.3), it was proved in Cannoneet al. [8℄ the existen
e of a solution in the distributional sense for a two-dimensionalsystem of two transport equations, where the velo
ity ve
tor �eld is non-lo
al.The uniqueness of the solution is strongly related to the existen
e of regular (Lips
hitz)solutions (see Theorem 7.7). Let us remark that equation (P)-(ID) does not 
reatesho
ks be
ause the solution (given in Theorem 1.1) is 
ontinuous. In this situation, itseems very natural to expe
t the uniqueness of the solution. Indeed the notion of en-tropy solution (in parti
ular designed to deal with the dis
ontinuities of weak solutions)does not seem so helpful in this 
ontext. Nevertheless the uniqueness of the solution isan open problem in general (even for su
h a simple system).We ask the following Open question:Is there uniqueness of the solution given in Theorem 1.1 ?Now we give the following existen
e and uniqueness result in [W 1,∞([0, T ) × R)]M , in aspe
ial 
ase to simplify the presentation. More pre
isely we assume
(H1′) ai(u) =

∑

j=1,...,M

Aiju
j for i = 1, . . . ,M and for all u ∈ U ,

(H2′)
∑

i,j=1,...,M

Aijξiξj ≥ 0 for every ξ = (ξ1, ..., ξM) ∈ [0,+∞)M .Theorem 1.5 (Existen
e and uniqueness of W 1,∞ solution for a parti
ular
A = (Aij)i,j=i=1,...,M)Assume (H1′). For T > 0 and all nonde
reasing initial data u0 ∈ [W 1,∞(R)]M , the sys-tem (P)-(ID) admits a unique solution u ∈ [W 1,∞([0, T ) × R)]

M , in the following 
ases:i) M ≥ 2 and Aij ≥ 0, for all j ≥ i.ii) M ≥ 2 and Aij ≤ 0, for all i 6= j and (H2′). And then for all (t, x) ∈ [0, T ) × R wehave
∑

i=1,...,M

∂xu
i(t, x) ≤ sup

y∈R

∑

i=1,...,M

∂xu
i
0(y). (1.7)

5



Remark 1.6 (Case of M = 2)In parti
ular for M = 2, if (H1′), (H2′) and (H3) satis�ed then we have, by Theorem1.5 the existen
e and uniqueness of a solution in [W 1,∞([0, T ) × R)]
2 of (P)-(ID).In these parti
ular 
ases of the matrix A, we 
an prove that ∂xu

i for i = 1, . . . ,M , arebounded on [0, T )×R. Thanks to this better estimates on ∂xu
i, and then on the velo
ityve
tor �eld Au, we prove here the uniqueness of the solution.In the 
ase of the matrix A =

(
1 −1
−1 1

), it was proved in El Hajj, For
adel [16℄, theexisten
e and uniqueness of a Lips
hitz vis
osity solution, and in A. El Hajj [15℄, theexisten
e and uniqueness of a strong solution in W 1,2
loc ([0, T ) × R).1.3 Appli
ation to diagonalizable systemsLet us �rst 
onsider a smooth fun
tion u = (u1, . . . , uM), solution of the following non-
onservative hyperboli
 system:







∂tu(t, x) + F (u)∂xu(t, x) = 0, u(t, x) ∈ U, x ∈ R, t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ R,
(1.8)where the spa
e of states U is now an open subset of R

M , and for ea
h u, F (u) is a
M ×M-matrix and the map F is of 
lass C1(U). We assume that F (u) has M realeigenvalues λ1(u), . . . , λM(u), and we suppose that we 
an sele
t bases of right and lefteigenve
tors ri(u), li(u) normalized so that

|ri| ≡ 1 and li · rj = δijRemark 1.7 (Riemann invariant)Re
all that lo
ally a ne
essary and su�
ient 
ondition to write
li(u) = ∇uϕi(u),is the Frobenius 
ondition li ∧ dli = 0. In that 
ase the fun
tion ϕi(u) is solution of thefollowing equation

(ϕi(u))t + λi(u)(ϕi(u))x = 0.We re
all that then ϕi(u) is 
alled a i-Riemann invariant (see Sevenne
 [37℄ and Serre[36, Vol II℄)). If this is true for any i, we say that the system (1.8) is diagonalizable.Our theory is naturally appli
able to this more general 
lass of systems.6



1.4 A brief review of some related literatureNow we re
all some well known results for system (1.8).For a s
alar 
onservation law, this 
orresponds in (1.8) to the 
ase M = 1 and
F (u) = h′(u) is the derivative of some �ux fun
tion h, the global existen
e and unique-ness of BV solution established by Oleinik [34℄ in one spa
e dimension. The famouspaper of Kruzhkov [28℄ 
overs the more general 
lass of L∞ solutions, in several spa
edimension. For another alternative approa
h based on the notion of entropy pro
esssolutions, see Eymard et al. [17℄, see also the kineti
 formulation P. L. Lions et al. [33℄.We now re
all some well-known results for a 
lass of 2× 2 stri
tly hyperboli
 systems none spa
e dimension. Here i.e F (u) has two real, distin
t eigenvalues

λ1(u) < λ2(u).Lax [30℄ proved the existen
e and uniqueness of nonde
reasing and smooth solutions ofthe 2 × 2 stri
tly hyperboli
 systems. Also in 
ase of 2 × 2 stri
tly hyperboli
 systemsDiPerna [12, 13℄ showed the global existen
e of a L∞ solution. The proof of DiPernarelies on a 
ompensated 
ompa
tness argument, based on the representation of the weaklimit in terms of Young measures, whi
h must redu
e to a Dira
 mass due to the presen
eof a large family of entropies. This results is based on the idea of Tartar [39℄.For general M ×M stri
tly hyperboli
 systems; i. e. where F (u) has M real, distin
teigenvalues
λ1(u) < · · · < λM(u), (1.9)Bian
hini and Bressan proved in [6℄ a striking global existen
e and uniqueness result of

BV solutions to system (1.8), assuming that the initial data has small total variation.Their existen
e result is a generalization of Glimm result [20℄, proved in the 
onserva-tion 
ase; i.e. F (u) = Dh(u) is the Ja
obin of some �ux fun
tion h and generalized byLeFlo
h and Liu [31, 32℄ in the non-
onservative 
ase.We 
an also mention that, our system (P) is related to other similar models, su
h ass
alar transport equations based on ve
tor �elds with low regularity. Su
h equationswere for instan
e studied by Diperna and Lions in [14℄. They have proved the existen
e(and uniqueness) of a solution (in the renormalized sense), for given ve
tor �elds in
L1((0,+∞);W 1,1

loc (RN)) whose divergen
e is in L1((0,+∞);L∞(RN)). This study wasgeneralized by Ambrosio [2℄, who 
onsidered ve
tor �elds in L1((0,+∞);BVloc(R
N ))with bounded divergen
e. In the present paper, we work in dimension N = 1 and provethe existen
e (and some uniqueness results) of solutions of the system (P)-(ID) with avelo
ity ve
tor �eld ai(u), i = 1, . . . ,M . Here, in Theorem 1.1, the divergen
e of ourve
tor �eld is only in L∞((0,+∞), L logL(R)). In this 
ase we proved the existen
eresult thanks to the gradient entropy estimate (1.3), whi
h gives a better estimate on7



the solution. However, in Theorem 1.5, the divergen
e of our ve
tor �eld is bounded,whi
h allows us to get a uniqueness result for the non-linear system (P).We also refer to Ishii, Koike [25℄ and Ishii [24℄, who showed existen
e and uniqueness ofvis
osity solutions for Hamilton-Ja
obi systems of the form:






∂tu
i +Hi(u,Du

i) = 0 with u = (ui)i ∈ R
M , for x ∈ R

N , t ∈ (0, T ),

ui(x, 0) = ui
0(x) x ∈ R,

(1.10)where the Hamiltonian Hi is quasi-monotone in u (see Ishii, Koike [25, Th.4.7℄). Thisdoes not 
over our study sin
e our Hamiltonian is not ne
essarily quasi-monotone.For hyperboli
 and symmetri
 systems, Gȧrding has proved in [18℄ a lo
al existen
e anduniqueness result in C([0, T );Hs(RN))∩C1([0, T );Hs−1(RN)), with s > N
2

+ 1 (see alsoSerre [36, Vol I, Th 3.6.1℄), this result being only lo
al in time, even in dimension N = 1.1.5 Mis
ellaneous extensions to explore in a futur work1. In Theorem 1.1 we have 
onsidered the study of a parti
ular system only to simplifythe presentation. This result 
ould be generalized to the following system
∂tu

i + ai(u, x, t)∂xu
i = hi(u, x, t) on (0, T ) × R and for i = 1, ...,M, (P')with suitable 
onditions on ai and hi.2. If we 
onsider the 
ase where the system (P) is stri
tly hyperboli
. Based in theresult of Bian
hini, Bressan [6℄, we 
ould also prove the uniqueness of the solution,whose existen
e is given by Theorem 1.1.3. We 
ould also extend Theorem 1.5 to system (P'), where we repla
e (i) and (ii) bythe following 
onditioni') For M ≥ 2, ai

j(u, x, t) ≥ 0 for j ≥ i and for all (u, x, t) ∈ U × R × [0, T ).ii') For M ≥ 2,
ai

,j(u, x, t) ≤ 0 for all (u, x, t) ∈ U × R × [0,+∞), for all i 6= j,and we assume that for any vi ∈ R
M , xi ∈ R, the matrix
bij(t) = ai

,j(vi, xi, t)satis�es for all t ≥ 0

(H2′′)
∑

i,j=1,...,M

bij(t)ξiξj ≥ 0 for all ξ = (ξ1, ..., ξM) ∈ [0,+∞)M .8



4. We 
ould also prove the uniqueness result in 
ase of W 1,∞ solution among weaksolution. (and in parti
ular any weak solution is a vis
osity solution in the sense ofCrandall-Lions [10, 11℄).5. We 
ould propose a numeri
al s
heme and try to prove its 
onvergen
e.6. Appli
ations to other equations: Euler, p-systems.1.6 Organization of the paperThis paper is organized as follows: in the Se
tion 2, we approximate the system (P) andthe initial 
onditions. Then we prove a lo
al in time existen
e for this approximatedsystem. In Se
tion 3, we prove the global in time existen
e for the approximated system.In the Se
tion 4, we prove that the obtained solutions are regular and non-de
reasingin x for all t ∈ (0, T ). In Se
tion 5, we prove the gradient entropy inequality and someother ε-uniform a priori estimates. In Se
tion 6, we prove the main result (Theorem 1.1)passing to the limit as ε goes to 0 and using some 
ompa
tness properties inherited fromour entropy gradient inequality and the a priori estimates. In Se
tion 7 we prove someuniqueness results in parti
ular 
ases (Theorem 1.5). An appli
ation to the dynami
s ofdislo
ation densities given in Se
tion 8. Finally, in the Appendix, we re
all the proof ofuniqueness of Lips
hitz solution to system (P).2 Lo
al existen
e of an approximated systemThe system (P) 
an be written as:
∂tu+ a(u) ⋄ ∂xu = 0, (2.11)where u := (ui)1,...,M , a(u) = (ai(u))1,...,M and U ⋄ V is the �
omponent by 
omponentprodu
t� of the two ve
tors U, V ∈ R

M . This is the ve
tor in R
M whose 
oordinates aregiven by (U ⋄ V )i := UiVi:








U1

U2...
UM







⋄








V1

V2...
VM








=








U1V1

U2V2...
UMVM







.Now, we 
onsider the system (2.11), modi�ed by the term ε∂xxu, where ∂xx =

∂2

∂x2
, andfor smoothed data. This modi�
ation brings us to study, for all 0 < ε ≤ 1, the followingsystem:

∂tu
ε − ε∂xxu

ε = −a(uε) ⋄ ∂xu
ε, (Pε)9



with the smooth initial data:
uε(x, 0) = uε

0(x), with uε
0(x) := u0 ∗ ηε(x), (IDε)where ηε is a molli�er verify, ηε(·) = 1

ε
η( ·

ε
), su
h that η ∈ C∞

c (R) is a non-negativefun
tion and ∫
R
η = 1.Remark 2.1By 
lassi
al properties of the molli�er (ηε)ε and the fa
t that uε

0 ∈ [L∞(R)]M , then
uε

0 ∈ [C∞(R)]M ∩ [Wm,∞(R)]M for all m ∈ N.The global existen
e of smooth solution of the system (Pε) is standard. Here, we provethis results only to ensure the reader.The following theorem is a lo
al existen
e result (in the "Mild" sense) of the regularizedsystem (Pε)-(IDε). This result is a
hieved in a super-
riti
al spa
e. Here parti
ularlywe 
hose the spa
e of fun
tions [C([0, T );X(R))]M , where
X(R) = {u ∈ L∞(R) su
h that ∂xu ∈ L8(R)}. (2.12)This spa
e is a Bana
h spa
e supplemented with the following norm

‖u‖X(R) = ‖u‖L∞(R) + ‖∂xu‖L8(R).Here the espa
e Lp(R) with p = 8 will simplify later in Lemma 4.1 the Bootstrap argu-ment to get smooth solution.In this Se
tion, we will prove the followingTheorem 2.2 (Lo
al existen
e result)For all initial data uε
0 ∈ [X(R)]M there exists

T ⋆ = T ⋆(M0, ε) > 0,su
h that the system (Pε)-(IDε) admits solutions uε ∈ [C([0, T ⋆);X(R))]M .In order to do the proof of Theorem 2.2 in Subse
tion 2.2 we need to re
all in thefollowing Subse
tion some known results.2.1 Useful resultsLemma 2.3 (Mild solution)Let T > 0, and uε ∈ [C([0, T );X(R))]M be a solution of the following integral problemwith uε(t) = uε(t, ·):
uε(t) = Sε(t)u

ε
0 −

∫ t

0

Sε(t− s) (a(uε(s)) ⋄ ∂xu
ε(s)) ds, (INε)10



where Sε(t) = S1(εt) su
h that S1(t) = et∆ is the heat semi-group. Then uε is a solutionof the system (Pε)-(IDε) in the sense of distributions.For the proof of this lemma, we refer to Pazy [35, Th 5.2. Page 146℄.Lemma 2.4 (Pi
ard Fixed Point Theorem, see [26℄)Let E be a Bana
h spa
e, let B : E × E −→ E be a 
ontinuous map su
h that:
‖B(x, y)‖E ≤ η‖y‖E for all x, y ∈ E,where η is a positive given 
onstant. Then, for every x0 ∈ E, if

0 < η < 1,the equation x = x0 +B(x, x) admits a solution in E.In order to show the lo
al existen
e of a solution for (INε), we will apply Lemma 2.4 inthe spa
e E = [L∞((0, T );X(R))]M .Lemma 2.5 (Time 
ontinuity)Let T > 0. If uε ∈ [L∞((0, T );W 1,p(R))]M , 1 ≤ p ≤ +∞, are solutions of integralproblem (INε), then uε ∈ [C([0, T );W 1,p(R))]
M .For the proof of Lemma 2.3, see A. Pazy [35, 7.3, Page 212℄.Lemma 2.6 (Semi-group estimates)Let 1 ≤ p ≤ q ≤ +∞. Then for all f ∈ Lp(R) and for all t > 0, we have the followingestimates:i) ‖Sε(t)f‖Lq(R) ≤ Ct−

1
2
( 1

p
− 1

q
)‖f‖Lp(R),ii) ‖∂xSε(t)f‖Lp(R) ≤ Ct−

1
2‖f‖Lp(R),where C = C(ε) is a positive 
onstant depending on ε.For the proof of this Lemma, see Pazy [35, Lemma 1.1.8, Th 6.4.5℄.2.2 Proof of Theorem 2.2Our goal is to show lo
al existen
e of a solution of (Pε) using the Pi
ard �xed pointTheorem. To be done a

ording Lemma 2.3 it is enough to prove the lo
al existen
e forthe following equation:

uε(t) = Sε(t)u
ε
0 −

∫ t

0

Sε(t− s) (a(uε(s)) ⋄ ∂xu
ε(s)) ds,

= Sε(t)u
ε
0 +B(uε, uε)(t),

(2.13)11



with B(u, v)(t) = −

∫ t

0

Sε(t− s) (a(u)(s) ⋄ ∂xv(s)) ds.If we estimate B(u, v), we will obtain, for all u, v ∈ [L∞((0, T );X(R))]M , where X(R)de�ned in (2.12), the following:
‖B(u, v)(t)‖[X(R)]M =

∥
∥
∥
∥

∫ t

0

Sε(t− s) (a(u(s)) ⋄ ∂xv(s)) ds,

∥
∥
∥
∥

[L∞(R)]M
,

+

∥
∥
∥
∥

∫ t

0

∂xSε(t− s) (a(u(s)) ⋄ ∂xv(s)) ds,

∥
∥
∥
∥

[L8(R)]M
,

(2.14)where for a fun
tion f = (f 1, . . . , fM) ∈ [X(R)]M , we note here
‖f‖[X(R)]M = sup

i=1,...,M

‖f i‖L∞(R) + sup
i=1,...,M

‖∂xf
i‖L8(R).Using Lemma 2.6 (i) with p = 8, q = ∞ for the �rst term and Lemma 2.6 (ii) with p = 8for the se
ond term, we obtain that :

‖B(u, v)(t)‖[X(R)]M ≤ C

∫ t

0

1

(t− s)
7
16

‖a(u(s))∂xv(s)‖[L2(R)]M ds,

+C

∫ t

0

1

(t− s)
1
2

‖a(u(s))∂xv(s)‖[L8(R)]M ds.We use the Hölder inequality, and get, for all 0 < T ≤ 1:
‖B(u, v)(t)‖[X(R)]M ≤ CT

1
2 ‖∂xv‖[L∞((0,T );L8(R))]M ,

≤ CT
1
2 ‖v‖[L∞((0,T );X(R))]M ,

(2.15)where C(M0, ε). Moreover, we know by 
lassi
al properties of heat semi-group (see A.Pazy [35℄):
‖Sε(t)u

ε
0‖[L∞((0,T );X(R))]M ≤ ‖uε

0‖[X(R)]M . (2.16)Now, taking
(T ⋆)

1
2 = min

(
1

2C
, 1

)

, (2.17)we 
an easily verify that
C(T ⋆)

1
2 < 1.12



By applying the Pi
ard Fixed Point Theorem (Lemma 2.4) with E = [L∞((0, T ⋆);X(R))]M ,this proves the existen
e of a solution uε ∈ [L∞((0, T ⋆);X(R))]M for (2.13).Then, a

ording to Lemma 2.5, we dedu
e that the solution is indeed in [C([0, T ⋆);X(R))]M .This proves, by Lemma 2.3, the existen
e of a solution in [C([0, T ⋆);X(R))]M , whi
hsatis�es the system (Pε)-(IDε) in the sense of distributions. 23 Global existen
e of the solutions of the approxi-mated systemIn this Se
tion, we will prove the global existen
e of solution for the system (Pε)-(IDε).Before going into the proof, we need the following lemma.Lemma 3.1 (L∞ bound)Let T > 0. If uε ∈ [C([0, T );X(R))]M is a solution of system (Pε)-(IDε) with initialdata uε
0 ∈ X(R), then

‖uε‖[L∞([0,T )×R)]M ≤ ‖uε
0‖[L∞(R)]MThe proof of this Lemma is a dire
t appli
ation of the Maximum Prin
iple Theorem forparaboli
 equations (see Gilbarg-Trudinger [19, Th.3.1℄).Remark 3.2Thanks to the previous Lemma, we noti
e that we 
an take the box U de�ned in (1.1) asthe following

U = ΠM
i=1[−‖uε,i

0 ‖L∞(R), ‖u
ε,i
0 ‖L∞(R)].For �xed ε, this de�nition guarantee that M0 do not 
hange in the 
ourse of time.The result of this Se
tion is the following.Theorem 3.3 (Global existen
e)Let T > 0 and 0 < ε ≤ 1. For initial data uε

0 ∈ [X(R)]M satisfying (H1) and (H2).Then the system (Pε)-(IDε), admits a solution uε ∈ [C([0, T );X(R))]M , with uε(t, ·)satisfying (H1) and (H2) for all t ∈ (0, T ). Moreover, for all t ∈ (0, T ), we have thefollowing inequalities:
‖uε,i(t, ·)‖L∞(R) ≤ ‖uε,i

0 ‖L∞(R), for i = 1, . . . ,M, (3.18)Proof of Theorem 3.3:We are going to prove that lo
al in time solutions obtained by Theorem 2.2 
an beextended to global solutions for the same system.
13



We argue by 
ontradi
tion: assume that there exists a maximum time Tmax su
h that,we have the existen
e of solutions of the system (Pε)-(IDε) in the fun
tion spa
e
[C([0, Tmax);X(R))]M .For every small enough δ > 0, we 
onsider the system (Pε) with the initial 
ondition

uε,δ
0 (x) = uε(Tmax − δ, x).From Theorem 2.2 to dedu
e that there exists a time T ⋆(M0, ε), independent of δ (seeRemark 3.2), su
h that the system (Pε) with initial data uε,δ

0 has a solution uε,δ on thetime interval [0, T ⋆). Then for
T0 = (Tmax − δ) + T ⋆,we extend uε on the time interval [0, T0) as follows,

ũε(t, x) =

{

uε(t, x), for t ∈ [0, Tmax − δ],

uε,δ(t, x), for t ∈ [Tmax − δ, T0)and we 
an 
he
k that ũε is a solution of (Pε)-(IDε) on the time interval [0, T0). Butfrom Lemma (3.1) we know that the time T ⋆ is independent of δ (see Remark 3.2), whi
himplies that T0 > Tmax and so a 
ontradi
tion.The inequalities (3.18) is a 
onsequen
e of Lemma 3.1. 24 Properties of the solutions of the approximated sys-temIn this se
tion, we are going to prove that the solution of (Pε)-(IDε) obtained by Theorem2.2 is smooth and monotone.Lemma 4.1 (Smoothness of the solution)Let T > 0. For all initial data uε
0 ∈ [X(R)]M , where ∂xu

ε
0 ∈ [Wm,p(R)]M for all m ∈ N,

1 ≤ p ≤ +∞.If uε is a solution of the system (Pε)-(IDε), su
h that uε ∈ [C([0, T );X(R))]M and
∂xu

ε ∈ [L∞((0, T );L1(R))]M , then uε ∈ [C∞([0, T ) × R)]M and satis�es,
uε ∈ [Wm,p((0, T ) × R)]M , for all 1 < p ≤ +∞ and m ∈ N \ {0}, (4.19)Proof of Lemma 4.1Step 1 (Initialization of the Bootstrap):For the sake of simpli
ity, we will set 14



F [uε] = −a(uε) ⋄ ∂xu
ε.From the fa
t that uε ∈ [C([0, T );X(R))]M and ∂xu

ε ∈ [L∞((0, T );L1(R))]M , we dedu
ethat ∂xu
ε, F [uε] ∈ [L1((0, T ) × R)]

M
∩ [L8((0, T ) × R)]

M , whi
h proves by interpolationthat
∂xu

ε, F [uε] ∈ [Lp((0, T ) × R)]M for all 1 ≤ p ≤ 8. (4.20)Be
ause uε is a solution of (Pε), we see that
∂tu

ε − ε∂xxu
ε = F [uε], (4.21)

∂txu
ε − ε∂xxxu

ε = ∂xF [uε]. (4.22)Applaying the 
lassi
al regularity theory of heat equations on (4.21), we dedu
e that:
∂tu

ε and ∂xxu
ε ∈ [Lp((0, T ) × R)]M , for all 1 < p ≤ 8. (4.23)For more details, see Ladyzenskaja [29, Theorem 9.1℄. But we know that

∂xF [uε] = −a(uε) ⋄ ∂xxu
ε −Da(uε)∂xu

ε ⋄ ∂xu
ε (4.24)We noti
e that thanks to this better regularity on uε ((4.20) and (4.23), and by theHölder inequality we 
an easily prove that

∂xF [uε] ∈ [Lp((0, T ) × R)]M for all 1 < p ≤ 4.Now, we apply again the 
lassi
al regularity theory of heat equations on (4.22), to dedu
ethat:
∂txu

ε and ∂xxxu
ε ∈ [Lp((0, T ) × R)]M , for all 1 < p ≤ 4. (4.25)We know that

∂tF [uε] = −a(uε) ⋄ ∂txu
ε −Da(uε)∂tu

ε ⋄ ∂xu
ε (4.26)Thanks this previous regularity on uε, we obtain by the Hölder inequality that

∂tF [uε] ∈ [Lp((0, T ) × R)]M for all 1 < p ≤ 4.Whi
h gives that
∂xu

ε, F [uε] ∈
[
W 1,p((0, T ) × R)

]M for all 1 < p ≤ 4,and by the Sobolev embedding that ∂xu
ε ∈ [Lp((0, T ) × R)]M for all 1 < p ≤ ∞.Step 2 (Re
urren
e): 15



Now, we use the same steps, we 
an prove by re
urren
e that for all m ∈ N if,
(Hm)

∣
∣
∣
∣
∣
∣

∂xu
ε ∈ [L∞((0, T ) × R)]M ,

∂xu
ε, F [uε] ∈ [Wm,p((0, T ) × R)]M for all 1 < p ≤ 4,then

(Hm) ⇒ (Hm+1).Indeed, as in (4.23) we 
an dedu
e here that
∂tu

ε and ∂xxu
ε ∈ [Wm,p((0, T ) × R)]M , for all 1 < p ≤ 4, (4.27)and From (4.24), be
ause ∂xu
ε ∈ [L∞((0, T ) × R)]M , we 
an obtain here that

∂xF [uε] ∈ [Wm,p((0, T ) × R)]M for all 1 < p ≤ 4.Whi
h proves that, as in (4.25) that
∂txu

ε and ∂xxxu
ε ∈ [Wm,p((0, T ) × R)]M , for all 1 < p ≤ 4, (4.28)and From (4.26), we dedu
e that

∂tF [uε] ∈ [Wm,p((0, T ) × R)]M for all 1 < p ≤ 4,and then
∂xu

ε, F [uε] ∈
[
Wm+1,p((0, T ) × R)

]M for all 1 < p ≤ 4,Whi
h proves by the Sobolev embedding the results. 2Lemma 4.2 (Classi
al Maximum Prin
iple)Let T > 0. For all initial data uε
0 ∈ [X(R)]M , where ∂xu

ε
0 ∈ [Wm,p(R)]M for all m ∈ N,

1 ≤ p ≤ +∞, and satisfying (H3).If uε is a solution of the system (Pε)-(IDε), su
h that uε ∈ [C([0, T );X(R))]M and
∂xu

ε ∈ [L∞((0, T );L1(R))]M , then we have for i = 1, . . . ,M , ∂xu
ε,i ≥ 0 on (0, T ) × R.Proof of Lemma 4.2We �rst derive with respe
t to x the system (Pε)-(IDε), and get for wε = (wε,i)i=1,...,M =

∂xu
ε

∂tw
ε − ε∂xxw

ε + a(uε) ⋄ ∂xw
ε +Da(u)wε ⋄ wε = 0.Sin
e uε ∈ [C∞([0, T ) × R)]M , we see, for i = 1, . . . ,M , that wε,i is smooth and satis�es

wε,i(0, x) = ∂xu
ε,i
0 ≥ 0. From the 
lassi
al maximum prin
iple we dedu
e that wε,i ≥ 0on [0, T ) × R. 216



Remark 4.3 (L1 uniform estimate on ∂xu
ε)Be
ause ∂xu

ε,i ≥ 0, for i = 1, . . . ,M , we dedu
e from Lemma 3.1 that:
‖∂xu

ε‖[L∞([0,T );L1(R))]M ≤ 2 ‖uε‖[L∞([0,T )×R)]M ≤ 2‖uε
0‖[L∞(R)]M . (4.29)Corollary 4.4 (global existen
e of nonde
reasing smooth solutions)Let T > 0. The solution given in Theorem 2.2 
an be 
hosen su
h that uε = (uε,i)i=1,...,Msmooth, satis�es (4.19) and for ea
h i = 1, . . . ,M , ∂xu

ε,i ≥ 0 on (0, T ) × R.The proof of Corollary 4.4 is a 
onsequen
e of Theorem 2.2 and Lemmata 4.1, 4.2 andRemark 4.3.5 ε-Uniform a priori estimatesIn this Se
tion, we show some ε-uniform estimates on the solutions of the system (Pε)-(IDε). These estimates will be used in Se
tion 6 for the passage to the limit as ε tendsto zero.Lemma 5.1 (L∞ bound on uε and L1 bound on ∂xu
ε)Let T > 0, 0 < ε ≤ 1 and fun
tion u0 ∈ [L∞(R)]M satisfying (H3). Then the solutionof the system (Pε)-(IDε) given in Theorem 3.3 with initial data uε

0 = u0 ∗ ηε, satis�esthe following ε-uniform estimates:
(E1) ‖uε‖[L∞((0,T )×R)]M ≤ ‖u0‖[L∞(R)]M ,

(E2) ‖∂xu
ε‖[L∞((0,T ),L1(R))]M ≤ 2 ‖u0‖[L∞(R)]M ,Proof of Lemma 5.1:First, we remark that if ∂xu0 ≥ 0, then ∂xu

ε
0 = (∂xu0)∗ηε(x) ≥ 0 (be
ause η is positive).The fa
t that u0 ∈ [L∞(R)]M and ∂xu0 ≥ 0, we obtain that ∂xu0 ∈ [L1(R)]

M .By 
lassi
al properties of the molli�er (ηε)ε we know that if u0 ∈ [L∞(R)]M and
∂xu0 ∈ [L1(R)]

M we have uε
0 ∈ [X(R)]M and ∂xu

ε
0 ∈ [Wm,p(R)]M for all m ∈ N,

1 ≤ p ≤ +∞.Now, we use Lemma 3.1 and Remark 4.3, we dedu
e by the 
lassi
al properties of themolli�er (E1) and (E2).Before going into the proof of the gradient entropy inequality de�ned in (5.30), weannoun
e the main idea of this new gradient entropy estimate. Now, let us set for w ≥ 0the entropy fun
tion
f̄(w) = w lnw.17



For any non-negative test fun
tion ϕ ∈ C1
c (R × [0,+∞)), let us de�ne the following�gradient entropy� with wi := ∂xu

i:
N̄(t) =

∫

R

ϕ

(
∑

i=1,...,M

f̄(wi)

)

dx.It is very natural to introdu
e su
h quantity N̄(t) whi
h in the 
ase ϕ ≡ 1, appears to benothing else than the total entropy of the system of M type of parti
les of non-negativedensities wi. Then it is formally possible to dedu
e from (P) the equality in the followingnew gradient entropy inequality for all t ≥ 0

dN̄

dt
(t) +

∫

R

ϕ

(
∑

i,j=1,...,M

ai
,jw

iwj

)

dx ≤ R(t) for t ≥ 0, (5.30)with the rest
R(t) =

∫

R

{

(∂tϕ)

(
∑

i=1,...,M

f̄(wi)

)

+ (∂xϕ)

(
∑

i=1,...,M

aif̄(wi)

)}

dx,where we only show the dependen
e on t in the integrals. We remark in parti
ular thatthis rest is formally equal to zero if ϕ ≡ 1.To guarantee the existen
e of 
ontinuous solutions, we assumed in (H2) a sign on theleft hand side of inequality (5.30).For we return this previous 
al
ulate more rigorous, we prove a
tually the followinggradient entropy inequalityProposition 5.2 (Gradient entropy inequality)Let T > 0, 0 < ε ≤ 1 and fun
tion u0 ∈ [L∞(R)]M satisfying (H3). We 
onsider thesolution uε of the system (Pε)-(IDε) given in Theorem 3.3 with initial data uε
0 = u0∗ηε,.Then, there exists a 
onstant C(T,M,M1, ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M su
h that

N(t) +

∫ t

0

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,iwε,j ≤ C, with N(t) =

∫

R

∑

i=1,...,M

f(wε,i)dx. (5.31)where wε = (wε,i)i=1,...,M = ∂xu
ε and f is de�ned in (1.4).For the proof of Proposition 5.2 we need the following Lemma:Lemma 5.3 (L logL Estimate)Let (ηε)ε be a non-negative molli�er, f is the fun
tion de�ned in (1.4) and h ∈ L1(R) isa non-negative fun
tion. Then 18



i) ∫
R

f(h) < +∞ if and only if h ∈ L logL(R).ii) If h ∈ L logL(R) the fun
tion hε = h ∗ ηε ∈ L logL(R) satis�es
‖h− hε‖L log L(R) → 0 as ε → 0.The proof of (i) is trivial, for the proof of (ii) see R. A. Adams [1, Th 8.20℄ for the proofof this Lemma.Proof of Proposition 5.2:Remark �rst that the quantity N(t) is well-de�ned be
ause wε ∈ [L∞((0, T );L1(R))]

M
∩

[L∞((0, T );L8(R))]
M (by Theorem 2.2 and Corollary 4.4) and we have the general in-equality −1

e
≤ w logw ≤ w2 for all w ≥ 0.From Theorem 4.4 we know that wε,i and smooth non-negative fun
tion. Now, wederive N(t) with respe
t to t, this is well-de�ned be
ause for i = 1, . . . ,M , we have∣

∣
∣
∣
∣

∫

wε,i≥ 1
e

∣
∣
∣
∣
∣
≤ e‖wε,i‖L∞((0,T );L1(R)) and for all m ∈ N, wε,i ∈Wm,∞((0, T )×R) (see (4.19)).Finally, we get that,

d

dt
N(t) =

∫

R

∑

i=1,...,M

f ′(wε,i)(∂tw
ε,i),

=

∫

R

∑

i=1,...,M

f ′(wε,i)∂x

(
−ai(uε)wε,i + ε∂xw

ε,i
)
,

=

J1
︷ ︸︸ ︷∫

R

∑

i=1,...,M

ai(uε)wε,if ′′(wε,i)∂xw
ε,i

J2
︷ ︸︸ ︷

− ε

∫

R

∑

i=1,...,M

(
∂xw

ε,i
)2
f ′′(wε,i)But, it is easy to 
he
k that

f ′(x) =

{
ln(x) + 1 if x ≥ 1/e,
0 if 0 ≤ x ≤ 1/e,

and f ′′(x) =

{
1
x

if x ≥ 1/e,
0 if 0 ≤ x ≤ 1/e.This proves that J2 ≤ 0. To 
ontrol J1, we rewrite it under the following form

J1 =

∫

R

∑

i=1,...,M

ai(uε)g′(wε,i)∂xw
ε,i,where

g(x) =

{
x− 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,19



Then, we dedu
e that
J1 =

∫

R

∑

i=1,...,M

ai(uε)∂x(g(w
ε,i))

= −

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,jg(wε,i),

=

J11
︷ ︸︸ ︷

−

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,jwε,i

J12
︷ ︸︸ ︷

−

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,j(g(wε,i) − wε,i),From (H2), we know that J11 ≤ 0. We use the fa
t that |g(x)−x| ≤ 1
e
for all x ≥ 0 and

(H1), to dedu
e that
|J12| ≤ 1

e
M2M1 ‖w

ε,i‖[L∞((0,T ),L1(R))]M

≤ 2
e
M2M1‖u0‖[L∞(R)]Mwhere we have use Lemma 5.1 (E2) in the last line. Finally, we dedu
e that, there existsa positive 
onstant C(‖u0‖[L∞(R)]M ,M1,M) independent of ε su
h that

d

dt
N(t) ≤ J11 + J12 + J2

≤ J11 + C.Integrating in time we get by Lemma 5.3, there exists a another positive 
onstant
C(T,M,M1, ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M ) independent of ε su
h that

N(t) +

∫ t

0

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,jwε,i ≤ CT +N(0) ≤ C.

2Lemma 5.4 (W−1,1 estimate on the time derivatives of the solutions)Let T > 0, 0 < ε ≤ 1 and fun
tion u0 ∈ [L∞(R)]M satisfying (H3). Then the solutionof the system (Pε)-(IDε) given in Theorem 3.3 with initial data uε
0 = u0 ∗ ηε, satis�esthe following ε-uniform estimates:

‖∂tu
ε‖[L2((0,T );W−1,1(R))]M ≤ C

(

1 + ‖u0‖
2
[L∞(R)]M

)

.where W−1,1(R) is the dual of the spa
e W 1,∞(R).Proof of Lemma 5.4:The idea to bound ∂tu
ε is simply to use the available bounds on the right hand side ofthe equation (Pε). 20



We will give a proof by duality. We multiply the equation (Pε) by φ ∈ [L2((0, T ),W 1,∞(R))]
Mand integrate on (0, T ) × R, whi
h gives

∫

(0,T )×R

φ ∂tu
ε =

I1
︷ ︸︸ ︷

ε

∫

(0,T )×R

φ ∂2
xxu

ε

I2
︷ ︸︸ ︷

−

∫

(0,T )×R

φ a(uε) ⋄ ∂xu
ε.We integrate by parts the term I1, and obtain that for 0 < ε ≤ 1:

|I1| ≤

∣
∣
∣
∣

∫

(0,T )×R

∂xφ∂xu
ε

∣
∣
∣
∣

≤ T‖∂xφ‖[L2((0,T ),L∞(R))]M‖∂xu
ε‖[L2((0,T ),L1(R))]M ,

≤ 2T
3
2‖φ‖[L2((0,T ),W 1,∞(R))]M‖u0‖[L∞(R)]M ,

(5.32)here, we have used the inequality
‖∂xu

ε‖[L2([0,T );L1(R))]M ≤ 2T
1
2‖u0‖[L∞(R)]M , (5.33)whi
h follows from estimate (4.29) for bounded and nonde
reasing fun
tion uε. Similarly,for the term I2, we have:

|I2| ≤ M0‖u‖[L∞((0,T )×R)]M‖φ‖[L2((0,T ),L∞(R))]M‖∂xu
ε‖[L2((0,T ),L1(R))]M ,

≤ 2T
1
2M0‖u0‖

2
[L∞(R)]M

‖φ‖[L2((0,T ),W 1,∞(R))]M .
(5.34)Finally, 
olle
ting (5.32) and (5.34), we get that there exists a 
onstant C = C(T,M0)independent of 0 < ε ≤ 1 su
h that:

∣
∣
∣
∣

∫

(0,T )×R

φ∂tu
ε

∣
∣
∣
∣
≤ C

(

1 + ‖u0‖
2
[L∞(R)]M

)

‖φ‖[L2((0,T ),W 1,∞(R))]Mwhi
h gives the announ
ed result where we use that L2((0, T ),W−1,1(R)) is the dual of
L2((0, T ),W 1,∞(R)) (see Cazenave and Haraux [9, Th 1.4.19, Page 17℄). 2Corollary 5.5 (ε-Uniform estimates)Let T > 0, 0 < ε ≤ 1 and fun
tion u0 ∈ [L∞(R)]M satisfying (H1) and (H2). Then thesolution of the system (Pε)-(IDε) given in Theorem 3.3 with initial data uε

0 = u0 ∗ ηε,satis�es the following ε-uniform estimates:
‖∂xu

ε‖[L∞((0,T );L log L(R))]M + ‖uε‖[L∞((0,T )×R)]M + ‖∂tu
ε‖[L2((0,T );W−1,1(R))]M ≤ C.where C = C(T,M,M0,M1 ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M ).We 
an easily prove this Corollary 
olle
ting Lemmata 5.1, 5.4 and 5.3 and Proposition5.2. 21



6 Passage to the limit and the proof of Theorem 1.1In this se
tion, we prove that the system (P)-(ID) admits solutions u in the distributionalsense. They are the limits of uε given by Theorem 3.3 when ε → 0. To do this, we willjustify the passage to the limit as ε tends to 0 in the system (Pε)-(IDε) by using some
ompa
tness tools that are presented in a �rst Subse
tion.6.1 Preliminary resultsFirst, for all I open interval of R, we denote by
L logL(I) ==

{

f ∈ L1(I) su
h that ∫
I

|f | ln (1 + |f |) < +∞

}

.Lemma 6.1 (Compa
t embedding)Let I an open and bounded interval of R. If we denote by
W 1,L log L(I) = {u ∈ L1(I) su
h that ∂xu ∈ L logL(I)}.Then the following inje
tion:

W 1,L log L(I) →֒ C(I),is 
ompa
t.For the proof of this Lemma see R. A. Adams [1, Th 8.32℄.Lemma 6.2 (Simon's Lemma)Let X, B, Y be three Bana
h spa
es, su
h that
X →֒ B with 
ompa
t embedding and B →֒ Y with 
ontinuous embedding.Let T > 0. If (uε)ε is a sequen
e su
h that,

‖uε‖L∞((0,T );X) + ‖uε‖L∞((0,T );B) + ‖∂tu
ε‖Lq((0,T );Y ) ≤ C,where q > 1 and C is a 
onstant independent of ε, then (uε)ε is relatively 
ompa
t in

C((0, T );B).For the proof, see J. Simon [38, Corollary 4, Page 85℄.In order to show the existen
e of solution system (P) in Subse
tion 6.2, we will apply thislemma to ea
h s
alar 
omponent in the parti
ular 
ase where X = W 1,log(I), B = L∞(I)and Y = W−1,1(I) := (W 1,∞(I))′.We denote by Kexp(I) the 
lass of all measurable fun
tion u, de�ned on I, for whi
h,22



∫

I

(
e|u| − 1

)
< +∞.The spa
e EXP (I) is de�ned to be the linear hull ofKexp(I). This spa
e is supplementedwith the following Luxemburg norm (see Adams [1, (13), Page 234℄ ):

‖u‖EXP (I) = inf

{

λ > 0 :

∫

I

(

e
|u|
λ − 1

)

≤ 1

}

,Let us re
all some useful properties of this spa
e.Lemma 6.3 (Weak star topology in L logL)Let Eexp(I) be the 
losure in EXP (I) of the spa
e of fun
tions bounded on I. Then
Eexp(I) is a separable Bana
h spa
e whi
h veri�es,i) L logL(I) is the dual spa
e of Eexp(I).ii) L∞(I) →֒ Eexp(I).For the proof, see Adams [1, Th 8.16, 8.18, 8.20℄.Lemma 6.4 (Generalized Hölder inequality, Adams [1, 8.11, Page 234℄)Let f ∈ EXP (I) and g ∈ L logL(I). Then fg ∈ L1(I), with

‖fg‖L1(I) ≤ 2‖f‖EXP (I)‖g‖L log L(I).The following Lemma, we allow to de�ne later the restri
tion of a fun
tion f ∈W−1,1(R)on all open interval I of R.Lemma 6.5 (Extension)For all open interval I of R, there exists a linear and 
ontinuous operator of extension
P : W 1,∞(I) →W 1,∞(R) su
h thati) Pu|I = u for u ∈W 1,∞(I).ii) ‖Pu‖W 1,∞(R) ≤ ‖u‖W 1,∞(I) for u ∈W 1,∞(I).for the proof of this Lemma see for instan
e Brezis [7, Th.8.5℄.Thanks this Lemma, we 
an noti
e that, if f ∈ W−1,1(R), where W−1,1(R) :=
(W 1,∞(R))′, we 
an de�ne, for all open interval I of R, the fun
tion f|I as the following

< f|I , h >W−1,1(I),W 1,∞(I)=< f, Ph >W−1,1(R),W 1,∞(R) .for all h ∈W 1,∞(I). 23



6.2 Proof of Theorem 1.1Step 1 (Existen
e):First, by Corollary 5.5 we know that for any T > 0, the solutions uε of the sys-tem (Pε)-(IDε) obtained with the help of Theorem 3.3, are ε-uniformly bounded in
[L∞((0, T ) × R)]M . Hen
e, as ε goes to zero, we 
an extra
t a subsequen
e still denotedby uε, that 
onverges weakly-⋆ in [L∞((0, T ) × R)]M to some limit u. Then we want toshow that u is a solution of the system (P)-(ID). Indeed, sin
e the passage to the limitin the linear terms is trivial in [D′((0, T ) × R)]M , it su�
es to pass to the limit in thenon-linear term,

a(uε) ⋄ ∂xu
ε.A

ording to Corollary 5.5 we know that for all open and bounded interval I of R thereexists a 
onstant C independent on ε su
h that:

‖uε‖
[L∞((0,T );W 1,L log L(I))]

M + ‖uε‖[L∞((0,T )×I)]M + ‖∂tu
ε‖[L2((0,T );W−1,1(I))]M ≤ C.From the 
ompa
tness of W 1,L log L(I) →֒ L∞(I) (see Lemma 6.3 (i)), we 
an applySimon's Lemma (i.e. Lemma 6.2), with X =

[
W 1,L log L(I)

]M , B = [L∞(I)]M and
Y = [W−1,1(I)]

M , whi
h shows that
uε is relatively 
ompa
t in in [L∞((0, T ) × I)]M →֒ [L1((0, T );L∞(I))]

M
. (6.35)Then form 
ontinuous inje
tion of L∞(I) →֒ Eexp(I) (see Lemma 6.3 (ii)), we dedu
ethat,

uε is relatively 
ompa
t in [L1((0, T );Eexp(Ω))]
M . (6.36)On the other hand, by Corollary 5.5, we noti
e that ∂xu

ε is ε-uniformly bounded in
[L∞((0, T );L logL(I))]M . Moreover, the spa
e [L∞((0, T );L logL(I))]M is the dualspa
e of [L1((0, T );Eexp(I))]

M , be
ause L logL(I) is the dual spa
e of Eexp(I) (seeLemma 6.3 (ii) and Cazenave, Haraux [9, Th 1.4.19, Page 17℄). Then, up to a sub-sequen
e
∂xu

ε → ∂xu weakly-⋆ in [L∞((0, T );L logL(I))]M . (6.37)Form (6.36) and (6.37), we see that we 
an pass to the limit in the non-linear term inthe sense
[
L1((0, T );Eexp(I))

]M
− strong × [L∞((0, T );L logL(I))]M − weak − ⋆.24



Be
ause this is true for any bounded open interval I and for any T > 0, we dedu
e that,
a(uε) ⋄ ∂xu

ε → a(u) ⋄ ∂xu in D′((0, T ) × R)Consequently, we 
an pass to the limit in (Pε) and get that,
∂tu+ a(u) ⋄ ∂xu = 0 in D′((0, T ) × R).This solution u is also satisfy the following estimates (see for instan
e Brezis [7, Prop.3.12℄):

(E1′) ‖∂xu‖[L∞((0,T );L log L(R))]M ≤ lim inf ‖∂xu
ε‖[L∞((0,T );L log L(R))]M ≤ C,

(E2′) ‖u‖[L∞((0,T )×R)]M ≤ lim inf ‖uε‖[L∞((0,T )×R)]M ≤ ‖u0‖[L∞(R)]M ,At this stage we remark that, thanks to these two estimates we obtain that (a(u) ⋄
∂xu) ∈ [L∞((0, T );L logL(R))]M , whi
h gives, sin
e ∂tu = −a(u) ⋄ ∂xu, that ∂tu ∈
[L∞((0, T );L logL(R))]M , and then u ∈ [C([0, T );L logL(R))]M .Step 2 (The initial 
onditions):It remains to prove that the initial 
onditions (ID) 
oin
ides with u(·, 0). Indeed, byCorollary 5.5, we see that, for all open bounded interval I of R, uε is ε-uniformly boundedin

[
W 1,2((0, T );W−1,1(I))

]M
→֒
[

C
1
2 ([0, T );W−1,1(I))

]M

,where W−1,1(I) is the dual of W 1,∞(I). It follows that, there exists a 
onstant Cindependent on ε, su
h that, for all t, s ∈ [0, T ):
‖uε(t) − uε(s)‖[W−1,1(I)]M ≤ C|t− s|

1
2 .In parti
ular if we set s = 0, we have:

‖uε(t) − uε
0‖[W−1,1(I)]M ≤ Ct

1
2 . (6.38)Now we pass to the limit in (6.38). Indeed, the fun
tions uε and uε

0 are ε-uniformlybounded in [W 1,2((0, T );W−1,1(I))]
M and [W−1,1(I)]

M respe
tively. Moreover we knowthat uε − uε
0 
onverges weakly-⋆ in [L∞((0, T ) × I)]M to u− u0.Therefore, we 
an extra
t a subsequen
e still denoted by uε−uε

0, that weakly-⋆ 
onvergesin [W 1,2((0, T );W−1,1(I))]
M to u− u0. In parti
ular this subsequen
e 
onverges, for all

t ∈ (0, T ), weakly-⋆ in [L∞((0, t);W−1,1(I))]
M , and 
onsequently it veri�es (see forinstan
e Brezis [7, Prop. 3.12℄), 25



‖u− u0‖[L∞((0,t);W−1,1(I))]M ≤ lim inf ‖uε − uε
0‖[L∞((0,t);W−1,1(I))]M ≤ Ct

1
2 .From (6.38) we dedu
e that

‖u(t) − u0‖[W−1,1(I)]M ≤ Ct
1
2 ,whi
h proves that u(·, 0) = u0 in [D′(R)]M .Step 3 (Continuity of solution):Now, we are going to prove the 
ontinuity estimate (1.5). For all h > 0 and (t, x) ∈

(0, T ) × R, we have:
|u(t, x+ h) − u(t, x)| ≤

∣
∣
∣
∣

∫ x+h

x

∂xu(t, y)dy

∣
∣
∣
∣

≤ 2‖1‖EXP (x,x+h)‖∂xu‖L log L(x,x+h),

≤ 2
1

ln( 1
h

+ 1)
‖∂xu‖L∞((0,T );L log L(R)),

≤ C
1

ln( 1
h

+ 1)
,where we have used in the se
ond line the generalized Hölder inequality (see Lemma6.4) and in last line we have used that ∂xu ∈ L∞((0, T );L logL(R)). Whi
h proves�nally the 
ontinuity in spa
e. Now, we prove the 
ontinuity in time, for all δ > 0 and

(t, x) ∈ (0, T ) × R, we have:
δ|u(t+ δ, x) − u(t, x)| =

∫ x+δ

x

|u(t+ δ, x) − u(t, x)|dy,

≤

K1
︷ ︸︸ ︷
∫ x+δ

x

|u(t+ δ, x) − u(t+ δ, y)|dy,

+

K2
︷ ︸︸ ︷
∫ x+δ

x

|u(t+ δ, y) − u(t, y)|dy,

+

K3
︷ ︸︸ ︷
∫ x+δ

x

|u(t, y)− u(t, x)|dy .Similarly, as in the last estimate, we 
an show that:26



K1 +K3 ≤ δ

∫ x+δ

x

|∂xu(t+ δ, y)|dy,+δ

∫ x+δ

x

|∂xu(t, y)|dy,

≤ 4δ‖1‖EXP (x,x+δ)‖∂xu‖L∞((0,T );L log L(R)),

≤ C
δ

ln(1
δ

+ 1)
.Now, we use that u is a solution of (P), and we obtain that:

K2 ≤

∫ x+δ

x

∫ t+δ

t

|∂tu(s, y)|dy,

≤

∫ t+δ

t

∫ x+δ

x

|a(u(s, y)) ⋄ ∂xu(s, y)|dsdy,

≤ δM0‖u‖L∞((0,T )×R)‖1‖EXP (x,x+δ)‖∂xu‖L∞((0,T );L log L(R),

≤ C
δ

ln(1
δ

+ 1)
,where we have used in last line that u ∈ L∞((0, T )×R), 
olle
ting the estimates of K1,

K2 and K3, we prove that:
|u(t+ δ, x) − u(t, x)| ≤

1

δ
(K1 +K2 +K3) ≤ C

1

ln(1
δ

+ 1)
,whi
h proves �nally the following:

|u(t+ δ, x+ h) − u(t, x)| ≤ C

(
1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)

)

.

27 Some remarks on the uniquenessIn this Se
tion we study the uniqueness of solution of the system (P)-(ID) with
ai(u) =

∑

j=1,...,M

Aiju
j.We show some uniqueness results for some parti
ular matri
es with M ≥ 2.For the proof of Theorem 1.5 in Subse
tion 7.2, we need to re
all in the following Subse
-tion the de�nition of vis
osity solution and some well-known results in this framework.27



7.1 Some useful results for vis
osity solutionsThe notion of vis
osity solutions is quite re
ente. This 
on
ept has been introdu
ed byCrandall and Lions [10, 11℄ in 1980, to solve the �rst-order Hamilton-Ja
obi equations.The theory then extended to the se
ond order equations by the work of Jensen [27℄and Ishii [23℄. For good introdu
tion of this theory, we refer to Barles [5℄ and Bardi,Capuzzo-Dol
etta [3℄.Now, we re
all the de�nition of vis
osity solution for the following problem for all 0 ≤
ε ≤ 1:

∂tv +H(t, x, v, ∂xv) − ε∂xxv = 0 with x, v ∈ R, t ∈ (0, T ). (7.39)where H : (0, T )×R
3 7−→ R is the Hamiltonian and is supposed 
ontinuous. We will set

USC((0, T ) × R) = {f su
h that f is upper semi
ontinuous on (0, T ) × R},

LSC((0, T ) × R) = {f su
h that f is lower semi
ontinuous on (0, T ) × R}.De�nition 7.1 (Vis
osity subsolution, supersolution and solution)A fun
tion v ∈ USC((0, T ) × R) is a vis
osity subsolution of (7.39) if it satis�es, forevery (t0, x0) ∈ (0, T )×R and for every test fun
tion φ ∈ C2((0, T )×R), that is tangentfrom above to v at (t0, x0), the following holds:
∂tφ+H(t0, x0, v, ∂xφ) − ε∂xxφ ≤ 0.A fun
tion v ∈ LSC((0, T ) × R) is a vis
osity supersolution of (7.39) if it satis�es, forevery (t0, x0) ∈ (0, T )×R and for every test fun
tion φ ∈ C2((0, T )×R), that is tangentfrom below to v at (t0, x0), the following holds:
∂tφ+H(t0, x0, v, ∂xφ) − ε∂xxφ ≥ 0.A fun
tion v is a vis
osity solution of (7.39) if, and only if, it is a sub and a supersolutionof (7.39).Let us now re
all some well-known results.Remark 7.2 (Classi
al solution-vis
osity solution)If v is a C2 solution of (7.39), then v is a vis
osity solution of (7.39).Lemma 7.3 (Stability result, see Barles [5, Th 2.3℄)We suppose that, for ε > 0, vε is a vis
osity solution of (7.39). If vε → v uniformly onevery 
ompa
t set then v is a vis
osity solution of (7.39) with ε = 0.Lemma 7.4 (Gronwall for vis
osity solution)Let v, a lo
ally bounded USC(0, T ) fun
tion, whi
h is a vis
osity subsolution of theequation d

dt
v = αv where α ≥ 0. Assume that v(0) ≤ v0 then v ≤ v0 e

αT in (0, T ).28



The proof of this Lemma is a dire
t appli
ation of the 
omparison prin
iple, (see Barles[5, Th 2.4℄).Remark 7.5From Lemmata 7.2, 7.3 and from (6.35), we 
an noti
e that the solution ui of our system(P) given in Theorem 1.1 is also a vis
osity solution of (P) (where the uj for j 6= i are
onsidered �xed to apply De�nition 7.1).7.2 Uniqueness resultsIn this Subse
tion we prove Theorem 1.5. Before going on, we re
all in the followingRemark a well-known uniqueness results and we re
all in Theorem 7.7 the uniquenessresults of W 1,∞ solution of (P).Remark 7.6 (Uniqueness for quasi-monotone Hamiltonians)If the elements of the matrix A satisfy:
Aii +

∑

j 6=i,Aij<0

Aij ≥ 0 for all i = 1, · · · ,M .and if ∂xu
i ≥ 0 for i = 1, . . . ,M , then we 
an easily 
he
k that the Hamiltonian

Hi(u, ∂xu
i) =

(
∑

j=1,...M

Aiju
j

)

∂xu
i,is quasi-monotone in the sense of Ishii, Koike [25, (A.3)℄. Then the result of Ishii, Koike[25, Th.4.7℄ shows that for any initial 
ondition u0 ∈ [L∞(R)]M satisfying (H1)-(H2),the system (P) satis�es the 
omparison prin
iple whi
h implies the uniqueness of thesolution.We have the following result whi
h seems quite standard:Theorem 7.7 (Uniqueness of the W 1,∞ solution)Let u0 ∈ [W 1,∞(R)]M and T > 0. Then system (P)-(ID) admits a unique solution in

[W 1,∞([0, T ) × R)]
M .The proof of this Theorem is given in Appendix, be
ause we have not found any proofof su
h a result in the literature.Proof of Theorem 1.5:Using Theorem 7.7 with ai(u) =

∑

j=1,...,M

Aiju
j, it is enough to show that the system (P)-(ID) admits a solution in [W 1,∞([0, T ) × R)]
M . To do that, it is enough to prove thatthe solution uε of the approximated system obtained in Corollary 5.5 satis�es that ∂xu

εis bounded in [L∞((0, T ) × R)]M uniformly in 0 < ε ≤ 1. Indeed, we then get the same29



property for ∂xu, where u is the limit of uε as ε → 0. Moreover, from the equation (P)satis�ed by u and the fa
t that
u ∈ [L∞((0, T ) × R)]M and ∂xu ∈ [L∞((0, T ) × R)]M ,we dedu
e that ∂tu ∈ [L∞((0, T ) × R)]M whi
h shows that u ∈ [W 1,∞([0, T ) × R)]

M .To simplify, we denote
wε = ∂xu

ε,and we interest in the
max
x∈R

wε,i(t, x) = mi(t).This maximum is rea
hed at least at some point xi(t), be
ause wε,i ∈ C∞((0, T )× R) ∩
W 1,p((0, T ) × R) for all 1 < p ≤ +∞ (see Lemma 4.1, (4.19)).In the following we prove in the two 
ases (i) and (ii) de�ned in Theorem 1.5 that
mi, for all i = 1, . . . ,M , is bounded uniformly in ε. First, deriving with respe
t to xthe equation (Pε) satis�ed by uε ∈ [C∞((0, T ) × R)]M , we 
an see that wε satis�es thefollowing equation

∂tw
ε,i − ε∂xxw

ε,i +
∑

j=1,...,M

Aiju
ε,j∂xw

ε,i +
∑

j=1,...,M

Aijw
ε,jwε,i = 0. (7.40)Now, we prove that mi is a vis
osity subsolution of the following equation,

d

dt
mi(t) +

∑

j=1,...,M

Aijw
ε,j(t, xi(t))w

ε,i(t, xi(t)) ≤ 0. (7.41)Indeed, let φ ∈ C2(0, T ) a test fun
tion, su
h that φ ≥ mi and φ(t0) = mi(t0) for some
t0 ∈ (0, T ). From the de�nition of mi, we 
an easily 
he
k that φ ≥ wε,i(t, x) and
φ(t0) = wε,i(t0, xi(t0)). But, the fa
t that wε,i ∈ C∞((0, T ) × R), by Remark 7.2 weknow that wε,i is a vis
osity subsolution of (7.40). We apply De�nition 7.1, and the fa
tthat ∂xφ = ∂xxφ = 0, we get

d

dt
φ(t0) +

∑

j=1,...,M

Aijw
ε,j(t0, xi(t0))w

ε,i(t0, xi(t0)) ≤ 0.Whi
h proves that mi is a vis
osity subsolution of (7.41).Two 
ases may a

ur:i) Here, we 
onsider the 
ase where M ≥ 2 and Aij ≥ 0 for all j ≥ i. We see theequation satis�ed by m1, we dedu
e that satis�es (a vis
osity subsolution)30



d

dt
m1(t) ≤ −

∑

j=1,...,M

A1jw
ε,j(t, x1(t))w

ε,1(t, x1(t)) ≤ 0,where we have used the fa
t that, for j = 1, . . . ,M , A1j ≥ 0 and wε,j ≥ 0. This provesby Lemma 7.4 (with α = 0) that,
m1(t) ≤ m1(0) = wε,1(t, x1(t)) ≤ ‖∂xu

1
0‖L∞(R).We reason by re
urren
e: we assume that mj ≤ C for all j ≤ i, where C is a positive
onstant independent of ε, and we prove that mi+1 is bounded uniformly in ε. Indeed,we know that

d

dt
mi+1(t) ≤ −

∑

j=1,...,M

Ai+1,jw
ε,j(t, xj(t))w

ε,i+1(t, xi+1(t)),

≤ −
∑

j<i+1

Ai+1,jw
ε,j(t, xj(t))w

ε,i+1(t, xi+1(t))

−
∑

M≥j≥i+1

Ai+1,jw
ε,j(t, xj(t))w

ε,i+1(t, xi+1(t)),We use that Ai+1,j ≥ 0, for M ≥ j ≥ i+ 1, we obtain that
d

dt
mi+1(t) ≤ −

∑

j<i+1

Ai+1,jw
ε,j(t, xj(t))w

ε,i+1(t, xi+1(t)),

≤ C

(
∑

j<i+1

|Ai+1,j |

)

mi+1(t).This implies by Lemma 7.4, with α = C

(
∑

j<i+1

|Ai+1,j|

), that
mi+1(t) ≤ mi+1(0)eαT ,

≤ ‖∂xu
i+1
0 ‖L∞(R)e

αT .Whi
h proves that for all i = 1, . . . ,M , mi is bounded uniformly in ε.ii) Here, we 
onsider the 
ase where M ≥ 2 and Aij ≤ 0 for all i 6= j. Taking the sumover the index i, from (7.41) we get that the quantity m(t) =
∑

i=1,...,M

mi(t) satis�es (avis
osity subsolution see Bardi et al. [4℄)
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d

dt
m(t) ≤ −

∑

i,j=1,...,M

Aijw
ε,j(t, xi(t))w

ε,i(t, xi(t)),

≤ −
∑

i,j=1,...,M

Aijw
ε,j(t, xj(t))w

ε,i(t, xi(t)),

≤ 0.where we have used that the matrix A satis�es (H2′) and wε,i ≥ 0, for i = 1, . . . ,M .Using Lemma 7.4 with α = 0, we get
m(t) ≤ m(0) =

∑

i=1,...,M

∂xu
ε,i
0 ,

≤ sup
y∈R

∑

i=1,...,M

∂xu
i
0(y).whi
h proves (1.7). 28 Appli
ation on the dynami
s of dislo
ations densi-tiesIn this Se
tion, we present a model des
ribing the dynami
s of dislo
ations densities.We refer to [22℄ for a physi
al presentation of dislo
ations whi
h are (moving) defe
tsin 
rystals. Even if the problem is naturally a three-dimensional problem,we will �rstassume that the geometry of the problem is invariant by translations in the x3-dire
tion.This redu
es the problem to the study of dislo
ations densities de�ned on the plane

(x1, x2) and propagation in a given dire
tion ~b belonging to the plane (x1, x2) (whi
h is
alled the �Burger's ve
tor�).In this setting we 
onsider a �nite number of slip dire
tions ~b ∈ R
2 and to ea
h ~b wewill asso
iate a dislo
ation density. For a detailed physi
al presentation of a model withmulti-slip dire
tions, we refer to Ye�mov, Van der Giessen [41℄ and Ye�mov [40, 
h. 5.℄and to Groma, Balogh [21℄ for the 
ase of a model with a single slip dire
tion . Seealso Cannone et al. [8℄ for a mathemati
al analysis of the Groma, Balogh model. InSubse
tion ??, we present the 2D-model with multi-slip dire
tions.In the parti
ular geometry where the dislo
ations densities only depend on the variable

x = x1 + x2, this two-dimensional model redu
es to one-dimensional model whi
h pre-sented in In Subse
tion 8.2. See El Hajj [15℄ and El Hajj, For
adel [16℄ for a study inthe spe
ial 
ase of a single slip dire
tion. Finally in Subse
tion 8.3, we explain how tore
over equation (P) as a model for dislo
ation dynami
s with ai(u) =
∑

j=1,...,M

Aiju
j forsome parti
ular non-negative and symmetri
 matrix A.32



8.1 The 2D-modelWe now present in details the two-dimensional model. We denote by X the ve
tor
X = (x1, x2). We 
onsider a 
rystal �lling the whole spa
e R

2 and its displa
ement
v = (v1, v2) : R

2 → R
2, where we have not yet introdu
ed the time dependen
e for themoment.We de�ne the total strain by

ε(v) =
1

2
(∇v + t∇v),where ∇v is the gradient with (∇v)ij =
∂vi

∂xj

, i, j ∈ {1, 2}.Now, we assume that the dislo
ations densities under 
onsideration are asso
iated toedge dislo
ations. This means that we 
onsider M slip dire
tions where ea
h dire
tionis 
araterize by a Burgers ve
tors ~bk = (bk1, b
k
2) ∈ R

2, for k = 1, . . . ,M . This leads to Mtype of dislo
ations whi
h propagate in the plan (x1, x2) following the dire
tion of ~bk,for k = 1, . . . ,M .The total strain 
an be splitted in two parts:
ε(v) = εe + εp.Here, εe is the elasti
 strain and εp the plasti
 strain de�ned by

εp =
∑

k=1,...,M

ε0,kuk, (8.42)where, for ea
h k = 1, . . . ,M , the s
alar fun
tion uk is the plasti
 displa
ement asso
iatedto the k-th slip system whose matrix ε0,k is de�ned by
ε0,k =

1

2

(

~bk ⊗ ~nk + ~nk ⊗~bk
)

, (8.43)where ~nk is unit ve
tor orthogonal to ~bk and (~bk ⊗ ~nk
)

ij
= bki n

k
j .To simplify the presentation, we assume the simplest possible periodi
ity property ofthe unknowns.Assumption (H):i) The fun
tion v is Z

2-periodi
 with ∫
(0,1)2

v dX = 0.ii) For ea
h k = 1, . . . ,M , there exists Lk ∈ R
2 su
h that uk − Lk · X is a Z

2-periodi
.33



iii) The integer M is even with M = 2N and Lk+N = Lk, and that
Lk+N = Lk, ~bk+N = −~bk, ~nk+N = ~nk,

ε0,k+N = −ε0,k.iv) We denote by ~τk = (τk
1 , τ

k
2 ) a ve
tor parallel to ~bk su
h that ~τk+N = ~τk. We requirethat Lk is 
hosen su
h ~τk · Lk ≥ 0.The plasti
 displa
ement uk is related to the dislo
ation density asso
iated to the Burgersve
tor ~bk. We have

k-th dislo
ation density = ~τk · ∇uk ≥ 0. (8.44)The stress is then given by
σ = Λ : εe, (8.45)i.e. the 
oe�
ients of the matrix σ are:

σij =
∑

k,l=1,2

Λijklε
e
kl for i, j = 1, 2,where Λ = (Λijkl)i,j,k,l=1,2, are the 
onstant elasti
 
oe�
ients of the material, satisfyingfor m > 0: ∑

ijkl=1,2

Λi,j,k,lεijεkl ≥ m
∑

i,j=1,2

ε2
ij (8.46)for all symmetri
 matri
es ε = (εij)ij

, i.e. su
h that εij = εji.Finally, for k = 1, . . . ,M , the fun
tions uk and v are then assumed to depend on
(t,X) ∈ (0, T ) × R

2 and to be solutions of the 
oupled system (see Ye�mov [40, 
h. 5.℄and Ye�mov, Van der Giessen [41℄):






div σ = 0 on (0, T ) × R
2,

σ = Λ : (ε(v) − εp) on (0, T ) × R
2,

ε(v) = 1
2
(∇v + t∇v) on (0, T ) × R

2,

εp =
∑

k=1,...,M

ε0,kuk on (0, T ) × R
2,

∂tu
k = (σ : ε0,k)~τk.∇uk on (0, T ) × R

2, for k = 1, . . . ,M,

(8.47)
i.e. in 
oordinates
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





∑

j=1,2

∂σij

∂xj

= 0 on (0, T ) × R
2, for i = 1, 2,

σij =
∑

k,l=1,2

Λijkl (εkl(v) − εp
kl) on (0, T ) × R

2,

εij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

) on (0, T ) × R
2,

εp
ij =

∑

k=1,...,M

ε0,k
ij u

k on (0, T ) × R
2,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for i, j = 1, 2

∂tu
k =




∑

i,j∈{1,2}

σijε
0,k
ij



~τk.∇uk on (0, T ) × R
2, for k = 1, . . . ,M,

(8.48)
where the unknowns of the system are uk and the displa
ement v = (v1, v2) and with
ε0,k de�ned in (8.43). Here the �rst equation of (8.47) is the equation of elasti
ity, whilethe last equation of (8.47) is the transport equation satis�ed by the plasti
 displa
ementwhose velo
ity is given by the Pea
h-Koehler for
e σ : ε0,k. Remark that this impliesin parti
ular that ea
h dislo
ation density satis�es a 
onservation law (see the equationobtained by derivation, using (8.44)). Remark also that our equations are 
ompatiblewith our periodi
ity assumptions (H), (i)-(ii).8.2 Derivation of the 1D-modelIn this Subse
tion we are interested in a parti
ular geometry where the dislo
ationsdensities depend only on the variable x = x1 + x2. This will lead to 1D-model. Morepre
isely, we make the following:Assumption (H ′):i) The fun
tions v(t,X) and uk(t,X) − Lk · X depend on the variable x = x1 + x2.ii) τk

1 + τk
2 = 1, for k = 1, . . . ,M .iii) Lk

1 = Lk
2 for k = 1, . . . ,M .For this parti
ular one-dimensional geometry, we denote by an abuse of notation thefun
tion v = v(t, x) whi
h is 1-periodi
 in x. If we set lk =

Lk
1+Lk

2

2
, we have

Lk · X = lk · x+

(
Lk

1 − Lk
2

2

)

(x1 − x2).35



By assumption (H ′), (iii), we see (again by an abuse of notation) that u = (uk(t, x))k=1,...,Mis su
h that for k = 1, . . . ,M , uk(t, x) − lk · x is 1-periodi
 in x.Now, we 
an integrate the equations of elasti
ity, i.e. the �rst equation of (8.47). Usingthe Z
2-periodi
ity of the unknowns (see assumption (H), (i)-(ii)), and the fa
t that

ε0,k+N = −ε0,k (see assumption (H), (iii)), we 
an easily 
on
lude that the strain
εe as a linear fun
tion of (uj − uj+N)j=1,...,N and of (∫ 1

0

(uj − uj+N) dx

)

j=1,...,N

.(8.49)This leads to the following LemmaLemma 8.1 (Stress for the 1D-model)Under assumptions (H), (i)-(ii)-(iii) and (H ′), (i)-(iii) and (8.46), we have
−σ : ε0,i =

∑

j=1,...,M

Aiju
j +

∑

j=1,...,M

Qij

∫ 1

0

uj dx, for i = 1, . . . , N. (8.50)where for i, j = 1, . . . , N







Ai,j = Aj,i and Ai+N,j = −Ai,j = Ai,j+N ,
Qi,j = Qj,i and Qi+N,j = −Qi,j = Qi,j+N . (8.51)Moreover the matrix A is non-negative.The proof of Lemma 8.1 will be given at the end of this Subse
tion.Finally using Lemma 8.1, we 
an eliminate the stress and redu
e the problem to a one-dimensional system of M transport equations only depending on the fun
tion ui, for

i = 1, . . . ,M . Naturally, from (8.50) and (H ′), (ii) this 1D-model has the following form
∂tu

i+

(
∑

j=1,...,M

Aiju
j +

∑

j=1,...,M

Qij

∫ 1

0

uj dx

)

∂xu
i = 0, on (0, T ) × R, for i = 1, . . . ,M,(8.52)with from (8.44)

∂xu
i ≥ 0 for i = 1, . . . ,M . (8.53)Now, we give the proof of Lemma 8.1.
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Proof of Lemma 8.1:For the 2D-model, let us 
onsider the elasti
 energy on the periodi
 
ell (using the fa
tthat εe is Z
2-periodi
)

Eel =
1

2

∫

(0,1)2
Λ : εe : εe dX.By de�nition of σ and εe, we have for i = 1, . . . ,M

σ : ε0,i = −∇uiEel. (8.54)On the other hand usind (H ′), (i)-(iii), (with x = x1 + x2) we 
an 
he
k that we 
anrewrite the elasti
 energy as
Eel =

1

2

∫ 1

0

Λ : εe : εe dx.Repla
ing εe by its expression (8.49), we get:
Eel =

1

2

∫ 1

0

∑

i,j=1,...,N

Aij(u
j − uj+N)(ui − ui+N) dx

+
1

2

∑

i,j=1,...,N

Qij

(∫ 1

0

(uj − uj+N) dx

)(∫ 1

0

(ui − ui+N) dx

)

,for some symmetri
 matri
es Ai,j = Aj,i, Qi,j = Qj,i. In parti
ular, joint to (8.54) thisgives exa
tly (8.50) with (8.51).Let us now 
onsider the fun
tions wi = ui − ui+N su
h that
∫ 1

0

wi dx = 0 for i=1,. . . ,N, (8.55)From (8.46) that we dedu
e that
0 ≤ Eel =

1

2

∫ 1

0

∑

i,j=1,...,N

Aijw
iwj dx.More pre
isely, for all i = 1, . . . , N and for all w̄i ∈ R, we set

wi =

{
w̄i on [0, 1

2
],

−w̄i on [1
2
, 1],whi
h satis�es (8.55). Finally, we obtain that

0 ≤ Eel =
1

2

∫ 1

0

∑

i,j=1,...,N

Aijw̄
iw̄j dx.Be
ause this is true for every w̄i, we dedu
e that A a non-negative matrix. 237



8.3 Heuristi
 derivation of the non-periodi
 modelStarting from the model (8.52)-(8.53) where for i = 1, . . . ,M,, ui(t, x)−li ·x is 1-periodi
in x, we now want to res
ale the unknowns to make the periodi
ity disappear. Morepre
isely, we have the following Lemma:Lemma 8.2 (Non-periodi
 model)Let u be a solution of (8.52)-(8.53) assuming Lemma 8.1 and ui(t, x)− li ·x is 1-periodi
in x. Let
uj

δ(t, x) = uj(δt, δx), for a small δ > 0 and for j = 1, . . . ,M ,su
h that, for all j = 1, . . . ,M

uj
δ(0, ·) → ūj(0, ·), as δ → 0, and ūj(0,±∞) = ūj+N(0,±∞) (8.56)Then ū = (ūj)j=1,...,M formally is a solution of

∂tū
i +

(
∑

j=1,...,M

Aij ū
j

)

∂xū
i = 0, on (0, T ) × R, (8.57)with the matrix A is non-negative and ∂xū

i ≥ 0 for i = 1, . . . ,M .We remark that the limit problem (8.57) is of type (P) with (H1′) and (H2′).Now, we give a formal proof of Lemma 8.2.Formal proof of Lemma 8.2:Here, we know that ui
δ − δli · x is 1

δ
-periodi
 in x, and satis�es for i = 1, . . . ,M

∂tu
i
δ +

(
∑

j=1,...,M

Aiju
j
δ + δ

∑

j=1,...,M

Qij

∫ 1
δ

0

uj
δ dx

)

∂xu
i
δ = 0, on (0, T ) × R, (8.58)To simplify, assume that the initial data uδ(0, ·) 
onverge to a fun
tion ū(0, ·) su
h that

∂xuδ(0, ·) has a support in (−R,R), uniformly in δ, where R a positve 
onstant. Weexpe
t heuristi
ally that the velo
ity in (8.58) remains uniformly bounded as δ → 0.Therefore, using the �nite propagation speed, we see that, there exists a 
onstant Cindependent in δ, su
h that ∂xuδ(t, ·) has a support in (−R − Ct,R+ Ct) uniformly in
δ. Moreover, from (8.56) and the fa
t that

∑

j=1,...,M

Qij

∫ 1
δ

0

uj
δ dx =

∑

j=1,...,N

Qij

∫ 1
δ

0

(uj − uj+N) dx,38



we dedu
e that
∑

j=1,...,M

Qij

∫ 1
δ

0

uj
δ dx,remains bounded uniformly in δ. Then formally the non-lo
al term vanishes and we getfor i = 1, . . . ,M

∑

j=1,...,M

Aiju
j
δ + δ

∑

j=1,...,M

Qij

∫ 1
δ

0

uj
δ dx→

∑

j=1,...,M

Aij ū
j, as δ → 0,whi
h proves that ū is solution of (8.57), with the matrix A is non-negative . 29 Appendix: proof of Theorem 7.7Let u1 = (ui

1)i and u2 = (ui
2)i, for i = 1, · · · ,M , be two solutions of the system (P) in

[W 1,∞((0, T ) × R)]
M , su
h that ui

1(0, ·) = ui
2(0, ·).Then by de�nition ui

1 and ui
2 satisfy respe
tively the following system, for i = 1, · · · ,M :

∂tu
i
1 = −ai(u1)∂xu

i
1,

∂tu
i
2 = −ai(u2)∂xu

i
2,Subtra
ting the two equations we get:

∂t

(
ui

1 − ui
2

)
= −

(
ai(u1) − ai(u2)

)
∂xu

i
1 − ai(u2)∂x(u

i
1 − ui

2).Multiplying this system by (ui
1 − ui

2) (ψ)2 where ψ(x) = e−|x|, and integrating in spa
e,we dedu
e that:
1

2

d

dt

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)
= −

∫

R

(
ai(u1) − ai(u2)

) (
ui

1 − ui
2

)
ψ2∂xu

i
1

−

∫

R

ai(u2)ψ
2
(
ui

1 − ui
2

)
∂x(u

i
1 − ui

2).Taking the sum over i, we get:
1

2

d

dt

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

=

I1
︷ ︸︸ ︷

−

∫

R

∑

i=1,...,M

(
ai(u1) − ai(u2)

) (
ui

1 − ui
2

)
ψ2∂xu

i
1

I2
︷ ︸︸ ︷

−
1

2

∫

R

∑

i=1,...,M

ai(u2)ψ
2∂x(u

i
1 − ui

2)
2 .39



Integrating I2 by part, we obtain:
I2 =

I21
︷ ︸︸ ︷

1

2

∫

R

∑

i,j=1,...,M

ai
,j(u2)(∂xu

j
2)ψ

2(ui
1 − ui

2)
2

+

I22
︷ ︸︸ ︷

1

2

∫

R

∑

i=1,...,M

ai(u2)(u
i
1 − ui

2)
2∂x(ψ

2) .Next, using the fa
t that ui
2 is bounded inW 1,∞((0, T )×R), for i = 1, . . . ,M , we dedu
ethat:

|I21| ≤ 1
2
MM1‖u2‖[W∞((0,T )×R)]M

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

,

≤ C

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

.

(9.59)Sin
e ∂x(ψ(x))2 = −2sign(x)(ψ(x))2 and ui
2 is bounded in W 1,∞((0, T ) × R), for i =

1, · · · ,M , we obtain:
|I22| ≤ 1

2
M0

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

≤ C

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)
(9.60)Now, using the fa
t that ui

1 is bounded in W 1,∞((0, T ) × R), for i = 1, ·, ·,M , and theinequality |ab| ≤ 1
2
(a2 + b2), we get:

|I1| ≤
1

2
M1(M + 1)‖u1‖[W∞((0,T )×R)]M

∫

R

∑

i=1,...,M

|ui
1 − ui

2|
2ψ2,

≤
1

2
M1(M + 1)‖u1‖[W∞((0,T )×R)]M

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

,

≤ C

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

.

(9.61)
40



Finally, (9.61), (9.59) and (9.60), imply:
d

dt

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥2

L2(R)

)

≤ 2 (|I1| + |I21| + |I22|) ≤ C

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥2

L2(R)

)

.Now, we apply the Gronwall Lemma and we use that ui
1(0, ·) = ui

2(0, ·), to dedu
e that:
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥2

L∞((0,T );L2(R))
≤

∑

i=1,...,M

∥
∥
(
ui

1(0, ·) − ui
2(0, ·)

)
ψ
∥
∥2

L2(R)
eCT = 0,i.e., u1 = u2 a.e in (0, T ) × R. 210 A
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