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Global ontinuous solutionsto diagonalizable hyperboli systemswith large and monotone dataA. El Hajj12, R. Monneau1April 25, 2008AbstratIn this paper, we study diagonalizable hyperboli systems in one spae dimension. Based on anew gradient entropy estimate, we prove the global existene of a ontinuous solution, for largeand nondereasing initial data. Moreover, we show in partiular ases some uniqueness results.We also remark that these results over the ase of systems whih are hyperboli but not stritlyhyperboli. Physially, this kind of diagonalizable hyperboli systems appears naturally in themodelling of the dynamis of disloation densities.AMS Classi�ation: 35L45, 35Q35, 35Q72, 74H25.Key words: Global existene, system of Burgers equations, system of nonlinear transportequations, nonlinear hyperboli system, dynamis of disloation densities.
1 Introdution and main result1.1 Setting of the problemIn this paper we are interested in ontinuous solutions to hyperboli systems in dimensionone. Our work will fous on solution u(t, x) = (ui(t, x))i=1,...,M , where M is an integer,of hyperboli systems whih are diagonal, i.e.

∂tu
i + ai(u)∂xu

i = 0 on (0, T ) × R and for i = 1, ...,M, (P)1Éole Nationale des Ponts et Chaussées, CERMICS, 6 et 8 avenue Blaise Pasal, Cité DesartesChamps-sur-Marne, 77455 Marne-la-Vallée Cedex 2, Frane2Université de Marne-la-Vallée 5, boulevard Desartes Cité Desartes - Champs-sur-Marne 77454Marne-la-Vallée edex 2 1



with the initial data:
ui(0, x) = ui

0(x), x ∈ R, for i = 1, . . . ,M. (ID)For real numbers αi ≤ βi, let us onsider the box
U = ΠM

i=1[α
i, βi]. (1.1)We onsider a given funtion a = (ai)i=1,...,M : U → R

M , whih satis�es the followingregularity assumption:
(H1)







the funtion a ∈ C∞(U),there exists M0 > 0 suh that for i = 1, ...,M,
|ai(u)| ≤M0 for all u ∈ U,there exists M1 > 0 suh that for i = 1, ...,M,
|ai(v) − ai(u)| ≤M1|v − u| for all v, u ∈ U.We assume, for all u ∈ R

M , that the matrix
(ai

,j(u))i,j=1,...,M , where ai
,j =

∂

∂uj
ai,is non-negative in the positive one, namely

(H2)
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∣
∣
∣
∣
∣
∣

for all u ∈ U, we have
∑

i,j=1,...,M

ξiξja
i
,j(u) ≥ 0 for every ξ = (ξ1, ..., ξM) ∈ [0,+∞)M .In (ID), eah omponent ui

0 of the initial data u0 = (u1
0, · · · , u

M
0 ) is assumed satisfy thefollowing property:

(H3)







ui
0 ∈ L∞(R),
ui

0 is nondereasing,
∂xu

i
0 ∈ L logL(R),
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for i = 1, · · · ,M ,where L logL(R) is the following Zygmund spae:
L logL(R) =

{

f ∈ L1(R) suh that ∫
R

|f | ln (1 + |f |) < +∞

}

.This spae is equipped by the following norm:2



‖f‖L log L(R) = inf

{

λ > 0 :

∫

R

|f |

λ
ln

(

1 +
|f |

λ

)

≤ 1

}

,This norm is due to Luxemburg (see Adams [1, (13), Page 234℄).Our purpose is to show the existene of a ontinuous solution, suh that ui(t, ·) satis�es
(H3) for all time.1.2 Main resultIt is well-known that for the lassial Burgers equation, the solution stays ontinuouswhen the initial data is Lipshitz-ontinuous and non-dereasing. We want somehow togeneralize this result to the ase of diagonal hyperboli systems.Theorem 1.1 (Global existene of a nondereasing solution)Assume (H1), (H2) and (H3). Then, for all T > 0, we have:i) Existene of a weak solution:There exists a funtion u solution of (P)-(ID) (in the distributional sense), where
u ∈ [L∞((0, T ) × R)]M ∩ [C([0, T );L logL(R))]M and ∂xu ∈ [L∞((0, T );L logL(R))]M ,suh that for a.e t ∈ [0, T ) the funtion u(t, ·) is nondereasing in x and satis�es thefollowing L∞ estimate:

‖ui(t, ·)‖L∞(R) ≤ ‖ui
0‖L∞(R), for i = 1, . . . ,M, (1.2)and the gradient entropy estimate:

∫

R

∑

i=1,...,M

f
(
∂xu

i(t, x)
)
dx+

∫ t

0

∫

R

∑

i,j=1,...,M

ai
,j(u)∂xu

i(s, x)∂xu
j(s, x) dx ds ≤ C1,(1.3)where

f(x) =

{
x ln(x) + 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,
(1.4)and C1(T,M,M1, ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M ).ii) Continuity of the solution:The solution u onstruted in (i) belongs to C([0, T )× R) and there exists a modulus ofontinuity ω(δ, h), suh that for all (t, x) ∈ (0, T ) × R and all δ, h ≥ 0, we have:

|u(t+ δ, x+ h) − u(t, x)| ≤ C2 ω(δ, h) with ω(δ, h) =
1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)
. (1.5)where C2(T,M1,M0, ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M ).3



Remark 1.2Here, we an easily extend the solution u of (P)-(ID), given by Theorem 1.1, on the timeinterval [0,+∞).Our method is based on the following simple remark: if the initial data satis�es (H3)then the solution satis�es (H3) for all t. What seems new is the gradient entropy in-equality. The prove of Theorem 1.1 is rather standard. First we regularize the initialdata and the system with the addition of a visosity term, then we show that this regu-larized system admits a lassial solution for short time. We prove the bounds (1.2) andthe fundamental gradient entropy inequality (1.3) whih allow to get a solution for alltime. Finally, these a priori estimates ensure enough ompatness to pass to the limitwhen the regularization varnishes and to get the existene of a solution.Remark 1.3To guarantee the L logL bound on the gradient of the solutions. We assumed in (H2) asign on the left hand side of gradient entropy inequality (1.3).In the ase of 2 × 2 stritly hyperboli systems, whih orresponds in (P) to the aseof a1(u1, u2) < a2(u1, u2). Lax [30℄ proved the existene of smooth solution of (P)-(ID).This result was also proven by Serre [36, Vol II℄ in the ase of M ×M rih hyperbolisystems (see also Subsetion 1.4 for more related referenes). Their result is limitedto the ase of stritly hyperboli systems, here in Theorem 1.1, we treated the ase ofsystems whih are hyperboli but not stritly hyperboli. See the following Remark fora quite detailed example.Remark 1.4 (Crossing eigenvalues)Condition (1.9) on the eigenvalues is required in our framework (Theorem 1.1). Here isa simple example of a 2 × 2 hyperboli but not stritly hyperboli system. We onsidersolution u = (u1, u2) of






∂tu
1 + cos(u2)∂xu

1 = 0,

∂tu
2 + u1sin(u2)∂xu

2 = 0,

∣
∣
∣
∣
∣
∣

on (0, T ) × R. (1.6)Assume:i) u1(−∞) = 0, u1(+∞) = 1 and ∂xu
1 ≥ 0,ii) u2(−∞) = −π

2
, u2(+∞) = π

2
and ∂xu

2 ≥ 0.Here the eigenvalues λ1(u
1, u2) = cos(u2) and λ2(u

1, u2) = u1sin(u2) ross eah otherat the initial time (and indeed for any time). Nevertheless for a1(u1, u2) = cos(u2) and
a2(u1, u2) = u1sin(u2), we an ompute 4



(ai
,j(u

1, u2))i,j=1,2 =

(
0 −sin(u2)

sin(u2) u1cos(u2)

)

,whih satis�es (H2) (under assumptions (i) and (ii)). Therefor Theorem 1.1 gives theexistene of a solution to (1.6) with (i) and (ii).Based on the same type of gradient entropy inequality (1.3), it was proved in Cannoneet al. [8℄ the existene of a solution in the distributional sense for a two-dimensionalsystem of two transport equations, where the veloity vetor �eld is non-loal.The uniqueness of the solution is strongly related to the existene of regular (Lipshitz)solutions (see Theorem 7.7). Let us remark that equation (P)-(ID) does not reateshoks beause the solution (given in Theorem 1.1) is ontinuous. In this situation, itseems very natural to expet the uniqueness of the solution. Indeed the notion of en-tropy solution (in partiular designed to deal with the disontinuities of weak solutions)does not seem so helpful in this ontext. Nevertheless the uniqueness of the solution isan open problem in general (even for suh a simple system).We ask the following Open question:Is there uniqueness of the solution given in Theorem 1.1 ?Now we give the following existene and uniqueness result in [W 1,∞([0, T ) × R)]M , in aspeial ase to simplify the presentation. More preisely we assume
(H1′) ai(u) =

∑

j=1,...,M

Aiju
j for i = 1, . . . ,M and for all u ∈ U ,

(H2′)
∑

i,j=1,...,M

Aijξiξj ≥ 0 for every ξ = (ξ1, ..., ξM) ∈ [0,+∞)M .Theorem 1.5 (Existene and uniqueness of W 1,∞ solution for a partiular
A = (Aij)i,j=i=1,...,M)Assume (H1′). For T > 0 and all nondereasing initial data u0 ∈ [W 1,∞(R)]M , the sys-tem (P)-(ID) admits a unique solution u ∈ [W 1,∞([0, T ) × R)]

M , in the following ases:i) M ≥ 2 and Aij ≥ 0, for all j ≥ i.ii) M ≥ 2 and Aij ≤ 0, for all i 6= j and (H2′). And then for all (t, x) ∈ [0, T ) × R wehave
∑

i=1,...,M

∂xu
i(t, x) ≤ sup

y∈R

∑

i=1,...,M

∂xu
i
0(y). (1.7)

5



Remark 1.6 (Case of M = 2)In partiular for M = 2, if (H1′), (H2′) and (H3) satis�ed then we have, by Theorem1.5 the existene and uniqueness of a solution in [W 1,∞([0, T ) × R)]
2 of (P)-(ID).In these partiular ases of the matrix A, we an prove that ∂xu

i for i = 1, . . . ,M , arebounded on [0, T )×R. Thanks to this better estimates on ∂xu
i, and then on the veloityvetor �eld Au, we prove here the uniqueness of the solution.In the ase of the matrix A =

(
1 −1
−1 1

), it was proved in El Hajj, Foradel [16℄, theexistene and uniqueness of a Lipshitz visosity solution, and in A. El Hajj [15℄, theexistene and uniqueness of a strong solution in W 1,2
loc ([0, T ) × R).1.3 Appliation to diagonalizable systemsLet us �rst onsider a smooth funtion u = (u1, . . . , uM), solution of the following non-onservative hyperboli system:







∂tu(t, x) + F (u)∂xu(t, x) = 0, u(t, x) ∈ U, x ∈ R, t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ R,
(1.8)where the spae of states U is now an open subset of R

M , and for eah u, F (u) is a
M ×M-matrix and the map F is of lass C1(U). We assume that F (u) has M realeigenvalues λ1(u), . . . , λM(u), and we suppose that we an selet bases of right and lefteigenvetors ri(u), li(u) normalized so that

|ri| ≡ 1 and li · rj = δijRemark 1.7 (Riemann invariant)Reall that loally a neessary and su�ient ondition to write
li(u) = ∇uϕi(u),is the Frobenius ondition li ∧ dli = 0. In that ase the funtion ϕi(u) is solution of thefollowing equation

(ϕi(u))t + λi(u)(ϕi(u))x = 0.We reall that then ϕi(u) is alled a i-Riemann invariant (see Sevenne [37℄ and Serre[36, Vol II℄)). If this is true for any i, we say that the system (1.8) is diagonalizable.Our theory is naturally appliable to this more general lass of systems.6



1.4 A brief review of some related literatureNow we reall some well known results for system (1.8).For a salar onservation law, this orresponds in (1.8) to the ase M = 1 and
F (u) = h′(u) is the derivative of some �ux funtion h, the global existene and unique-ness of BV solution established by Oleinik [34℄ in one spae dimension. The famouspaper of Kruzhkov [28℄ overs the more general lass of L∞ solutions, in several spaedimension. For another alternative approah based on the notion of entropy proesssolutions, see Eymard et al. [17℄, see also the kineti formulation P. L. Lions et al. [33℄.We now reall some well-known results for a lass of 2× 2 stritly hyperboli systems none spae dimension. Here i.e F (u) has two real, distint eigenvalues

λ1(u) < λ2(u).Lax [30℄ proved the existene and uniqueness of nondereasing and smooth solutions ofthe 2 × 2 stritly hyperboli systems. Also in ase of 2 × 2 stritly hyperboli systemsDiPerna [12, 13℄ showed the global existene of a L∞ solution. The proof of DiPernarelies on a ompensated ompatness argument, based on the representation of the weaklimit in terms of Young measures, whih must redue to a Dira mass due to the preseneof a large family of entropies. This results is based on the idea of Tartar [39℄.For general M ×M stritly hyperboli systems; i. e. where F (u) has M real, distinteigenvalues
λ1(u) < · · · < λM(u), (1.9)Bianhini and Bressan proved in [6℄ a striking global existene and uniqueness result of

BV solutions to system (1.8), assuming that the initial data has small total variation.Their existene result is a generalization of Glimm result [20℄, proved in the onserva-tion ase; i.e. F (u) = Dh(u) is the Jaobin of some �ux funtion h and generalized byLeFloh and Liu [31, 32℄ in the non-onservative ase.We an also mention that, our system (P) is related to other similar models, suh assalar transport equations based on vetor �elds with low regularity. Suh equationswere for instane studied by Diperna and Lions in [14℄. They have proved the existene(and uniqueness) of a solution (in the renormalized sense), for given vetor �elds in
L1((0,+∞);W 1,1

loc (RN)) whose divergene is in L1((0,+∞);L∞(RN)). This study wasgeneralized by Ambrosio [2℄, who onsidered vetor �elds in L1((0,+∞);BVloc(R
N ))with bounded divergene. In the present paper, we work in dimension N = 1 and provethe existene (and some uniqueness results) of solutions of the system (P)-(ID) with aveloity vetor �eld ai(u), i = 1, . . . ,M . Here, in Theorem 1.1, the divergene of ourvetor �eld is only in L∞((0,+∞), L logL(R)). In this ase we proved the existeneresult thanks to the gradient entropy estimate (1.3), whih gives a better estimate on7



the solution. However, in Theorem 1.5, the divergene of our vetor �eld is bounded,whih allows us to get a uniqueness result for the non-linear system (P).We also refer to Ishii, Koike [25℄ and Ishii [24℄, who showed existene and uniqueness ofvisosity solutions for Hamilton-Jaobi systems of the form:






∂tu
i +Hi(u,Du

i) = 0 with u = (ui)i ∈ R
M , for x ∈ R

N , t ∈ (0, T ),

ui(x, 0) = ui
0(x) x ∈ R,

(1.10)where the Hamiltonian Hi is quasi-monotone in u (see Ishii, Koike [25, Th.4.7℄). Thisdoes not over our study sine our Hamiltonian is not neessarily quasi-monotone.For hyperboli and symmetri systems, Gȧrding has proved in [18℄ a loal existene anduniqueness result in C([0, T );Hs(RN))∩C1([0, T );Hs−1(RN)), with s > N
2

+ 1 (see alsoSerre [36, Vol I, Th 3.6.1℄), this result being only loal in time, even in dimension N = 1.1.5 Misellaneous extensions to explore in a futur work1. In Theorem 1.1 we have onsidered the study of a partiular system only to simplifythe presentation. This result ould be generalized to the following system
∂tu

i + ai(u, x, t)∂xu
i = hi(u, x, t) on (0, T ) × R and for i = 1, ...,M, (P')with suitable onditions on ai and hi.2. If we onsider the ase where the system (P) is stritly hyperboli. Based in theresult of Bianhini, Bressan [6℄, we ould also prove the uniqueness of the solution,whose existene is given by Theorem 1.1.3. We ould also extend Theorem 1.5 to system (P'), where we replae (i) and (ii) bythe following onditioni') For M ≥ 2, ai

j(u, x, t) ≥ 0 for j ≥ i and for all (u, x, t) ∈ U × R × [0, T ).ii') For M ≥ 2,
ai

,j(u, x, t) ≤ 0 for all (u, x, t) ∈ U × R × [0,+∞), for all i 6= j,and we assume that for any vi ∈ R
M , xi ∈ R, the matrix
bij(t) = ai

,j(vi, xi, t)satis�es for all t ≥ 0

(H2′′)
∑

i,j=1,...,M

bij(t)ξiξj ≥ 0 for all ξ = (ξ1, ..., ξM) ∈ [0,+∞)M .8



4. We ould also prove the uniqueness result in ase of W 1,∞ solution among weaksolution. (and in partiular any weak solution is a visosity solution in the sense ofCrandall-Lions [10, 11℄).5. We ould propose a numerial sheme and try to prove its onvergene.6. Appliations to other equations: Euler, p-systems.1.6 Organization of the paperThis paper is organized as follows: in the Setion 2, we approximate the system (P) andthe initial onditions. Then we prove a loal in time existene for this approximatedsystem. In Setion 3, we prove the global in time existene for the approximated system.In the Setion 4, we prove that the obtained solutions are regular and non-dereasingin x for all t ∈ (0, T ). In Setion 5, we prove the gradient entropy inequality and someother ε-uniform a priori estimates. In Setion 6, we prove the main result (Theorem 1.1)passing to the limit as ε goes to 0 and using some ompatness properties inherited fromour entropy gradient inequality and the a priori estimates. In Setion 7 we prove someuniqueness results in partiular ases (Theorem 1.5). An appliation to the dynamis ofdisloation densities given in Setion 8. Finally, in the Appendix, we reall the proof ofuniqueness of Lipshitz solution to system (P).2 Loal existene of an approximated systemThe system (P) an be written as:
∂tu+ a(u) ⋄ ∂xu = 0, (2.11)where u := (ui)1,...,M , a(u) = (ai(u))1,...,M and U ⋄ V is the �omponent by omponentprodut� of the two vetors U, V ∈ R

M . This is the vetor in R
M whose oordinates aregiven by (U ⋄ V )i := UiVi:








U1

U2...
UM







⋄








V1

V2...
VM








=








U1V1

U2V2...
UMVM







.Now, we onsider the system (2.11), modi�ed by the term ε∂xxu, where ∂xx =

∂2

∂x2
, andfor smoothed data. This modi�ation brings us to study, for all 0 < ε ≤ 1, the followingsystem:

∂tu
ε − ε∂xxu

ε = −a(uε) ⋄ ∂xu
ε, (Pε)9



with the smooth initial data:
uε(x, 0) = uε

0(x), with uε
0(x) := u0 ∗ ηε(x), (IDε)where ηε is a molli�er verify, ηε(·) = 1

ε
η( ·

ε
), suh that η ∈ C∞

c (R) is a non-negativefuntion and ∫
R
η = 1.Remark 2.1By lassial properties of the molli�er (ηε)ε and the fat that uε

0 ∈ [L∞(R)]M , then
uε

0 ∈ [C∞(R)]M ∩ [Wm,∞(R)]M for all m ∈ N.The global existene of smooth solution of the system (Pε) is standard. Here, we provethis results only to ensure the reader.The following theorem is a loal existene result (in the "Mild" sense) of the regularizedsystem (Pε)-(IDε). This result is ahieved in a super-ritial spae. Here partiularlywe hose the spae of funtions [C([0, T );X(R))]M , where
X(R) = {u ∈ L∞(R) suh that ∂xu ∈ L8(R)}. (2.12)This spae is a Banah spae supplemented with the following norm

‖u‖X(R) = ‖u‖L∞(R) + ‖∂xu‖L8(R).Here the espae Lp(R) with p = 8 will simplify later in Lemma 4.1 the Bootstrap argu-ment to get smooth solution.In this Setion, we will prove the followingTheorem 2.2 (Loal existene result)For all initial data uε
0 ∈ [X(R)]M there exists

T ⋆ = T ⋆(M0, ε) > 0,suh that the system (Pε)-(IDε) admits solutions uε ∈ [C([0, T ⋆);X(R))]M .In order to do the proof of Theorem 2.2 in Subsetion 2.2 we need to reall in thefollowing Subsetion some known results.2.1 Useful resultsLemma 2.3 (Mild solution)Let T > 0, and uε ∈ [C([0, T );X(R))]M be a solution of the following integral problemwith uε(t) = uε(t, ·):
uε(t) = Sε(t)u

ε
0 −

∫ t

0

Sε(t− s) (a(uε(s)) ⋄ ∂xu
ε(s)) ds, (INε)10



where Sε(t) = S1(εt) suh that S1(t) = et∆ is the heat semi-group. Then uε is a solutionof the system (Pε)-(IDε) in the sense of distributions.For the proof of this lemma, we refer to Pazy [35, Th 5.2. Page 146℄.Lemma 2.4 (Piard Fixed Point Theorem, see [26℄)Let E be a Banah spae, let B : E × E −→ E be a ontinuous map suh that:
‖B(x, y)‖E ≤ η‖y‖E for all x, y ∈ E,where η is a positive given onstant. Then, for every x0 ∈ E, if

0 < η < 1,the equation x = x0 +B(x, x) admits a solution in E.In order to show the loal existene of a solution for (INε), we will apply Lemma 2.4 inthe spae E = [L∞((0, T );X(R))]M .Lemma 2.5 (Time ontinuity)Let T > 0. If uε ∈ [L∞((0, T );W 1,p(R))]M , 1 ≤ p ≤ +∞, are solutions of integralproblem (INε), then uε ∈ [C([0, T );W 1,p(R))]
M .For the proof of Lemma 2.3, see A. Pazy [35, 7.3, Page 212℄.Lemma 2.6 (Semi-group estimates)Let 1 ≤ p ≤ q ≤ +∞. Then for all f ∈ Lp(R) and for all t > 0, we have the followingestimates:i) ‖Sε(t)f‖Lq(R) ≤ Ct−

1
2
( 1

p
− 1

q
)‖f‖Lp(R),ii) ‖∂xSε(t)f‖Lp(R) ≤ Ct−

1
2‖f‖Lp(R),where C = C(ε) is a positive onstant depending on ε.For the proof of this Lemma, see Pazy [35, Lemma 1.1.8, Th 6.4.5℄.2.2 Proof of Theorem 2.2Our goal is to show loal existene of a solution of (Pε) using the Piard �xed pointTheorem. To be done aording Lemma 2.3 it is enough to prove the loal existene forthe following equation:

uε(t) = Sε(t)u
ε
0 −

∫ t

0

Sε(t− s) (a(uε(s)) ⋄ ∂xu
ε(s)) ds,

= Sε(t)u
ε
0 +B(uε, uε)(t),

(2.13)11



with B(u, v)(t) = −

∫ t

0

Sε(t− s) (a(u)(s) ⋄ ∂xv(s)) ds.If we estimate B(u, v), we will obtain, for all u, v ∈ [L∞((0, T );X(R))]M , where X(R)de�ned in (2.12), the following:
‖B(u, v)(t)‖[X(R)]M =

∥
∥
∥
∥

∫ t

0

Sε(t− s) (a(u(s)) ⋄ ∂xv(s)) ds,

∥
∥
∥
∥

[L∞(R)]M
,

+

∥
∥
∥
∥

∫ t

0

∂xSε(t− s) (a(u(s)) ⋄ ∂xv(s)) ds,

∥
∥
∥
∥

[L8(R)]M
,

(2.14)where for a funtion f = (f 1, . . . , fM) ∈ [X(R)]M , we note here
‖f‖[X(R)]M = sup

i=1,...,M

‖f i‖L∞(R) + sup
i=1,...,M

‖∂xf
i‖L8(R).Using Lemma 2.6 (i) with p = 8, q = ∞ for the �rst term and Lemma 2.6 (ii) with p = 8for the seond term, we obtain that :

‖B(u, v)(t)‖[X(R)]M ≤ C

∫ t

0

1

(t− s)
7
16

‖a(u(s))∂xv(s)‖[L2(R)]M ds,

+C

∫ t

0

1

(t− s)
1
2

‖a(u(s))∂xv(s)‖[L8(R)]M ds.We use the Hölder inequality, and get, for all 0 < T ≤ 1:
‖B(u, v)(t)‖[X(R)]M ≤ CT

1
2 ‖∂xv‖[L∞((0,T );L8(R))]M ,

≤ CT
1
2 ‖v‖[L∞((0,T );X(R))]M ,

(2.15)where C(M0, ε). Moreover, we know by lassial properties of heat semi-group (see A.Pazy [35℄):
‖Sε(t)u

ε
0‖[L∞((0,T );X(R))]M ≤ ‖uε

0‖[X(R)]M . (2.16)Now, taking
(T ⋆)

1
2 = min

(
1

2C
, 1

)

, (2.17)we an easily verify that
C(T ⋆)

1
2 < 1.12



By applying the Piard Fixed Point Theorem (Lemma 2.4) with E = [L∞((0, T ⋆);X(R))]M ,this proves the existene of a solution uε ∈ [L∞((0, T ⋆);X(R))]M for (2.13).Then, aording to Lemma 2.5, we dedue that the solution is indeed in [C([0, T ⋆);X(R))]M .This proves, by Lemma 2.3, the existene of a solution in [C([0, T ⋆);X(R))]M , whihsatis�es the system (Pε)-(IDε) in the sense of distributions. 23 Global existene of the solutions of the approxi-mated systemIn this Setion, we will prove the global existene of solution for the system (Pε)-(IDε).Before going into the proof, we need the following lemma.Lemma 3.1 (L∞ bound)Let T > 0. If uε ∈ [C([0, T );X(R))]M is a solution of system (Pε)-(IDε) with initialdata uε
0 ∈ X(R), then

‖uε‖[L∞([0,T )×R)]M ≤ ‖uε
0‖[L∞(R)]MThe proof of this Lemma is a diret appliation of the Maximum Priniple Theorem forparaboli equations (see Gilbarg-Trudinger [19, Th.3.1℄).Remark 3.2Thanks to the previous Lemma, we notie that we an take the box U de�ned in (1.1) asthe following

U = ΠM
i=1[−‖uε,i

0 ‖L∞(R), ‖u
ε,i
0 ‖L∞(R)].For �xed ε, this de�nition guarantee that M0 do not hange in the ourse of time.The result of this Setion is the following.Theorem 3.3 (Global existene)Let T > 0 and 0 < ε ≤ 1. For initial data uε

0 ∈ [X(R)]M satisfying (H1) and (H2).Then the system (Pε)-(IDε), admits a solution uε ∈ [C([0, T );X(R))]M , with uε(t, ·)satisfying (H1) and (H2) for all t ∈ (0, T ). Moreover, for all t ∈ (0, T ), we have thefollowing inequalities:
‖uε,i(t, ·)‖L∞(R) ≤ ‖uε,i

0 ‖L∞(R), for i = 1, . . . ,M, (3.18)Proof of Theorem 3.3:We are going to prove that loal in time solutions obtained by Theorem 2.2 an beextended to global solutions for the same system.
13



We argue by ontradition: assume that there exists a maximum time Tmax suh that,we have the existene of solutions of the system (Pε)-(IDε) in the funtion spae
[C([0, Tmax);X(R))]M .For every small enough δ > 0, we onsider the system (Pε) with the initial ondition

uε,δ
0 (x) = uε(Tmax − δ, x).From Theorem 2.2 to dedue that there exists a time T ⋆(M0, ε), independent of δ (seeRemark 3.2), suh that the system (Pε) with initial data uε,δ

0 has a solution uε,δ on thetime interval [0, T ⋆). Then for
T0 = (Tmax − δ) + T ⋆,we extend uε on the time interval [0, T0) as follows,

ũε(t, x) =

{

uε(t, x), for t ∈ [0, Tmax − δ],

uε,δ(t, x), for t ∈ [Tmax − δ, T0)and we an hek that ũε is a solution of (Pε)-(IDε) on the time interval [0, T0). Butfrom Lemma (3.1) we know that the time T ⋆ is independent of δ (see Remark 3.2), whihimplies that T0 > Tmax and so a ontradition.The inequalities (3.18) is a onsequene of Lemma 3.1. 24 Properties of the solutions of the approximated sys-temIn this setion, we are going to prove that the solution of (Pε)-(IDε) obtained by Theorem2.2 is smooth and monotone.Lemma 4.1 (Smoothness of the solution)Let T > 0. For all initial data uε
0 ∈ [X(R)]M , where ∂xu

ε
0 ∈ [Wm,p(R)]M for all m ∈ N,

1 ≤ p ≤ +∞.If uε is a solution of the system (Pε)-(IDε), suh that uε ∈ [C([0, T );X(R))]M and
∂xu

ε ∈ [L∞((0, T );L1(R))]M , then uε ∈ [C∞([0, T ) × R)]M and satis�es,
uε ∈ [Wm,p((0, T ) × R)]M , for all 1 < p ≤ +∞ and m ∈ N \ {0}, (4.19)Proof of Lemma 4.1Step 1 (Initialization of the Bootstrap):For the sake of simpliity, we will set 14



F [uε] = −a(uε) ⋄ ∂xu
ε.From the fat that uε ∈ [C([0, T );X(R))]M and ∂xu

ε ∈ [L∞((0, T );L1(R))]M , we deduethat ∂xu
ε, F [uε] ∈ [L1((0, T ) × R)]

M
∩ [L8((0, T ) × R)]

M , whih proves by interpolationthat
∂xu

ε, F [uε] ∈ [Lp((0, T ) × R)]M for all 1 ≤ p ≤ 8. (4.20)Beause uε is a solution of (Pε), we see that
∂tu

ε − ε∂xxu
ε = F [uε], (4.21)

∂txu
ε − ε∂xxxu

ε = ∂xF [uε]. (4.22)Applaying the lassial regularity theory of heat equations on (4.21), we dedue that:
∂tu

ε and ∂xxu
ε ∈ [Lp((0, T ) × R)]M , for all 1 < p ≤ 8. (4.23)For more details, see Ladyzenskaja [29, Theorem 9.1℄. But we know that

∂xF [uε] = −a(uε) ⋄ ∂xxu
ε −Da(uε)∂xu

ε ⋄ ∂xu
ε (4.24)We notie that thanks to this better regularity on uε ((4.20) and (4.23), and by theHölder inequality we an easily prove that

∂xF [uε] ∈ [Lp((0, T ) × R)]M for all 1 < p ≤ 4.Now, we apply again the lassial regularity theory of heat equations on (4.22), to deduethat:
∂txu

ε and ∂xxxu
ε ∈ [Lp((0, T ) × R)]M , for all 1 < p ≤ 4. (4.25)We know that

∂tF [uε] = −a(uε) ⋄ ∂txu
ε −Da(uε)∂tu

ε ⋄ ∂xu
ε (4.26)Thanks this previous regularity on uε, we obtain by the Hölder inequality that

∂tF [uε] ∈ [Lp((0, T ) × R)]M for all 1 < p ≤ 4.Whih gives that
∂xu

ε, F [uε] ∈
[
W 1,p((0, T ) × R)

]M for all 1 < p ≤ 4,and by the Sobolev embedding that ∂xu
ε ∈ [Lp((0, T ) × R)]M for all 1 < p ≤ ∞.Step 2 (Reurrene): 15



Now, we use the same steps, we an prove by reurrene that for all m ∈ N if,
(Hm)

∣
∣
∣
∣
∣
∣

∂xu
ε ∈ [L∞((0, T ) × R)]M ,

∂xu
ε, F [uε] ∈ [Wm,p((0, T ) × R)]M for all 1 < p ≤ 4,then

(Hm) ⇒ (Hm+1).Indeed, as in (4.23) we an dedue here that
∂tu

ε and ∂xxu
ε ∈ [Wm,p((0, T ) × R)]M , for all 1 < p ≤ 4, (4.27)and From (4.24), beause ∂xu
ε ∈ [L∞((0, T ) × R)]M , we an obtain here that

∂xF [uε] ∈ [Wm,p((0, T ) × R)]M for all 1 < p ≤ 4.Whih proves that, as in (4.25) that
∂txu

ε and ∂xxxu
ε ∈ [Wm,p((0, T ) × R)]M , for all 1 < p ≤ 4, (4.28)and From (4.26), we dedue that

∂tF [uε] ∈ [Wm,p((0, T ) × R)]M for all 1 < p ≤ 4,and then
∂xu

ε, F [uε] ∈
[
Wm+1,p((0, T ) × R)

]M for all 1 < p ≤ 4,Whih proves by the Sobolev embedding the results. 2Lemma 4.2 (Classial Maximum Priniple)Let T > 0. For all initial data uε
0 ∈ [X(R)]M , where ∂xu

ε
0 ∈ [Wm,p(R)]M for all m ∈ N,

1 ≤ p ≤ +∞, and satisfying (H3).If uε is a solution of the system (Pε)-(IDε), suh that uε ∈ [C([0, T );X(R))]M and
∂xu

ε ∈ [L∞((0, T );L1(R))]M , then we have for i = 1, . . . ,M , ∂xu
ε,i ≥ 0 on (0, T ) × R.Proof of Lemma 4.2We �rst derive with respet to x the system (Pε)-(IDε), and get for wε = (wε,i)i=1,...,M =

∂xu
ε

∂tw
ε − ε∂xxw

ε + a(uε) ⋄ ∂xw
ε +Da(u)wε ⋄ wε = 0.Sine uε ∈ [C∞([0, T ) × R)]M , we see, for i = 1, . . . ,M , that wε,i is smooth and satis�es

wε,i(0, x) = ∂xu
ε,i
0 ≥ 0. From the lassial maximum priniple we dedue that wε,i ≥ 0on [0, T ) × R. 216



Remark 4.3 (L1 uniform estimate on ∂xu
ε)Beause ∂xu

ε,i ≥ 0, for i = 1, . . . ,M , we dedue from Lemma 3.1 that:
‖∂xu

ε‖[L∞([0,T );L1(R))]M ≤ 2 ‖uε‖[L∞([0,T )×R)]M ≤ 2‖uε
0‖[L∞(R)]M . (4.29)Corollary 4.4 (global existene of nondereasing smooth solutions)Let T > 0. The solution given in Theorem 2.2 an be hosen suh that uε = (uε,i)i=1,...,Msmooth, satis�es (4.19) and for eah i = 1, . . . ,M , ∂xu

ε,i ≥ 0 on (0, T ) × R.The proof of Corollary 4.4 is a onsequene of Theorem 2.2 and Lemmata 4.1, 4.2 andRemark 4.3.5 ε-Uniform a priori estimatesIn this Setion, we show some ε-uniform estimates on the solutions of the system (Pε)-(IDε). These estimates will be used in Setion 6 for the passage to the limit as ε tendsto zero.Lemma 5.1 (L∞ bound on uε and L1 bound on ∂xu
ε)Let T > 0, 0 < ε ≤ 1 and funtion u0 ∈ [L∞(R)]M satisfying (H3). Then the solutionof the system (Pε)-(IDε) given in Theorem 3.3 with initial data uε

0 = u0 ∗ ηε, satis�esthe following ε-uniform estimates:
(E1) ‖uε‖[L∞((0,T )×R)]M ≤ ‖u0‖[L∞(R)]M ,

(E2) ‖∂xu
ε‖[L∞((0,T ),L1(R))]M ≤ 2 ‖u0‖[L∞(R)]M ,Proof of Lemma 5.1:First, we remark that if ∂xu0 ≥ 0, then ∂xu

ε
0 = (∂xu0)∗ηε(x) ≥ 0 (beause η is positive).The fat that u0 ∈ [L∞(R)]M and ∂xu0 ≥ 0, we obtain that ∂xu0 ∈ [L1(R)]

M .By lassial properties of the molli�er (ηε)ε we know that if u0 ∈ [L∞(R)]M and
∂xu0 ∈ [L1(R)]

M we have uε
0 ∈ [X(R)]M and ∂xu

ε
0 ∈ [Wm,p(R)]M for all m ∈ N,

1 ≤ p ≤ +∞.Now, we use Lemma 3.1 and Remark 4.3, we dedue by the lassial properties of themolli�er (E1) and (E2).Before going into the proof of the gradient entropy inequality de�ned in (5.30), weannoune the main idea of this new gradient entropy estimate. Now, let us set for w ≥ 0the entropy funtion
f̄(w) = w lnw.17



For any non-negative test funtion ϕ ∈ C1
c (R × [0,+∞)), let us de�ne the following�gradient entropy� with wi := ∂xu

i:
N̄(t) =

∫

R

ϕ

(
∑

i=1,...,M

f̄(wi)

)

dx.It is very natural to introdue suh quantity N̄(t) whih in the ase ϕ ≡ 1, appears to benothing else than the total entropy of the system of M type of partiles of non-negativedensities wi. Then it is formally possible to dedue from (P) the equality in the followingnew gradient entropy inequality for all t ≥ 0

dN̄

dt
(t) +

∫

R

ϕ

(
∑

i,j=1,...,M

ai
,jw

iwj

)

dx ≤ R(t) for t ≥ 0, (5.30)with the rest
R(t) =

∫

R

{

(∂tϕ)

(
∑

i=1,...,M

f̄(wi)

)

+ (∂xϕ)

(
∑

i=1,...,M

aif̄(wi)

)}

dx,where we only show the dependene on t in the integrals. We remark in partiular thatthis rest is formally equal to zero if ϕ ≡ 1.To guarantee the existene of ontinuous solutions, we assumed in (H2) a sign on theleft hand side of inequality (5.30).For we return this previous alulate more rigorous, we prove atually the followinggradient entropy inequalityProposition 5.2 (Gradient entropy inequality)Let T > 0, 0 < ε ≤ 1 and funtion u0 ∈ [L∞(R)]M satisfying (H3). We onsider thesolution uε of the system (Pε)-(IDε) given in Theorem 3.3 with initial data uε
0 = u0∗ηε,.Then, there exists a onstant C(T,M,M1, ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M suh that

N(t) +

∫ t

0

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,iwε,j ≤ C, with N(t) =

∫

R

∑

i=1,...,M

f(wε,i)dx. (5.31)where wε = (wε,i)i=1,...,M = ∂xu
ε and f is de�ned in (1.4).For the proof of Proposition 5.2 we need the following Lemma:Lemma 5.3 (L logL Estimate)Let (ηε)ε be a non-negative molli�er, f is the funtion de�ned in (1.4) and h ∈ L1(R) isa non-negative funtion. Then 18



i) ∫
R

f(h) < +∞ if and only if h ∈ L logL(R).ii) If h ∈ L logL(R) the funtion hε = h ∗ ηε ∈ L logL(R) satis�es
‖h− hε‖L log L(R) → 0 as ε → 0.The proof of (i) is trivial, for the proof of (ii) see R. A. Adams [1, Th 8.20℄ for the proofof this Lemma.Proof of Proposition 5.2:Remark �rst that the quantity N(t) is well-de�ned beause wε ∈ [L∞((0, T );L1(R))]

M
∩

[L∞((0, T );L8(R))]
M (by Theorem 2.2 and Corollary 4.4) and we have the general in-equality −1

e
≤ w logw ≤ w2 for all w ≥ 0.From Theorem 4.4 we know that wε,i and smooth non-negative funtion. Now, wederive N(t) with respet to t, this is well-de�ned beause for i = 1, . . . ,M , we have∣

∣
∣
∣
∣

∫

wε,i≥ 1
e

∣
∣
∣
∣
∣
≤ e‖wε,i‖L∞((0,T );L1(R)) and for all m ∈ N, wε,i ∈Wm,∞((0, T )×R) (see (4.19)).Finally, we get that,

d

dt
N(t) =

∫

R

∑

i=1,...,M

f ′(wε,i)(∂tw
ε,i),

=

∫

R

∑

i=1,...,M

f ′(wε,i)∂x

(
−ai(uε)wε,i + ε∂xw

ε,i
)
,

=

J1
︷ ︸︸ ︷∫

R

∑

i=1,...,M

ai(uε)wε,if ′′(wε,i)∂xw
ε,i

J2
︷ ︸︸ ︷

− ε

∫

R

∑

i=1,...,M

(
∂xw

ε,i
)2
f ′′(wε,i)But, it is easy to hek that

f ′(x) =

{
ln(x) + 1 if x ≥ 1/e,
0 if 0 ≤ x ≤ 1/e,

and f ′′(x) =

{
1
x

if x ≥ 1/e,
0 if 0 ≤ x ≤ 1/e.This proves that J2 ≤ 0. To ontrol J1, we rewrite it under the following form

J1 =

∫

R

∑

i=1,...,M

ai(uε)g′(wε,i)∂xw
ε,i,where

g(x) =

{
x− 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,19



Then, we dedue that
J1 =

∫

R

∑

i=1,...,M

ai(uε)∂x(g(w
ε,i))

= −

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,jg(wε,i),

=

J11
︷ ︸︸ ︷

−

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,jwε,i

J12
︷ ︸︸ ︷

−

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,j(g(wε,i) − wε,i),From (H2), we know that J11 ≤ 0. We use the fat that |g(x)−x| ≤ 1
e
for all x ≥ 0 and

(H1), to dedue that
|J12| ≤ 1

e
M2M1 ‖w

ε,i‖[L∞((0,T ),L1(R))]M

≤ 2
e
M2M1‖u0‖[L∞(R)]Mwhere we have use Lemma 5.1 (E2) in the last line. Finally, we dedue that, there existsa positive onstant C(‖u0‖[L∞(R)]M ,M1,M) independent of ε suh that

d

dt
N(t) ≤ J11 + J12 + J2

≤ J11 + C.Integrating in time we get by Lemma 5.3, there exists a another positive onstant
C(T,M,M1, ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M ) independent of ε suh that

N(t) +

∫ t

0

∫

R

∑

i,j=1,...,M

ai
,j(u

ε)wε,jwε,i ≤ CT +N(0) ≤ C.

2Lemma 5.4 (W−1,1 estimate on the time derivatives of the solutions)Let T > 0, 0 < ε ≤ 1 and funtion u0 ∈ [L∞(R)]M satisfying (H3). Then the solutionof the system (Pε)-(IDε) given in Theorem 3.3 with initial data uε
0 = u0 ∗ ηε, satis�esthe following ε-uniform estimates:

‖∂tu
ε‖[L2((0,T );W−1,1(R))]M ≤ C

(

1 + ‖u0‖
2
[L∞(R)]M

)

.where W−1,1(R) is the dual of the spae W 1,∞(R).Proof of Lemma 5.4:The idea to bound ∂tu
ε is simply to use the available bounds on the right hand side ofthe equation (Pε). 20



We will give a proof by duality. We multiply the equation (Pε) by φ ∈ [L2((0, T ),W 1,∞(R))]
Mand integrate on (0, T ) × R, whih gives

∫

(0,T )×R

φ ∂tu
ε =

I1
︷ ︸︸ ︷

ε

∫

(0,T )×R

φ ∂2
xxu

ε

I2
︷ ︸︸ ︷

−

∫

(0,T )×R

φ a(uε) ⋄ ∂xu
ε.We integrate by parts the term I1, and obtain that for 0 < ε ≤ 1:

|I1| ≤

∣
∣
∣
∣

∫

(0,T )×R

∂xφ∂xu
ε

∣
∣
∣
∣

≤ T‖∂xφ‖[L2((0,T ),L∞(R))]M‖∂xu
ε‖[L2((0,T ),L1(R))]M ,

≤ 2T
3
2‖φ‖[L2((0,T ),W 1,∞(R))]M‖u0‖[L∞(R)]M ,

(5.32)here, we have used the inequality
‖∂xu

ε‖[L2([0,T );L1(R))]M ≤ 2T
1
2‖u0‖[L∞(R)]M , (5.33)whih follows from estimate (4.29) for bounded and nondereasing funtion uε. Similarly,for the term I2, we have:

|I2| ≤ M0‖u‖[L∞((0,T )×R)]M‖φ‖[L2((0,T ),L∞(R))]M‖∂xu
ε‖[L2((0,T ),L1(R))]M ,

≤ 2T
1
2M0‖u0‖

2
[L∞(R)]M

‖φ‖[L2((0,T ),W 1,∞(R))]M .
(5.34)Finally, olleting (5.32) and (5.34), we get that there exists a onstant C = C(T,M0)independent of 0 < ε ≤ 1 suh that:

∣
∣
∣
∣

∫

(0,T )×R

φ∂tu
ε

∣
∣
∣
∣
≤ C

(

1 + ‖u0‖
2
[L∞(R)]M

)

‖φ‖[L2((0,T ),W 1,∞(R))]Mwhih gives the announed result where we use that L2((0, T ),W−1,1(R)) is the dual of
L2((0, T ),W 1,∞(R)) (see Cazenave and Haraux [9, Th 1.4.19, Page 17℄). 2Corollary 5.5 (ε-Uniform estimates)Let T > 0, 0 < ε ≤ 1 and funtion u0 ∈ [L∞(R)]M satisfying (H1) and (H2). Then thesolution of the system (Pε)-(IDε) given in Theorem 3.3 with initial data uε

0 = u0 ∗ ηε,satis�es the following ε-uniform estimates:
‖∂xu

ε‖[L∞((0,T );L log L(R))]M + ‖uε‖[L∞((0,T )×R)]M + ‖∂tu
ε‖[L2((0,T );W−1,1(R))]M ≤ C.where C = C(T,M,M0,M1 ‖u0‖[L∞(R)]M , ‖∂xu0‖[L log L(R)]M ).We an easily prove this Corollary olleting Lemmata 5.1, 5.4 and 5.3 and Proposition5.2. 21



6 Passage to the limit and the proof of Theorem 1.1In this setion, we prove that the system (P)-(ID) admits solutions u in the distributionalsense. They are the limits of uε given by Theorem 3.3 when ε → 0. To do this, we willjustify the passage to the limit as ε tends to 0 in the system (Pε)-(IDε) by using someompatness tools that are presented in a �rst Subsetion.6.1 Preliminary resultsFirst, for all I open interval of R, we denote by
L logL(I) ==

{

f ∈ L1(I) suh that ∫
I

|f | ln (1 + |f |) < +∞

}

.Lemma 6.1 (Compat embedding)Let I an open and bounded interval of R. If we denote by
W 1,L log L(I) = {u ∈ L1(I) suh that ∂xu ∈ L logL(I)}.Then the following injetion:

W 1,L log L(I) →֒ C(I),is ompat.For the proof of this Lemma see R. A. Adams [1, Th 8.32℄.Lemma 6.2 (Simon's Lemma)Let X, B, Y be three Banah spaes, suh that
X →֒ B with ompat embedding and B →֒ Y with ontinuous embedding.Let T > 0. If (uε)ε is a sequene suh that,

‖uε‖L∞((0,T );X) + ‖uε‖L∞((0,T );B) + ‖∂tu
ε‖Lq((0,T );Y ) ≤ C,where q > 1 and C is a onstant independent of ε, then (uε)ε is relatively ompat in

C((0, T );B).For the proof, see J. Simon [38, Corollary 4, Page 85℄.In order to show the existene of solution system (P) in Subsetion 6.2, we will apply thislemma to eah salar omponent in the partiular ase where X = W 1,log(I), B = L∞(I)and Y = W−1,1(I) := (W 1,∞(I))′.We denote by Kexp(I) the lass of all measurable funtion u, de�ned on I, for whih,22



∫

I

(
e|u| − 1

)
< +∞.The spae EXP (I) is de�ned to be the linear hull ofKexp(I). This spae is supplementedwith the following Luxemburg norm (see Adams [1, (13), Page 234℄ ):

‖u‖EXP (I) = inf

{

λ > 0 :

∫

I

(

e
|u|
λ − 1

)

≤ 1

}

,Let us reall some useful properties of this spae.Lemma 6.3 (Weak star topology in L logL)Let Eexp(I) be the losure in EXP (I) of the spae of funtions bounded on I. Then
Eexp(I) is a separable Banah spae whih veri�es,i) L logL(I) is the dual spae of Eexp(I).ii) L∞(I) →֒ Eexp(I).For the proof, see Adams [1, Th 8.16, 8.18, 8.20℄.Lemma 6.4 (Generalized Hölder inequality, Adams [1, 8.11, Page 234℄)Let f ∈ EXP (I) and g ∈ L logL(I). Then fg ∈ L1(I), with

‖fg‖L1(I) ≤ 2‖f‖EXP (I)‖g‖L log L(I).The following Lemma, we allow to de�ne later the restrition of a funtion f ∈W−1,1(R)on all open interval I of R.Lemma 6.5 (Extension)For all open interval I of R, there exists a linear and ontinuous operator of extension
P : W 1,∞(I) →W 1,∞(R) suh thati) Pu|I = u for u ∈W 1,∞(I).ii) ‖Pu‖W 1,∞(R) ≤ ‖u‖W 1,∞(I) for u ∈W 1,∞(I).for the proof of this Lemma see for instane Brezis [7, Th.8.5℄.Thanks this Lemma, we an notie that, if f ∈ W−1,1(R), where W−1,1(R) :=
(W 1,∞(R))′, we an de�ne, for all open interval I of R, the funtion f|I as the following

< f|I , h >W−1,1(I),W 1,∞(I)=< f, Ph >W−1,1(R),W 1,∞(R) .for all h ∈W 1,∞(I). 23



6.2 Proof of Theorem 1.1Step 1 (Existene):First, by Corollary 5.5 we know that for any T > 0, the solutions uε of the sys-tem (Pε)-(IDε) obtained with the help of Theorem 3.3, are ε-uniformly bounded in
[L∞((0, T ) × R)]M . Hene, as ε goes to zero, we an extrat a subsequene still denotedby uε, that onverges weakly-⋆ in [L∞((0, T ) × R)]M to some limit u. Then we want toshow that u is a solution of the system (P)-(ID). Indeed, sine the passage to the limitin the linear terms is trivial in [D′((0, T ) × R)]M , it su�es to pass to the limit in thenon-linear term,

a(uε) ⋄ ∂xu
ε.Aording to Corollary 5.5 we know that for all open and bounded interval I of R thereexists a onstant C independent on ε suh that:

‖uε‖
[L∞((0,T );W 1,L log L(I))]

M + ‖uε‖[L∞((0,T )×I)]M + ‖∂tu
ε‖[L2((0,T );W−1,1(I))]M ≤ C.From the ompatness of W 1,L log L(I) →֒ L∞(I) (see Lemma 6.3 (i)), we an applySimon's Lemma (i.e. Lemma 6.2), with X =

[
W 1,L log L(I)

]M , B = [L∞(I)]M and
Y = [W−1,1(I)]

M , whih shows that
uε is relatively ompat in in [L∞((0, T ) × I)]M →֒ [L1((0, T );L∞(I))]

M
. (6.35)Then form ontinuous injetion of L∞(I) →֒ Eexp(I) (see Lemma 6.3 (ii)), we deduethat,

uε is relatively ompat in [L1((0, T );Eexp(Ω))]
M . (6.36)On the other hand, by Corollary 5.5, we notie that ∂xu

ε is ε-uniformly bounded in
[L∞((0, T );L logL(I))]M . Moreover, the spae [L∞((0, T );L logL(I))]M is the dualspae of [L1((0, T );Eexp(I))]

M , beause L logL(I) is the dual spae of Eexp(I) (seeLemma 6.3 (ii) and Cazenave, Haraux [9, Th 1.4.19, Page 17℄). Then, up to a sub-sequene
∂xu

ε → ∂xu weakly-⋆ in [L∞((0, T );L logL(I))]M . (6.37)Form (6.36) and (6.37), we see that we an pass to the limit in the non-linear term inthe sense
[
L1((0, T );Eexp(I))

]M
− strong × [L∞((0, T );L logL(I))]M − weak − ⋆.24



Beause this is true for any bounded open interval I and for any T > 0, we dedue that,
a(uε) ⋄ ∂xu

ε → a(u) ⋄ ∂xu in D′((0, T ) × R)Consequently, we an pass to the limit in (Pε) and get that,
∂tu+ a(u) ⋄ ∂xu = 0 in D′((0, T ) × R).This solution u is also satisfy the following estimates (see for instane Brezis [7, Prop.3.12℄):

(E1′) ‖∂xu‖[L∞((0,T );L log L(R))]M ≤ lim inf ‖∂xu
ε‖[L∞((0,T );L log L(R))]M ≤ C,

(E2′) ‖u‖[L∞((0,T )×R)]M ≤ lim inf ‖uε‖[L∞((0,T )×R)]M ≤ ‖u0‖[L∞(R)]M ,At this stage we remark that, thanks to these two estimates we obtain that (a(u) ⋄
∂xu) ∈ [L∞((0, T );L logL(R))]M , whih gives, sine ∂tu = −a(u) ⋄ ∂xu, that ∂tu ∈
[L∞((0, T );L logL(R))]M , and then u ∈ [C([0, T );L logL(R))]M .Step 2 (The initial onditions):It remains to prove that the initial onditions (ID) oinides with u(·, 0). Indeed, byCorollary 5.5, we see that, for all open bounded interval I of R, uε is ε-uniformly boundedin

[
W 1,2((0, T );W−1,1(I))

]M
→֒
[

C
1
2 ([0, T );W−1,1(I))

]M

,where W−1,1(I) is the dual of W 1,∞(I). It follows that, there exists a onstant Cindependent on ε, suh that, for all t, s ∈ [0, T ):
‖uε(t) − uε(s)‖[W−1,1(I)]M ≤ C|t− s|

1
2 .In partiular if we set s = 0, we have:

‖uε(t) − uε
0‖[W−1,1(I)]M ≤ Ct

1
2 . (6.38)Now we pass to the limit in (6.38). Indeed, the funtions uε and uε

0 are ε-uniformlybounded in [W 1,2((0, T );W−1,1(I))]
M and [W−1,1(I)]

M respetively. Moreover we knowthat uε − uε
0 onverges weakly-⋆ in [L∞((0, T ) × I)]M to u− u0.Therefore, we an extrat a subsequene still denoted by uε−uε

0, that weakly-⋆ onvergesin [W 1,2((0, T );W−1,1(I))]
M to u− u0. In partiular this subsequene onverges, for all

t ∈ (0, T ), weakly-⋆ in [L∞((0, t);W−1,1(I))]
M , and onsequently it veri�es (see forinstane Brezis [7, Prop. 3.12℄), 25



‖u− u0‖[L∞((0,t);W−1,1(I))]M ≤ lim inf ‖uε − uε
0‖[L∞((0,t);W−1,1(I))]M ≤ Ct

1
2 .From (6.38) we dedue that

‖u(t) − u0‖[W−1,1(I)]M ≤ Ct
1
2 ,whih proves that u(·, 0) = u0 in [D′(R)]M .Step 3 (Continuity of solution):Now, we are going to prove the ontinuity estimate (1.5). For all h > 0 and (t, x) ∈

(0, T ) × R, we have:
|u(t, x+ h) − u(t, x)| ≤

∣
∣
∣
∣

∫ x+h

x

∂xu(t, y)dy

∣
∣
∣
∣

≤ 2‖1‖EXP (x,x+h)‖∂xu‖L log L(x,x+h),

≤ 2
1

ln( 1
h

+ 1)
‖∂xu‖L∞((0,T );L log L(R)),

≤ C
1

ln( 1
h

+ 1)
,where we have used in the seond line the generalized Hölder inequality (see Lemma6.4) and in last line we have used that ∂xu ∈ L∞((0, T );L logL(R)). Whih proves�nally the ontinuity in spae. Now, we prove the ontinuity in time, for all δ > 0 and

(t, x) ∈ (0, T ) × R, we have:
δ|u(t+ δ, x) − u(t, x)| =

∫ x+δ

x

|u(t+ δ, x) − u(t, x)|dy,

≤

K1
︷ ︸︸ ︷
∫ x+δ

x

|u(t+ δ, x) − u(t+ δ, y)|dy,

+

K2
︷ ︸︸ ︷
∫ x+δ

x

|u(t+ δ, y) − u(t, y)|dy,

+

K3
︷ ︸︸ ︷
∫ x+δ

x

|u(t, y)− u(t, x)|dy .Similarly, as in the last estimate, we an show that:26



K1 +K3 ≤ δ

∫ x+δ

x

|∂xu(t+ δ, y)|dy,+δ

∫ x+δ

x

|∂xu(t, y)|dy,

≤ 4δ‖1‖EXP (x,x+δ)‖∂xu‖L∞((0,T );L log L(R)),

≤ C
δ

ln(1
δ

+ 1)
.Now, we use that u is a solution of (P), and we obtain that:

K2 ≤

∫ x+δ

x

∫ t+δ

t

|∂tu(s, y)|dy,

≤

∫ t+δ

t

∫ x+δ

x

|a(u(s, y)) ⋄ ∂xu(s, y)|dsdy,

≤ δM0‖u‖L∞((0,T )×R)‖1‖EXP (x,x+δ)‖∂xu‖L∞((0,T );L log L(R),

≤ C
δ

ln(1
δ

+ 1)
,where we have used in last line that u ∈ L∞((0, T )×R), olleting the estimates of K1,

K2 and K3, we prove that:
|u(t+ δ, x) − u(t, x)| ≤

1

δ
(K1 +K2 +K3) ≤ C

1

ln(1
δ

+ 1)
,whih proves �nally the following:

|u(t+ δ, x+ h) − u(t, x)| ≤ C

(
1

ln(1
δ

+ 1)
+

1

ln( 1
h

+ 1)

)

.

27 Some remarks on the uniquenessIn this Setion we study the uniqueness of solution of the system (P)-(ID) with
ai(u) =

∑

j=1,...,M

Aiju
j.We show some uniqueness results for some partiular matries with M ≥ 2.For the proof of Theorem 1.5 in Subsetion 7.2, we need to reall in the following Subse-tion the de�nition of visosity solution and some well-known results in this framework.27



7.1 Some useful results for visosity solutionsThe notion of visosity solutions is quite reente. This onept has been introdued byCrandall and Lions [10, 11℄ in 1980, to solve the �rst-order Hamilton-Jaobi equations.The theory then extended to the seond order equations by the work of Jensen [27℄and Ishii [23℄. For good introdution of this theory, we refer to Barles [5℄ and Bardi,Capuzzo-Doletta [3℄.Now, we reall the de�nition of visosity solution for the following problem for all 0 ≤
ε ≤ 1:

∂tv +H(t, x, v, ∂xv) − ε∂xxv = 0 with x, v ∈ R, t ∈ (0, T ). (7.39)where H : (0, T )×R
3 7−→ R is the Hamiltonian and is supposed ontinuous. We will set

USC((0, T ) × R) = {f suh that f is upper semiontinuous on (0, T ) × R},

LSC((0, T ) × R) = {f suh that f is lower semiontinuous on (0, T ) × R}.De�nition 7.1 (Visosity subsolution, supersolution and solution)A funtion v ∈ USC((0, T ) × R) is a visosity subsolution of (7.39) if it satis�es, forevery (t0, x0) ∈ (0, T )×R and for every test funtion φ ∈ C2((0, T )×R), that is tangentfrom above to v at (t0, x0), the following holds:
∂tφ+H(t0, x0, v, ∂xφ) − ε∂xxφ ≤ 0.A funtion v ∈ LSC((0, T ) × R) is a visosity supersolution of (7.39) if it satis�es, forevery (t0, x0) ∈ (0, T )×R and for every test funtion φ ∈ C2((0, T )×R), that is tangentfrom below to v at (t0, x0), the following holds:
∂tφ+H(t0, x0, v, ∂xφ) − ε∂xxφ ≥ 0.A funtion v is a visosity solution of (7.39) if, and only if, it is a sub and a supersolutionof (7.39).Let us now reall some well-known results.Remark 7.2 (Classial solution-visosity solution)If v is a C2 solution of (7.39), then v is a visosity solution of (7.39).Lemma 7.3 (Stability result, see Barles [5, Th 2.3℄)We suppose that, for ε > 0, vε is a visosity solution of (7.39). If vε → v uniformly onevery ompat set then v is a visosity solution of (7.39) with ε = 0.Lemma 7.4 (Gronwall for visosity solution)Let v, a loally bounded USC(0, T ) funtion, whih is a visosity subsolution of theequation d

dt
v = αv where α ≥ 0. Assume that v(0) ≤ v0 then v ≤ v0 e

αT in (0, T ).28



The proof of this Lemma is a diret appliation of the omparison priniple, (see Barles[5, Th 2.4℄).Remark 7.5From Lemmata 7.2, 7.3 and from (6.35), we an notie that the solution ui of our system(P) given in Theorem 1.1 is also a visosity solution of (P) (where the uj for j 6= i areonsidered �xed to apply De�nition 7.1).7.2 Uniqueness resultsIn this Subsetion we prove Theorem 1.5. Before going on, we reall in the followingRemark a well-known uniqueness results and we reall in Theorem 7.7 the uniquenessresults of W 1,∞ solution of (P).Remark 7.6 (Uniqueness for quasi-monotone Hamiltonians)If the elements of the matrix A satisfy:
Aii +

∑

j 6=i,Aij<0

Aij ≥ 0 for all i = 1, · · · ,M .and if ∂xu
i ≥ 0 for i = 1, . . . ,M , then we an easily hek that the Hamiltonian

Hi(u, ∂xu
i) =

(
∑

j=1,...M

Aiju
j

)

∂xu
i,is quasi-monotone in the sense of Ishii, Koike [25, (A.3)℄. Then the result of Ishii, Koike[25, Th.4.7℄ shows that for any initial ondition u0 ∈ [L∞(R)]M satisfying (H1)-(H2),the system (P) satis�es the omparison priniple whih implies the uniqueness of thesolution.We have the following result whih seems quite standard:Theorem 7.7 (Uniqueness of the W 1,∞ solution)Let u0 ∈ [W 1,∞(R)]M and T > 0. Then system (P)-(ID) admits a unique solution in

[W 1,∞([0, T ) × R)]
M .The proof of this Theorem is given in Appendix, beause we have not found any proofof suh a result in the literature.Proof of Theorem 1.5:Using Theorem 7.7 with ai(u) =

∑

j=1,...,M

Aiju
j, it is enough to show that the system (P)-(ID) admits a solution in [W 1,∞([0, T ) × R)]
M . To do that, it is enough to prove thatthe solution uε of the approximated system obtained in Corollary 5.5 satis�es that ∂xu

εis bounded in [L∞((0, T ) × R)]M uniformly in 0 < ε ≤ 1. Indeed, we then get the same29



property for ∂xu, where u is the limit of uε as ε → 0. Moreover, from the equation (P)satis�ed by u and the fat that
u ∈ [L∞((0, T ) × R)]M and ∂xu ∈ [L∞((0, T ) × R)]M ,we dedue that ∂tu ∈ [L∞((0, T ) × R)]M whih shows that u ∈ [W 1,∞([0, T ) × R)]

M .To simplify, we denote
wε = ∂xu

ε,and we interest in the
max
x∈R

wε,i(t, x) = mi(t).This maximum is reahed at least at some point xi(t), beause wε,i ∈ C∞((0, T )× R) ∩
W 1,p((0, T ) × R) for all 1 < p ≤ +∞ (see Lemma 4.1, (4.19)).In the following we prove in the two ases (i) and (ii) de�ned in Theorem 1.5 that
mi, for all i = 1, . . . ,M , is bounded uniformly in ε. First, deriving with respet to xthe equation (Pε) satis�ed by uε ∈ [C∞((0, T ) × R)]M , we an see that wε satis�es thefollowing equation

∂tw
ε,i − ε∂xxw

ε,i +
∑

j=1,...,M

Aiju
ε,j∂xw

ε,i +
∑

j=1,...,M

Aijw
ε,jwε,i = 0. (7.40)Now, we prove that mi is a visosity subsolution of the following equation,

d

dt
mi(t) +

∑

j=1,...,M

Aijw
ε,j(t, xi(t))w

ε,i(t, xi(t)) ≤ 0. (7.41)Indeed, let φ ∈ C2(0, T ) a test funtion, suh that φ ≥ mi and φ(t0) = mi(t0) for some
t0 ∈ (0, T ). From the de�nition of mi, we an easily hek that φ ≥ wε,i(t, x) and
φ(t0) = wε,i(t0, xi(t0)). But, the fat that wε,i ∈ C∞((0, T ) × R), by Remark 7.2 weknow that wε,i is a visosity subsolution of (7.40). We apply De�nition 7.1, and the fatthat ∂xφ = ∂xxφ = 0, we get

d

dt
φ(t0) +

∑

j=1,...,M

Aijw
ε,j(t0, xi(t0))w

ε,i(t0, xi(t0)) ≤ 0.Whih proves that mi is a visosity subsolution of (7.41).Two ases may aur:i) Here, we onsider the ase where M ≥ 2 and Aij ≥ 0 for all j ≥ i. We see theequation satis�ed by m1, we dedue that satis�es (a visosity subsolution)30



d

dt
m1(t) ≤ −

∑

j=1,...,M

A1jw
ε,j(t, x1(t))w

ε,1(t, x1(t)) ≤ 0,where we have used the fat that, for j = 1, . . . ,M , A1j ≥ 0 and wε,j ≥ 0. This provesby Lemma 7.4 (with α = 0) that,
m1(t) ≤ m1(0) = wε,1(t, x1(t)) ≤ ‖∂xu

1
0‖L∞(R).We reason by reurrene: we assume that mj ≤ C for all j ≤ i, where C is a positiveonstant independent of ε, and we prove that mi+1 is bounded uniformly in ε. Indeed,we know that

d

dt
mi+1(t) ≤ −

∑

j=1,...,M

Ai+1,jw
ε,j(t, xj(t))w

ε,i+1(t, xi+1(t)),

≤ −
∑

j<i+1

Ai+1,jw
ε,j(t, xj(t))w

ε,i+1(t, xi+1(t))

−
∑

M≥j≥i+1

Ai+1,jw
ε,j(t, xj(t))w

ε,i+1(t, xi+1(t)),We use that Ai+1,j ≥ 0, for M ≥ j ≥ i+ 1, we obtain that
d

dt
mi+1(t) ≤ −

∑

j<i+1

Ai+1,jw
ε,j(t, xj(t))w

ε,i+1(t, xi+1(t)),

≤ C

(
∑

j<i+1

|Ai+1,j |

)

mi+1(t).This implies by Lemma 7.4, with α = C

(
∑

j<i+1

|Ai+1,j|

), that
mi+1(t) ≤ mi+1(0)eαT ,

≤ ‖∂xu
i+1
0 ‖L∞(R)e

αT .Whih proves that for all i = 1, . . . ,M , mi is bounded uniformly in ε.ii) Here, we onsider the ase where M ≥ 2 and Aij ≤ 0 for all i 6= j. Taking the sumover the index i, from (7.41) we get that the quantity m(t) =
∑

i=1,...,M

mi(t) satis�es (avisosity subsolution see Bardi et al. [4℄)
31



d

dt
m(t) ≤ −

∑

i,j=1,...,M

Aijw
ε,j(t, xi(t))w

ε,i(t, xi(t)),

≤ −
∑

i,j=1,...,M

Aijw
ε,j(t, xj(t))w

ε,i(t, xi(t)),

≤ 0.where we have used that the matrix A satis�es (H2′) and wε,i ≥ 0, for i = 1, . . . ,M .Using Lemma 7.4 with α = 0, we get
m(t) ≤ m(0) =

∑

i=1,...,M

∂xu
ε,i
0 ,

≤ sup
y∈R

∑

i=1,...,M

∂xu
i
0(y).whih proves (1.7). 28 Appliation on the dynamis of disloations densi-tiesIn this Setion, we present a model desribing the dynamis of disloations densities.We refer to [22℄ for a physial presentation of disloations whih are (moving) defetsin rystals. Even if the problem is naturally a three-dimensional problem,we will �rstassume that the geometry of the problem is invariant by translations in the x3-diretion.This redues the problem to the study of disloations densities de�ned on the plane

(x1, x2) and propagation in a given diretion ~b belonging to the plane (x1, x2) (whih isalled the �Burger's vetor�).In this setting we onsider a �nite number of slip diretions ~b ∈ R
2 and to eah ~b wewill assoiate a disloation density. For a detailed physial presentation of a model withmulti-slip diretions, we refer to Ye�mov, Van der Giessen [41℄ and Ye�mov [40, h. 5.℄and to Groma, Balogh [21℄ for the ase of a model with a single slip diretion . Seealso Cannone et al. [8℄ for a mathematial analysis of the Groma, Balogh model. InSubsetion ??, we present the 2D-model with multi-slip diretions.In the partiular geometry where the disloations densities only depend on the variable

x = x1 + x2, this two-dimensional model redues to one-dimensional model whih pre-sented in In Subsetion 8.2. See El Hajj [15℄ and El Hajj, Foradel [16℄ for a study inthe speial ase of a single slip diretion. Finally in Subsetion 8.3, we explain how toreover equation (P) as a model for disloation dynamis with ai(u) =
∑

j=1,...,M

Aiju
j forsome partiular non-negative and symmetri matrix A.32



8.1 The 2D-modelWe now present in details the two-dimensional model. We denote by X the vetor
X = (x1, x2). We onsider a rystal �lling the whole spae R

2 and its displaement
v = (v1, v2) : R

2 → R
2, where we have not yet introdued the time dependene for themoment.We de�ne the total strain by

ε(v) =
1

2
(∇v + t∇v),where ∇v is the gradient with (∇v)ij =
∂vi

∂xj

, i, j ∈ {1, 2}.Now, we assume that the disloations densities under onsideration are assoiated toedge disloations. This means that we onsider M slip diretions where eah diretionis araterize by a Burgers vetors ~bk = (bk1, b
k
2) ∈ R

2, for k = 1, . . . ,M . This leads to Mtype of disloations whih propagate in the plan (x1, x2) following the diretion of ~bk,for k = 1, . . . ,M .The total strain an be splitted in two parts:
ε(v) = εe + εp.Here, εe is the elasti strain and εp the plasti strain de�ned by

εp =
∑

k=1,...,M

ε0,kuk, (8.42)where, for eah k = 1, . . . ,M , the salar funtion uk is the plasti displaement assoiatedto the k-th slip system whose matrix ε0,k is de�ned by
ε0,k =

1

2

(

~bk ⊗ ~nk + ~nk ⊗~bk
)

, (8.43)where ~nk is unit vetor orthogonal to ~bk and (~bk ⊗ ~nk
)

ij
= bki n

k
j .To simplify the presentation, we assume the simplest possible periodiity property ofthe unknowns.Assumption (H):i) The funtion v is Z

2-periodi with ∫
(0,1)2

v dX = 0.ii) For eah k = 1, . . . ,M , there exists Lk ∈ R
2 suh that uk − Lk · X is a Z

2-periodi.33



iii) The integer M is even with M = 2N and Lk+N = Lk, and that
Lk+N = Lk, ~bk+N = −~bk, ~nk+N = ~nk,

ε0,k+N = −ε0,k.iv) We denote by ~τk = (τk
1 , τ

k
2 ) a vetor parallel to ~bk suh that ~τk+N = ~τk. We requirethat Lk is hosen suh ~τk · Lk ≥ 0.The plasti displaement uk is related to the disloation density assoiated to the Burgersvetor ~bk. We have

k-th disloation density = ~τk · ∇uk ≥ 0. (8.44)The stress is then given by
σ = Λ : εe, (8.45)i.e. the oe�ients of the matrix σ are:

σij =
∑

k,l=1,2

Λijklε
e
kl for i, j = 1, 2,where Λ = (Λijkl)i,j,k,l=1,2, are the onstant elasti oe�ients of the material, satisfyingfor m > 0: ∑

ijkl=1,2

Λi,j,k,lεijεkl ≥ m
∑

i,j=1,2

ε2
ij (8.46)for all symmetri matries ε = (εij)ij

, i.e. suh that εij = εji.Finally, for k = 1, . . . ,M , the funtions uk and v are then assumed to depend on
(t,X) ∈ (0, T ) × R

2 and to be solutions of the oupled system (see Ye�mov [40, h. 5.℄and Ye�mov, Van der Giessen [41℄):






div σ = 0 on (0, T ) × R
2,

σ = Λ : (ε(v) − εp) on (0, T ) × R
2,

ε(v) = 1
2
(∇v + t∇v) on (0, T ) × R

2,

εp =
∑

k=1,...,M

ε0,kuk on (0, T ) × R
2,

∂tu
k = (σ : ε0,k)~τk.∇uk on (0, T ) × R

2, for k = 1, . . . ,M,

(8.47)
i.e. in oordinates
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∑

j=1,2

∂σij

∂xj

= 0 on (0, T ) × R
2, for i = 1, 2,

σij =
∑

k,l=1,2

Λijkl (εkl(v) − εp
kl) on (0, T ) × R

2,

εij(v) =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

) on (0, T ) × R
2,

εp
ij =

∑

k=1,...,M

ε0,k
ij u

k on (0, T ) × R
2,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for i, j = 1, 2

∂tu
k =




∑

i,j∈{1,2}

σijε
0,k
ij



~τk.∇uk on (0, T ) × R
2, for k = 1, . . . ,M,

(8.48)
where the unknowns of the system are uk and the displaement v = (v1, v2) and with
ε0,k de�ned in (8.43). Here the �rst equation of (8.47) is the equation of elastiity, whilethe last equation of (8.47) is the transport equation satis�ed by the plasti displaementwhose veloity is given by the Peah-Koehler fore σ : ε0,k. Remark that this impliesin partiular that eah disloation density satis�es a onservation law (see the equationobtained by derivation, using (8.44)). Remark also that our equations are ompatiblewith our periodiity assumptions (H), (i)-(ii).8.2 Derivation of the 1D-modelIn this Subsetion we are interested in a partiular geometry where the disloationsdensities depend only on the variable x = x1 + x2. This will lead to 1D-model. Morepreisely, we make the following:Assumption (H ′):i) The funtions v(t,X) and uk(t,X) − Lk · X depend on the variable x = x1 + x2.ii) τk

1 + τk
2 = 1, for k = 1, . . . ,M .iii) Lk

1 = Lk
2 for k = 1, . . . ,M .For this partiular one-dimensional geometry, we denote by an abuse of notation thefuntion v = v(t, x) whih is 1-periodi in x. If we set lk =

Lk
1+Lk

2

2
, we have

Lk · X = lk · x+

(
Lk

1 − Lk
2

2

)

(x1 − x2).35



By assumption (H ′), (iii), we see (again by an abuse of notation) that u = (uk(t, x))k=1,...,Mis suh that for k = 1, . . . ,M , uk(t, x) − lk · x is 1-periodi in x.Now, we an integrate the equations of elastiity, i.e. the �rst equation of (8.47). Usingthe Z
2-periodiity of the unknowns (see assumption (H), (i)-(ii)), and the fat that

ε0,k+N = −ε0,k (see assumption (H), (iii)), we an easily onlude that the strain
εe as a linear funtion of (uj − uj+N)j=1,...,N and of (∫ 1

0

(uj − uj+N) dx

)

j=1,...,N

.(8.49)This leads to the following LemmaLemma 8.1 (Stress for the 1D-model)Under assumptions (H), (i)-(ii)-(iii) and (H ′), (i)-(iii) and (8.46), we have
−σ : ε0,i =

∑

j=1,...,M

Aiju
j +

∑

j=1,...,M

Qij

∫ 1

0

uj dx, for i = 1, . . . , N. (8.50)where for i, j = 1, . . . , N







Ai,j = Aj,i and Ai+N,j = −Ai,j = Ai,j+N ,
Qi,j = Qj,i and Qi+N,j = −Qi,j = Qi,j+N . (8.51)Moreover the matrix A is non-negative.The proof of Lemma 8.1 will be given at the end of this Subsetion.Finally using Lemma 8.1, we an eliminate the stress and redue the problem to a one-dimensional system of M transport equations only depending on the funtion ui, for

i = 1, . . . ,M . Naturally, from (8.50) and (H ′), (ii) this 1D-model has the following form
∂tu

i+

(
∑

j=1,...,M

Aiju
j +

∑

j=1,...,M

Qij

∫ 1

0

uj dx

)

∂xu
i = 0, on (0, T ) × R, for i = 1, . . . ,M,(8.52)with from (8.44)

∂xu
i ≥ 0 for i = 1, . . . ,M . (8.53)Now, we give the proof of Lemma 8.1.
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Proof of Lemma 8.1:For the 2D-model, let us onsider the elasti energy on the periodi ell (using the fatthat εe is Z
2-periodi)

Eel =
1

2

∫

(0,1)2
Λ : εe : εe dX.By de�nition of σ and εe, we have for i = 1, . . . ,M

σ : ε0,i = −∇uiEel. (8.54)On the other hand usind (H ′), (i)-(iii), (with x = x1 + x2) we an hek that we anrewrite the elasti energy as
Eel =

1

2

∫ 1

0

Λ : εe : εe dx.Replaing εe by its expression (8.49), we get:
Eel =

1

2

∫ 1

0

∑

i,j=1,...,N

Aij(u
j − uj+N)(ui − ui+N) dx

+
1

2

∑

i,j=1,...,N

Qij

(∫ 1

0

(uj − uj+N) dx

)(∫ 1

0

(ui − ui+N) dx

)

,for some symmetri matries Ai,j = Aj,i, Qi,j = Qj,i. In partiular, joint to (8.54) thisgives exatly (8.50) with (8.51).Let us now onsider the funtions wi = ui − ui+N suh that
∫ 1

0

wi dx = 0 for i=1,. . . ,N, (8.55)From (8.46) that we dedue that
0 ≤ Eel =

1

2

∫ 1

0

∑

i,j=1,...,N

Aijw
iwj dx.More preisely, for all i = 1, . . . , N and for all w̄i ∈ R, we set

wi =

{
w̄i on [0, 1

2
],

−w̄i on [1
2
, 1],whih satis�es (8.55). Finally, we obtain that

0 ≤ Eel =
1

2

∫ 1

0

∑

i,j=1,...,N

Aijw̄
iw̄j dx.Beause this is true for every w̄i, we dedue that A a non-negative matrix. 237



8.3 Heuristi derivation of the non-periodi modelStarting from the model (8.52)-(8.53) where for i = 1, . . . ,M,, ui(t, x)−li ·x is 1-periodiin x, we now want to resale the unknowns to make the periodiity disappear. Morepreisely, we have the following Lemma:Lemma 8.2 (Non-periodi model)Let u be a solution of (8.52)-(8.53) assuming Lemma 8.1 and ui(t, x)− li ·x is 1-periodiin x. Let
uj

δ(t, x) = uj(δt, δx), for a small δ > 0 and for j = 1, . . . ,M ,suh that, for all j = 1, . . . ,M

uj
δ(0, ·) → ūj(0, ·), as δ → 0, and ūj(0,±∞) = ūj+N(0,±∞) (8.56)Then ū = (ūj)j=1,...,M formally is a solution of

∂tū
i +

(
∑

j=1,...,M

Aij ū
j

)

∂xū
i = 0, on (0, T ) × R, (8.57)with the matrix A is non-negative and ∂xū

i ≥ 0 for i = 1, . . . ,M .We remark that the limit problem (8.57) is of type (P) with (H1′) and (H2′).Now, we give a formal proof of Lemma 8.2.Formal proof of Lemma 8.2:Here, we know that ui
δ − δli · x is 1

δ
-periodi in x, and satis�es for i = 1, . . . ,M

∂tu
i
δ +

(
∑

j=1,...,M

Aiju
j
δ + δ

∑

j=1,...,M

Qij

∫ 1
δ

0

uj
δ dx

)

∂xu
i
δ = 0, on (0, T ) × R, (8.58)To simplify, assume that the initial data uδ(0, ·) onverge to a funtion ū(0, ·) suh that

∂xuδ(0, ·) has a support in (−R,R), uniformly in δ, where R a positve onstant. Weexpet heuristially that the veloity in (8.58) remains uniformly bounded as δ → 0.Therefore, using the �nite propagation speed, we see that, there exists a onstant Cindependent in δ, suh that ∂xuδ(t, ·) has a support in (−R − Ct,R+ Ct) uniformly in
δ. Moreover, from (8.56) and the fat that

∑

j=1,...,M

Qij

∫ 1
δ

0

uj
δ dx =

∑

j=1,...,N

Qij

∫ 1
δ

0

(uj − uj+N) dx,38



we dedue that
∑

j=1,...,M

Qij

∫ 1
δ

0

uj
δ dx,remains bounded uniformly in δ. Then formally the non-loal term vanishes and we getfor i = 1, . . . ,M

∑

j=1,...,M

Aiju
j
δ + δ

∑

j=1,...,M

Qij

∫ 1
δ

0

uj
δ dx→

∑

j=1,...,M

Aij ū
j, as δ → 0,whih proves that ū is solution of (8.57), with the matrix A is non-negative . 29 Appendix: proof of Theorem 7.7Let u1 = (ui

1)i and u2 = (ui
2)i, for i = 1, · · · ,M , be two solutions of the system (P) in

[W 1,∞((0, T ) × R)]
M , suh that ui

1(0, ·) = ui
2(0, ·).Then by de�nition ui

1 and ui
2 satisfy respetively the following system, for i = 1, · · · ,M :

∂tu
i
1 = −ai(u1)∂xu

i
1,

∂tu
i
2 = −ai(u2)∂xu

i
2,Subtrating the two equations we get:

∂t

(
ui

1 − ui
2

)
= −

(
ai(u1) − ai(u2)

)
∂xu

i
1 − ai(u2)∂x(u

i
1 − ui

2).Multiplying this system by (ui
1 − ui

2) (ψ)2 where ψ(x) = e−|x|, and integrating in spae,we dedue that:
1

2

d

dt

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)
= −

∫

R

(
ai(u1) − ai(u2)

) (
ui

1 − ui
2

)
ψ2∂xu

i
1

−

∫

R

ai(u2)ψ
2
(
ui

1 − ui
2

)
∂x(u

i
1 − ui

2).Taking the sum over i, we get:
1

2

d

dt

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

=

I1
︷ ︸︸ ︷

−

∫

R

∑

i=1,...,M

(
ai(u1) − ai(u2)

) (
ui

1 − ui
2

)
ψ2∂xu

i
1

I2
︷ ︸︸ ︷

−
1

2

∫

R

∑

i=1,...,M

ai(u2)ψ
2∂x(u

i
1 − ui

2)
2 .39



Integrating I2 by part, we obtain:
I2 =

I21
︷ ︸︸ ︷

1

2

∫

R

∑

i,j=1,...,M

ai
,j(u2)(∂xu

j
2)ψ

2(ui
1 − ui

2)
2

+

I22
︷ ︸︸ ︷

1

2

∫

R

∑

i=1,...,M

ai(u2)(u
i
1 − ui

2)
2∂x(ψ

2) .Next, using the fat that ui
2 is bounded inW 1,∞((0, T )×R), for i = 1, . . . ,M , we deduethat:

|I21| ≤ 1
2
MM1‖u2‖[W∞((0,T )×R)]M

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

,

≤ C

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

.

(9.59)Sine ∂x(ψ(x))2 = −2sign(x)(ψ(x))2 and ui
2 is bounded in W 1,∞((0, T ) × R), for i =

1, · · · ,M , we obtain:
|I22| ≤ 1

2
M0

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

≤ C

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)
(9.60)Now, using the fat that ui

1 is bounded in W 1,∞((0, T ) × R), for i = 1, ·, ·,M , and theinequality |ab| ≤ 1
2
(a2 + b2), we get:

|I1| ≤
1

2
M1(M + 1)‖u1‖[W∞((0,T )×R)]M

∫

R

∑

i=1,...,M

|ui
1 − ui

2|
2ψ2,

≤
1

2
M1(M + 1)‖u1‖[W∞((0,T )×R)]M

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

,

≤ C

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥

2

L2(R)

)

.

(9.61)
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Finally, (9.61), (9.59) and (9.60), imply:
d

dt

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥2

L2(R)

)

≤ 2 (|I1| + |I21| + |I22|) ≤ C

(
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥2

L2(R)

)

.Now, we apply the Gronwall Lemma and we use that ui
1(0, ·) = ui

2(0, ·), to dedue that:
∑

i=1,...,M

∥
∥(ui

1 − ui
2)ψ
∥
∥2

L∞((0,T );L2(R))
≤

∑

i=1,...,M

∥
∥
(
ui

1(0, ·) − ui
2(0, ·)

)
ψ
∥
∥2

L2(R)
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