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Global continuous solutions
to diagonalizable hyperbolic systems
with large and monotone data

A. EL Ha13'2, R. MONNEAU!

April 25, 2008

Abstract
In this paper, we study diagonalizable hyperbolic systems in one space dimension. Based on a
new gradient entropy estimate, we prove the global existence of a continuous solution, for large
and nondecreasing initial data. Moreover, we show in particular cases some uniqueness results.
We also remark that these results cover the case of systems which are hyperbolic but not strictly
hyperbolic. Physically, this kind of diagonalizable hyperbolic systems appears naturally in the
modelling of the dynamics of dislocation densities.

AMS Classification: 35L45, 35Q35, 35Q72, 74H25.
Key words: Global existence, system of Burgers equations, system of nonlinear transport
equations, nonlinear hyperbolic system, dynamics of dislocation densities.

1 Introduction and main result

1.1 Setting of the problem

In this paper we are interested in continuous solutions to hyperbolic systems in dimension
one. Our work will focus on solution u(t, x) = (u'(t,x))i=1,. m, where M is an integer,
of hyperbolic systems which are diagonal, i.e.

o' +a'(u)d,u' =0 on (0,7)xR andfor i=1,.., M, (P)
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with the initial data:
u'(0, 1) = ub(x), reR fori=1,..., M. (ID)
For real numbers af < /3%, let us consider the box
U =1, B (1.1)

We consider a given function a = (a');=1._ s : U — R which satisfies the following

regularity assumption:

.....

( the function a € C°°(U),

M

) Y

there exists My > 0 such that for =1, ...
(H1) la'(u)] < My forall ueU,

there exists M; > 0 such that for ¢+=1,..., M,
| |a'(v) — a'(u)] < Mo —wu| forall v,uel.

We assume, for all © € RM, that the matrix

(a’;(w))ij=1,...m, Where a'; = ——a’,

out

is non-negative in the positive cone, namely

forall w e U, we have

(112) , "
Z &igjal;(u) >0 for every &= (&1, &mr) € [0, +00)™.
i,j=1,....M
In (ID), each component u} of the initial data ug = (u}, - -+ ,u}!) is assumed satisfy the
following property:
up € L2 (R),
(H3) uf is nondecreasing, | fori =1,--- , M,

d.upy € Llog L(R),
where Llog L(R) is the following Zygmund space:

Llog L(R) = {f € L'(R) such that / IflIn(1+]f]) < +oo} .
R
This space is equipped by the following norm:
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£l 210g L(m) :inf{)\ >0: /mln (1—|—m) < 1}7
R A A

This norm is due to Luxemburg (see Adams [1, (13), Page 234]).

Our purpose is to show the existence of a continuous solution, such that u'(¢,-) satisfies
(H3) for all time.

1.2 Main result

It is well-known that for the classical Burgers equation, the solution stays continuous
when the initial data is Lipschitz-continuous and non-decreasing. We want somehow to
generalize this result to the case of diagonal hyperbolic systems.

Theorem 1.1 (Global existence of a nondecreasing solution)
Assume (H1), (H2) and (H3). Then, for all T > 0, we have:

i) Existence of a weak solution:
There exists a function u solution of (P)-(ID) (in the distributional sense), where

uwe [L°((0,T) x R)M N [C([0,T); Llog L(R))|™ and d,u € [L°°((0,T); Llog L(R))]M,

such that for a.e t € [0,T) the function u(t,-) is nondecreasing in x and satisfies the
following L™ estimate:

Ju' (8, )| ooy < Nl o) fori=1,...,M, (1.2)

and the gradient entropy estimate:
t
/ Z f (00’ (t,x)) d + / Z afj(u)ﬁwui(s, 2)0,u’ (s,7) dr ds < C1,
= o Jr
(1.3)

cln(z) ++  if x>1/e,
/(@) :{ 0 if 0<x<1/e, (1.4)

and C(T, M, My, ||uol|freemyja s || Octiol| (L 10g L) )-
ii) Continuity of the solution:

The solution u constructed in (i) belongs to C([0,T) x R) and there exists a modulus of
continuity w(0, h), such that for all (t,z) € (0,T) x R and all 6,h > 0, we have:

1 1

t+0 h) —u(t < Cyw(d, h ith w(d,h) = )
|U( + ,SL’—F ) UJ<7.I‘)‘_ 2(,(.)(, ) we w(a ) ln(%+1)+ln(%+1)

(1.5)
where Co(T, My, My, ||tol|jroe )y [|Oxto|| 1L 10g L) )-
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Remark 1.2
Here, we can easily extend the solution u of (P)-(ID), given by Theorem 1.1, on the time
interval [0, +00).

Our method is based on the following simple remark: if the initial data satisfies (H3)
then the solution satisfies (H3) for all . What seems new is the gradient entropy in-
equality. The prove of Theorem 1.1 is rather standard. First we regularize the initial
data and the system with the addition of a viscosity term, then we show that this regu-
larized system admits a classical solution for short time. We prove the bounds (1.2) and
the fundamental gradient entropy inequality (1.3) which allow to get a solution for all
time. Finally, these a priori estimates ensure enough compactness to pass to the limit
when the regularization varnishes and to get the existence of a solution.

Remark 1.3
To guarantee the Llog L bound on the gradient of the solutions. We assumed in (H2) a
sign on the left hand side of gradient entropy inequality (1.3).

In the case of 2 x 2 strictly hyperbolic systems, which corresponds in (P) to the case
of al(u',u?) < a®(u',u?). Lax [30] proved the existence of smooth solution of (P)-(ID).
This result was also proven by Serre [36, Vol II] in the case of M x M rich hyperbolic
systems (see also Subsection 1.4 for more related references). Their result is limited
to the case of strictly hyperbolic systems, here in Theorem 1.1, we treated the case of
systems which are hyperbolic but not strictly hyperbolic. See the following Remark for
a quite detailed example.

Remark 1.4 (Crossing eigenvalues)

Condition (1.9) on the eigenvalues is required in our framework (Theorem 1.1). Here is
a simple example of a 2 x 2 hyperbolic but not strictly hyperbolic system. We consider
solution u = (u',u?) of

Oyut + cos(u?)d,ut = 0,
on (0,7) x R. (1.6)
Ou? + usin(u?)0,u? = 0,

Assume:
i) ut(—o0) = 0, u'(+o00) = 1 and d,u' >0,

it) u*(—o0) = =%, u?(+00) = % and d,u* > 0.

Here the eigenvalues \i(u',u?) = cos(u?) and Xo(u',u?) = u'sin(u?®) cross each other
at the initial time (and indeed for any time). Nevertheless for a*(u', u?) = cos(u?) and
a’(ut, u?) = ulsin(u?®), we can compute



Po1 ey 0 —sin(u?)
(e (us u?))ig=12 = ( sin(u?) ulcos(u?) )’
which satisfies (H2) (under assumptions (i) and (ii)). Therefor Theorem 1.1 gives the
existence of a solution to (1.6) with (i) and (ii).

Based on the same type of gradient entropy inequality (1.3), it was proved in Cannone
et al. [8] the existence of a solution in the distributional sense for a two-dimensional
system of two transport equations, where the velocity vector field is non-local.

The uniqueness of the solution is strongly related to the existence of regular (Lipschitz)
solutions (see Theorem 7.7). Let us remark that equation (P)-(ID) does not create
shocks because the solution (given in Theorem 1.1) is continuous. In this situation, it
seems very natural to expect the uniqueness of the solution. Indeed the notion of en-
tropy solution (in particular designed to deal with the discontinuities of weak solutions)
does not seem so helpful in this context. Nevertheless the uniqueness of the solution is
an open problem in general (even for such a simple system).

We ask the following Open question:
Is there uniqueness of the solution given in Theorem 1.1 7

Now we give the following existence and uniqueness result in [W1°([0,T) x R)], in a
special case to simplify the presentation. More precisely we assume

(H1') a'(u) = Z Ajju? fori=1,..., M and for all u € U,

j=1, M

(H2) Y Ay&& >0 forevery &= (&,....&) € [0,+00)".

i.j=1,, M

Theorem 1.5 (Existence and uniqueness of W!> solution for a particular
A= (Aij)ij=i=1,..m)

Assume (H1'). For T > 0 and all nondecreasing initial data ug € [WH(R)|M, the sys-
tem (P)-(ID) admits a unique solution u € [W>([0,T) x R)]", in the following cases:

i) M >2 and A;; >0, for all j > 1.
i) M > 2 and A;; <0, for alli # j and (H2'). And then for all (t,z) € [0,T) x R we
have

Z Opu'(t,z) < sup Z Dpuly(y). (1.7)

i=1, .M YER s M



Remark 1.6 (Case of M = 2)
In particular for M = 2, if (H1'), (H2') and (H3) satisfied then we have, by Theorem
1.5 the existence and uniqueness of a solution in [W°°([0,T) x R)]* of (P)-(ID).

In these particular cases of the matrix A, we can prove that d,u’ for i = 1,..., M, are
bounded on [0, T') x R. Thanks to this better estimates on d,u’, and then on the velocity
vector field Au, we prove here the uniqueness of the solution.

In the case of the matrix A = ( _11 _11 ), it was proved in El Hajj, Forcadel [16], the
existence and uniqueness of a Lipschitz viscosity solution, and in A. El Hajj [15], the

existence and uniqueness of a strong solution in Wl})f([o, T) x R).

1.3 Application to diagonalizable systems
Let us first consider a smooth function u = (u?, ..., u™), solution of the following non-

conservative hyperbolic system:

Owu(t,x) + F(u)du(t,z) =0, u(t,x) e U, z €R, t € (0,T),
(1.8)
u(z,0) = ug(x) z € R,

where the space of states U is now an open subset of R™, and for each u, F(u) is a
M x M-matrix and the map F is of class C'(U). We assume that F(u) has M real
eigenvalues Aj(u), ..., A\y(u), and we suppose that we can select bases of right and left
eigenvectors r;(u), [;(u) normalized so that

ril=1 and [;-r; =0y

Remark 1.7 (Riemann invariant)
Recall that locally a necessary and sufficient condition to write

li(u) = Vupi(u),

is the Frobenius condition l; A\ dl; = 0. In that case the function @;(u) is solution of the
following equation

(‘Pz‘(u))t + )\z(u)(%(u))z = 0.

We recall that then ;(u) is called a i-Riemann invariant (see Sevennec [37] and Serre
[36, Vol 11])). If this is true for any i, we say that the system (1.8) is diagonalizable.

Our theory is naturally applicable to this more general class of systems.



1.4 A brief review of some related literature

Now we recall some well known results for system (1.8).

For a scalar conservation law, this corresponds in (1.8) to the case M = 1 and
F(u) = h/(u) is the derivative of some flux function h, the global existence and unique-
ness of BV solution established by Oleinik [34] in one space dimension. The famous
paper of Kruzhkov 28] covers the more general class of L> solutions, in several space
dimension. For another alternative approach based on the notion of entropy process
solutions, see Eymard et al. [17], see also the kinetic formulation P. L. Lions et al. [33].

We now recall some well-known results for a class of 2 x 2 strictly hyperbolic systems n
one space dimension. Here i.e F'(u) has two real, distinct eigenvalues

)\1 (U) < )\2 (U) .

Lax [30] proved the existence and uniqueness of nondecreasing and smooth solutions of
the 2 x 2 strictly hyperbolic systems. Also in case of 2 x 2 strictly hyperbolic systems
DiPerna [12, 13| showed the global existence of a L* solution. The proof of DiPerna
relies on a compensated compactness argument, based on the representation of the weak
limit in terms of Young measures, which must reduce to a Dirac mass due to the presence
of a large family of entropies. This results is based on the idea of Tartar [39].

For general M x M strictly hyperbolic systems; i. e. where F'(u) has M real, distinct
eigenvalues

A (u) < - < Ay(u), (1.9)

Bianchini and Bressan proved in [6] a striking global existence and uniqueness result of
BV solutions to system (1.8), assuming that the initial data has small total variation.
Their existence result is a generalization of Glimm result [20], proved in the conserva-
tion case; i.e. F'(u) = Dh(u) is the Jacobin of some flux function h and generalized by
LeFloch and Liu [31, 32 in the non-conservative case.

We can also mention that, our system (P) is related to other similar models, such as
scalar transport equations based on vector fields with low regularity. Such equations
were for instance studied by Diperna and Lions in [14|. They have proved the existence
(and uniqueness) of a solution (in the renormalized sense), for given vector fields in
L'((0, 400); WL (RY)) whose divergence is in L'((0,+o0); L®(RY)). This study was
generalized by Ambrosio [2], who considered vector fields in L!((0, +00); BVjo.(RY))
with bounded divergence. In the present paper, we work in dimension N = 1 and prove
the existence (and some uniqueness results) of solutions of the system (P)-(ID) with a
velocity vector field a’(u), i = 1,..., M. Here, in Theorem 1.1, the divergence of our
vector field is only in L*°((0,+00), Llog L(R)). In this case we proved the existence
result thanks to the gradient entropy estimate (1.3), which gives a better estimate on



the solution. However, in Theorem 1.5, the divergence of our vector field is bounded,
which allows us to get a uniqueness result for the non-linear system (P).

We also refer to Ishii, Koike [25] and Ishii [24], who showed existence and uniqueness of
viscosity solutions for Hamilton-Jacobi systems of the form:

o' + Hi(u, Du') =0 with u= (u'); € RM for x e RY t € (0,7),
(1.10)
u'(z,0) = uj(x) r €R,

where the Hamiltonian H; is quasi-monotone in u (see Ishii, Koike [25, Th.4.7]). This
does not cover our study since our Hamiltonian is not necessarily quasi-monotone.

For hyperbolic and symmetric systems, Garding has proved in [18] a local existence and
uniqueness result in C([0,7); H*(RY)) N C*([0,T); H*(RY)), with s > £ +1 (see also
Serre |36, Vol I, Th 3.6.1]), this result being only local in time, even in dimension N = 1.

1.5 Miscellaneous extensions to explore in a futur work

1. In Theorem 1.1 we have considered the study of a particular system only to simplify
the presentation. This result could be generalized to the following system

&eui + ai<u7 x’t)azuz - hl(“u .CL’,t) on <O7T) xR and for = 1’ e M’ (P,)

with suitable conditions on a’ and h'.

2. If we consider the case where the system (P) is strictly hyperbolic. Based in the
result of Bianchini, Bressan [6], we could also prove the uniqueness of the solution,
whose existence is given by Theorem 1.1.

3. We could also extend Theorem 1.5 to system (P’), where we replace (i) and (ii) by
the following condition

i’) For M > 2, a!(u,x,t) >0 for j > and for all (u,z,t) € U x R x [0,T).
ii’) For M > 2,

afj(u,x,t) <0 forall (u,z,t) €U xR x[0,+00), forall i#j,
and we assume that for any v; € RM, x; € R, the matrix
bi;(t) = afj (vi, T3, 1)
satisfies for all t > 0

(H2") ) by(t)&& =0 forall &= (&,....6n) € [0, +00)™.



4. We could also prove the uniqueness result in case of W solution among weak
solution. (and in particular any weak solution is a viscosity solution in the sense of
Crandall-Lions [10, 11]).

5. We could propose a numerical scheme and try to prove its convergence.

6. Applications to other equations: Euler, p-systems.

1.6 Organization of the paper

This paper is organized as follows: in the Section 2, we approximate the system (P) and
the initial conditions. Then we prove a local in time existence for this approximated
system. In Section 3, we prove the global in time existence for the approximated system.
In the Section 4, we prove that the obtained solutions are regular and non-decreasing
in x for all £ € (0,7). In Section 5, we prove the gradient entropy inequality and some
other e-uniform a priori estimates. In Section 6, we prove the main result (Theorem 1.1)
passing to the limit as € goes to 0 and using some compactness properties inherited from
our entropy gradient inequality and the a prior: estimates. In Section 7 we prove some
uniqueness results in particular cases (Theorem 1.5). An application to the dynamics of
dislocation densities given in Section 8. Finally, in the Appendix, we recall the proof of
uniqueness of Lipschitz solution to system (P).

2 Local existence of an approximated system
The system (P) can be written as:

0w+ a(u) © Oyu = 0, (2.11)
where u := (u")1._u, a(u) = (a’(u))1, . and U oV is the “component by component

product” of the two vectors U,V € RM. This is the vector in RM whose coordinates are
given by (U o V); :=U;V;:

U1 Vl Ul‘/1
U2 V2 U2‘/2
. 1 I =1 .

2

Now, we consider the system (2.11), modified by the term €0,,u, where 9,, = and

a2’
for smoothed data. This modification brings us to study, for all 0 < ¢ < 1, the following
system:

Ou® — £0p,u” = —a(u) © Jpu’, (P.)
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with the smooth initial data:

u®(x,0) = ug(z), with uf(z) = ug * n-(z), (ID,)

where 7. is a mollifier verify, n.(-) = 1n(<), such that n € C°(R) is a non-negative
function and [;n = 1.

Remark 2.1
By classical properties of the mollifier (n.). and the fact that ui € [L®(R)]M, then
u§ € [C(R)M N [Wm=(R)M for all m € N.

The global existence of smooth solution of the system (FP.) is standard. Here, we prove
this results only to ensure the reader.

The following theorem is a local existence result (in the "Mild" sense) of the regularized
system (P.)-(ID.). This result is achieved in a super-critical space. Here particularly
we chose the space of functions [C([0,7); X (R))]", where

X (R) = {u € L*(R) such that d,u € L¥(R)}. (2.12)
This space is a Banach space supplemented with the following norm

[ullx®) = lull o) + |0ull Lsw)-

Here the espace LP(R) with p = 8 will simplify later in Lemma 4.1 the Bootstrap argu-
ment to get smooth solution.

In this Section, we will prove the following

Theorem 2.2 (Local existence result)
For all initial data u§ € [ X (R)]M there exists

T = T*<M0,€) > 0,
such that the system (P.)-(ID.) admits solutions u® € [C([0,T*); X (R))]".

In order to do the proof of Theorem 2.2 in Subsection 2.2 we need to recall in the
following Subsection some known results.

2.1 Useful results

Lemma 2.3 (Mild solution)
Let T > 0, and u¢ € [C([0,T); X(R)]™ be a solution of the following integral problem
with u®(t) = u®(t,-):

ut(t) = Se(t)ug — /0 Se(t — s) (a(u®(s)) o Opu(s)) ds, (IN.)



where S.(t) = Si(et) such that S;(t) = e'® is the heat semi-group. Then u® is a solution
of the system (P.)-(I1D.) in the sense of distributions.

For the proof of this lemma, we refer to Pazy [35, Th 5.2. Page 146].

Lemma 2.4 (Picard Fized Point Theorem, see [26])
Let E be a Banach space, let B: E X E — E be a continuous map such that:

1B(z,y)lle < nlylle forall z,y € E,
where 1 1s a positive given constant. Then, for every xg € E, if
0<n<l,
the equation x = x¢ + B(x,x) admits a solution in E.

In order to show the local existence of a solution for (I N.), we will apply Lemma 2.4 in
the space E = [L®((0,T); X (R))]™.

Lemma 2.5 (Time continuity)
Let T > 0. If u* € [L=((0,T); WH(R)]M, 1 < p < +oo, are solutions of integral
problem (IN.), then uf € [C([0,T); Whr(R)]M.

For the proof of Lemma 2.3, see A. Pazy [35, 7.3, Page 212|.

Lemma 2.6 (Semi-group estimates)
Let 1 < p < q < +oo. Then for all f € LP(R) and for all t > 0, we have the following
estimates:

, 111
i) 1S:(0f Nl awy < Ct2572 | fll oy,

. 1

i) 1825 () fll ooy < C2 (1 oy

where C' = C(g) is a positive constant depending on ¢.

For the proof of this Lemma, see Pazy [35, Lemma 1.1.8, Th 6.4.5].

2.2  Proof of Theorem 2.2

Our goal is to show local existence of a solution of (P.) using the Picard fixed point
Theorem. To be done according Lemma 2.3 it is enough to prove the local existence for
the following equation:

(2.13)



with B(u,v)(t) = —/0 Se(t — s) (a(u)(s) © 0pv(s)) ds.

If we estimate B(u,v), we will obtain, for all u,v € [L>((0,T); X(R))]™, where X (R)
defined in (2.12), the following:

1B, ) Oll gy = / S.(t — ) (a(u(s)) o D,(s)) ds.

(Lo (R)]M ’
(2.14)
0:5:(t — s) (a(u(s)) o 0,v(s)) ds,

0

9

i
(L3 (R)]M

where for a function f = (f!,..., fM) € [X(R)], we note here

I fllix@pe = sup (| Fille@ + sup (100 |-
1,...M i=1,..,M

-----

Using Lemma 2.6 (i) with p = 8, ¢ = oo for the first term and Lemma 2.6 (ii) with p = 8
for the second term, we obtain that :

t
1
1300 0) 0l € | (w0t s 4

e
)5

t
1
+C’/ = ||la(u(s))dv(s ds.
) )3 [la(u(s))0xv ()l sy
We use the Holder inequality, and get, for all 0 < T < 1:

1
[ B(u, v)() | x@ys < CT2 (|00 oo 0.7):158 Y M
(2.15)

1
< OT2 ||l (po 0.7y x R M »

where C(Mjy, ). Moreover, we know by classical properties of heat semi-group (see A.
Pazy [35]):

1S (E)ugllizo= (0, my:x @y < [lugllx @y (2.16)
Now, taking

~
N
N|=
Il
=)
=
7N

1
el 1), (2.17)

we can easily verify that

12



By applying the Picard Fixed Point Theorem (Lemma 2.4) with E = [L>((0,T*); X (R))]™,
this proves the existence of a solution u® € [L>((0,T*); X (R))] for (2.13).

Then, according to Lemma 2.5, we deduce that the solution is indeed in [C'([0, T%); X (R))]M.

This proves, by Lemma 2.3, the existence of a solution in [C([0,7*); X (R))]™, which
satisfies the system (P.)-(/D.) in the sense of distributions. O

3 Global existence of the solutions of the approxi-
mated system

In this Section, we will prove the global existence of solution for the system (P.)-(/D,).
Before going into the proof, we need the following lemma.

Lemma 3.1 (L*™ bound)
Let T > 0. If u® € [C([0,T); X(R)|M is a solution of system (P.)-(ID.) with initial
data uf € X(R), then

165 o o,y sy < N1 00 e
The proof of this Lemma is a direct application of the Maximum Principle Theorem for
parabolic equations (see Gilbarg-Trudinger [19, Th.3.1]).

Remark 3.2
Thanks to the previous Lemma, we notice that we can take the box U defined in (1.1) as
the following

U = G4 [=llug e, g [l o)

For fized ¢, this definition guarantee that My do not change in the course of time.

The result of this Section is the following.

Theorem 3.3 (Global existence)

Let T > 0 and 0 < & < 1. For initial data u§ € [X(R)]" satisfying (H1) and (H2).
Then the system (P.)-(ID.), admits a solution v € [C([0,T); X (R)]M, with u®(t,-)
satisfying (H1) and (H2) for allt € (0,T). Moreover, for all t € (0,T), we have the
following inequalities:

||U€’i(t,')||Loo(R) S ||U87i||Loo(R), fO’f‘i = 1,...,M, (318)

Proof of Theorem 3.3:
We are going to prove that local in time solutions obtained by Theorem 2.2 can be
extended to global solutions for the same system.

13



We argue by contradiction: assume that there exists a maximum time 7,,,, such that,
we have the existence of solutions of the system (P.)-(ID.) in the function space
(C(0, To): X (R))]V.

For every small enough § > 0, we consider the system (P.) with the initial condition

us’(2) = u (Thag — 0, ).

From Theorem 2.2 to deduce that there exists a time 7*(My, ), independent of 0 (see
Remark 3.2), such that the system (P.) with initial data u5° has a solution u*° on the
time interval [0,7). Then for
TO = (Tmax — 5) + T*u
we extend u® on the time interval [0, Tp) as follows,
B u®(t,x), for t €0, T — 9],
a(t,x) = 5
u™’(t,x), for t € [T —0,Tp)

and we can check that @° is a solution of (P.)-(ID.) on the time interval [0, Tp). But
from Lemma (3.1) we know that the time 7™ is independent of § (see Remark 3.2), which
implies that Ty > T}, and so a contradiction.

The inequalities (3.18) is a consequence of Lemma 3.1. O

4 Properties of the solutions of the approximated sys-
tem

In this section, we are going to prove that the solution of (P.)-(ID.) obtained by Theorem
2.2 is smooth and monotone.

Lemma 4.1 (Smoothness of the solution)

Let T > 0. For all initial data u§ € [ X (R)|M, where 0,u5 € [W™P(R)|M for all m € N,
1 <p< +oo.

If u® is a solution of the system (P.)-(ID.), such that u¢ € [C([0,T); X(RN]™ and
dpus € [L®((0,T); LXR)M, then uf € [C([0,T) x R)]" and satisfies,

ut e [WmP((0,T) x R)M, forall1l < p <400 and m € N\ {0}, (4.19)

Proof of Lemma 4.1

Step 1 (Initialization of the Bootstrap):

For the sake of simplicity, we will set
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Fluf] = —a(u®) ¢ 0,u’.

From the fact that u¢ € [C(]0,T); X(R))]" and d,u¢ € [L=((0,T); L*(R))]M, we deduce
that d,us, Fluf] € [L1((0,T) x R)]™ N[LE((0,T) x R)]", which proves by interpolation
that

dpuf, Fluf] € [LP((0,T) x R)M forall1<p<S8. (4.20)

Because uf is a solution of (F.), we see that

O — Ot = Fu), (4.21)

gt — €04z’ = O, F[uf]. (4.22)
Applaying the classical regularity theory of heat equations on (4.21), we deduce that:
Ot and dut € [LP((0,T) x R)M, forall 1 <p<8. (4.23)
For more details, see Ladyzenskaja [29, Theorem 9.1]. But we know that

O Fu] = —a(u®) ¢ Oppu® — Da(u®)0,u o d,u° (4.24)

We notice that thanks to this better regularity on w® ((4.20) and (4.23), and by the
Holder inequality we can easily prove that

O, F[uf] € [LP((0,T) x R)]M forall 1 < p < 4.

Now, we apply again the classical regularity theory of heat equations on (4.22), to deduce
that:

Ot and  Opguuf € [LP((0,T) x R)M, forall 1 <p < 4. (4.25)
We know that
O F[uf] = —a(u®) ¢ Opu® — Da(u®)0pu® © Ou° (4.26)
Thanks this previous regularity on u®, we obtain by the Holder inequality that

O F[uf) € [LP((0,T) x R)]M foralll <p <4
Which gives that

dpus, Fluc] € [WH((0,T) x R)]" forall 1 <p<4,

and by the Sobolev embedding that d,u € [LP((0,T) x R)]™ for all 1 < p < co.
Step 2 (Recurrence):

15



Now, we use the same steps, we can prove by recurrence that for all m € N if|

dyus € [L2((0,T) x R)M
()
dpus, Fluf] e [(W™P((0,T) x R)]Y forall 1 <p <4,

then
(Hm) = (Hm-i-l)'

Indeed, as in (4.23) we can deduce here that

dut and ,uf € [W™P((0,T) x R)]M, foralll < p <4, (4.27)
and From (4.24), because d,u¢ € [L=((0,T) x R)]", we can obtain here that

O, Fluf] € [W™P((0,T) x R)|™ forall1<p<4.
Which proves that, as in (4.25) that

O’ and  Dpgput € [W™P((0,T) x R)]M, forall 1 < p <4, (4.28)
and From (4.26), we deduce that

O F[uf] € [W™P((0,T) x R)M forall 1 < p<4,
and then

Opuf, Fluc] e [Wm2((0,T) x R)]™ forall 1 <p<4,
Which proves by the Sobolev embedding the results. O

Lemma 4.2 (Classical Maximum Principle)
Let T > 0. For all initial data u§ € [ X (R)|M, where O,u5 € [W™P(R)|M for all m € N,
1 < p < +oo, and satisfying (H3).

If u® is a solution of the system (P.)-(ID.), such that u¢ € [C(

0, 7); X(R))"" and
O,u € [L=((0,T); LX(R))|M, then we have fori=1,..., M, O,u** >0 o

n (0,T) x R.

Proof of Lemma 4.2
We first derive with respect to z the system (P.)-(ID.), and get for w® = (w%);=1 =
Oy uf

Ohw® — €0, w° + a(u®) © dyw® + Da(u)w® o w® = 0.

Since u® € [C>([0,T) x R)|M, we see, for i = 1,..., M, that w* is smooth and satisfies
w0, z) = dyug” > 0. From the classical maximum principle we deduce that w®" > 0
on [0,7) x R. O
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Remark 4.3 (L' uniform estimate on 9,u°)
Because O,u** >0, fori=1,..., M, we deduce from Lemma 3.1 that:

Harue”[LOO([O,T);Ll(R))}M <2 HUEH[LOO([O,T)XR)]M < 2Hu8H[LO°(]R)}M' (4.29)

Corollary 4.4 (global existence of nondecreasing smooth solutions)
Let T' > 0. The solution given in Theorem 2.2 can be chosen such that u® = (uavi)izl _____ M
smooth, satisfies (4.19) and for each i =1,..., M, 0,u® >0 on (0,T) x R.

The proof of Corollary 4.4 is a consequence of Theorem 2.2 and Lemmata 4.1, 4.2 and
Remark 4.3.

5 e-Uniform a priori estimates

In this Section, we show some e-uniform estimates on the solutions of the system (P.)-
(ID.). These estimates will be used in Section 6 for the passage to the limit as ¢ tends
to zero.

Lemma 5.1 (L* bound on «¢ and L' bound on 9,u°)

Let T >0, 0 < e <1 and function uy € [L®°(R)]" satisfying (H3). Then the solution
of the system (P.)-(ID.) given in Theorem 3.3 with initial data u§ = ug * 1., satisfies
the following e-uniform estimates:

(E1) ”ue”[Lw((O,T)XR)]M < HUOH[L“’(]R)}Ma

(£2) 10z oo (o), 1™ < 2 [0l oo myp

Proof of Lemma 5.1:

First, we remark that if 0,ug > 0, then 0,uf = (0 ug) *n-(z) > 0 (because 7 is positive).
The fact that u € [L°(R)]™ and 8,uo > 0, we obtain that d,uo € [L!(R)]".

By classical properties of the mollifier (1.). we know that if ug € [L>®(R)]" and
dyug € [LHR)M we have ug € [X(R)M and d,u5 € [W™P(R)]M for all m € N,
1<p< 4o

M

Now, we use Lemma 3.1 and Remark 4.3, we deduce by the classical properties of the
mollifier (E1) and (E2).

Before going into the proof of the gradient entropy inequality defined in (5.30), we
announce the main idea of this new gradient entropy estimate. Now, let us set for w > 0
the entropy function

f(w) =wlnw.
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For any non-negative test function ¢ € CHR x [0,+00)), let us define the following
“gradient entropy” with w' := 9 u':

N - | 90( $ f(wi)) dz.

e

It is very natural to introduce such quantity N(¢) which in the case ¢ = 1, appears to be
nothing else than the total entropy of the system of M type of particles of non-negative
densities w’. Then it is formally possible to deduce from (P) the equality in the following
new gradient entropy inequality for all ¢ > 0

ﬁ(tH/R(p( > dw wﬂ) dz < R(t)  for t>0, (5.30)

ij=1,...,M
with the rest

e e

where we only show the dependence on ¢ in the integrals. We remark in particular that
this rest is formally equal to zero if ¢ = 1.

To guarantee the existence of continuous solutions, we assumed in (H2) a sign on the
left hand side of inequality (5.30).

For we return this previous calculate more rigorous, we prove actually the following
gradient entropy inequality

Proposition 5.2 (Gradient entropy inequality)

Let T >0, 0 < e <1 and function ug € [L®°(R)|™ satisfying (H3). We consider the
solution u® of the system (P.)-(ID.) given in Theorem 3.3 with initial data uf = ug*1,.
Then, there exists a constant C(T, M, My, ||uol|(re @y, [|[Oxtoll(L10g Lir)M Such that

N(t) + /0 t /R Z a';(uf)w w™ < O, with N(t) = /R Z fw™Hdz. (5.31)

1,....M

-----

where w® = (w1 = O,u® and [ is defined in (1.4).

.....

For the proof of Proposition 5.2 we need the following Lemma:

Lemma 5.3 (Llog L Estimate)
Let (n.)e be a non-negative mollifier, f is the function defined in (1.4) and h € L*(R) is
a non-negative function. Then
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i) /f(h) < +o0 if and only if h € Llog L(R).
R
ii) If h € Llog L(R) the function h. = hxn. € Llog L(R) satisfies

||h_h6||LlogL(]R) —0 as e — 0.

The proof of (i) is trivial, for the proof of (ii) see R. A. Adams [1, Th 8.20] for the proof
of this Lemma.

Proof of Proposition 5.2:
Remark first that the quantity N(¢) is well-defined because we € [L*°((0,T): L*(R))]” n

[L°°((0,T); L3(R))]™ (by Theorem 2.2 and Corollary 4.4) and we have the general in-
equality =t < wlogw < w? for all w > 0.

From Theorem 4.4 we know that w®® and smooth non-negative function. Now, we
derive N(t) with respect to t, this is well-defined because for i = 1,..., M, we have

/ < el|w"|| oo,y 11 (my) and for all m € N, w™ € W™*((0,T) x R) (see (4.19)).
ws,izé

Finally, we get that,

i=1,....M
J1 Jo
A N\
7 N 7 N
:/ Z az’(ue)ws,if//(ws,i)amws,i . g/ Z (amws,i)2 f”(we’i)
Ri—1,...M Rij—1,...M

But, it is easy to check that

P (RO 2l o

if ©>1/e,
if 0<z<1/e.

8|~

This proves that J, < 0. To control J;, we rewrite it under the following form

le/ Z ai(UE)g/(we,i)axwe,i’
R

i=1,...M

where

-1 if z>1le,
0 if 0<z<1/e,
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Then, we deduce that

J = / 3 )l

_ _/ Z ai](ue)wz-:jg(wez)’
R j=1,.,.M
7 N
= [ X et - [ S aeeue g —ue)
Ry i=1,..M R j=1,..M

From (H2), we know that J;; < 0. We use the fact that |g(z) —z| < £ for all 2 > 0 and
(H1), to deduce that

| il < e MPMy [ e 0.1y 21 )

< %M2M1||u0||[LOO(R)]M

where we have use Lemma 5.1 (E2) in the last line. Finally, we deduce that, there exists
a positive constant C(||ug||pe(ryr, M1, M) independent of & such that

d
—N(t) <Ju+Jiz+J

dt
<Ju+C.

Integrating in time we get by Lemma 5.3, there exists a another positive constant
C(T, M, My, [Juo||iroe @y, | Oxto||{£10g L) ) independent of € such that

t
N + / / S ()t < CT + N(0) < C.
0o Jr, *

Lemma 5.4 (W~!! estimate on the time derivatives of the solutions)

Let T >0, 0 < e <1 and function uy € [L®(R)]" satisfying (H3). Then the solution
of the system (P.)-(ID.) given in Theorem 3.3 with initial data u§ = ug * 1., satisfies
the following e-uniform estimates:

10 iz o,y w10 @y < C (1 + lluoll; oo(R)}M> :
where W11 (R) is the dual of the space WH>(R).

Proof of Lemma 5.4:
The idea to bound d;u® is simply to use the available bounds on the right hand side of
the equation (F).
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We will give a proof by duality. We multiply the equation (P.) by ¢ € [L2((0,T), Wt2(R))]™
and integrate on (0,7") x R, which gives

Iy 1P
o\ o\
l

/ ¢ O = 5/ ¢ O u — / ¢ a(u®) o O, u’.
(0,T)xR (0,T)xR (0,7)xR

We integrate by parts the term 1, and obtain that for 0 < e < 1:

| < ' / 0, 00,u°
(0,T)xR

< T2l 120,19, 200 @) N 0e ™ | 20,1y, 11 ™

(5.32)
< 2T 101l 20,7y, w1, oy 0l L. oy
here, we have used the inequality
1
HaﬁquH[L2([O,T);L1(]R))}M <2717 HUOH[LOO(R)]Mv (5.33)

which follows from estimate (4.29) for bounded and nondecreasing function u°. Similarly,
for the term I, we have:

L] < MOHuH[LOO((O,T)X]R)}M H(bH[L?((O,T),LOO(R))}M ”aIUEH[LQ((O,T),Ll(]R))]M7
(5.34)
< 273 MOHUOH (Lo°(R)] M||¢||[LQ((O,T),WLOO(R))}M

Finally, collecting (5.32) and (5.34), we get that there exists a constant C' = C(T', M)
independent of 0 < & < 1 such that:

o

which gives the announced result where we use that L?((0,7), W~ (R)) is the dual of
L2((0,T), Whe°(R)) (see Cazenave and Haraux [9, Th 1.4.19, Page 17]). O

< C (14 ol g ) 168l 2oy ey

Corollary 5.5 (¢e-Uniform estimates)

Let T >0, 0 < e <1 and function ug € [L®(R)|™ satisfying (H1) and (H2). Then the
solution of the system (P.)-(ID.) given in Theorem 3.3 with initial data u§ = ug * 7.,
satisfies the following e-uniform estimates:

1024 | oo 0,y 108 LRt + N6 e (0,9 xmyt + 100" 20,y -12pye = €
where C'= C(T', M, Mo, M, ”UOH[Loo(R 10: UO” [L log L(R)]M ).

We can easily prove this Corollary collecting Lemmata 5.1, 5.4 and 5.3 and Proposition
5.2.
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6 Passage to the limit and the proof of Theorem 1.1

In this section, we prove that the system (P)-(ID) admits solutions u in the distributional
sense. They are the limits of u® given by Theorem 3.3 when ¢ — 0. To do this, we will
justify the passage to the limit as ¢ tends to 0 in the system (P.)-(ID.) by using some
compactness tools that are presented in a first Subsection.

6.1 Preliminary results

First, for all I open interval of R, we denote by

Llog L(I) == {f € L'(I) such that /I\f|ln(1—|— |f]) < —i—oo}.

Lemma 6.1 (Compact embedding)
Let I an open and bounded interval of R. If we denote by

WhilesL(1y = o € LY(I) such that O,u € Llog L(I)}.
Then the following injection:
Wl,LlogL(I) — C(I),

1S compact.

For the proof of this Lemma see R. A. Adams [1, Th 8.32].

Lemma 6.2 (Simon’s Lemma)
Let X, B, Y be three Banach spaces, such that

X — B with compact embedding and B — Y with continuous embedding.
Let T > 0. If (u®). is a sequence such that,

[l oo (0,9:) + 107 [ Lo (0,1:8) + 1000 || Lago.myyy < €

where ¢ > 1 and C is a constant independent of €, then (u). is relatively compact in

C((0,T); B).

For the proof, see J. Simon [38, Corollary 4, Page 85|.

In order to show the existence of solution system (P) in Subsection 6.2, we will apply this
lemma to each scalar component in the particular case where X = WhHIs([) B = L>(1)
and Y = W~H(T) := (Whee(I)).

We denote by K.,,(I) the class of all measurable function u, defined on I, for which,
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/1 (M — 1) < +o0.

The space EX P(I) is defined to be the linear hull of K.,,(/). This space is supplemented
with the following Luxemburg norm (see Adams [1, (13), Page 234| ):

|u| px Py = inf {)\ >0: / <e% — 1) < 1} ,
I

Let us recall some useful properties of this space.

Lemma 6.3 (Weak star topology in Llog L)
Let E..,(I) be the closure in EXP(I) of the space of functions bounded on I. Then
Eeip(I) is a separable Banach space which verifies,

i) Llog L(I) is the dual space of Eeyy(I).
ii) L>(I) — Eep(I).
For the proof, see Adams [1, Th 8.16, 8.18, 8.20].

Lemma 6.4 (Generalized Holder inequality, Adams [1, 8.11, Page 234])
Let f € EXP(I) and g € Llog L(I). Then fg € L*(I), with

I falleray < 2 fllexpallgllpiog Ln-

The following Lemma, we allow to define later the restriction of a function f € W~11(R)
on all open interval I of R.

Lemma 6.5 (Extension)

For all open interval I of R, there exists a linear and continuous operator of extension
P Whe(I) — WHe(R) such that

i) Puj, = u for ue Wh>(I).

i) |[Pullwroom) < ||ullwiooy for ue WHe(I).

for the proof of this Lemma see for instance Brezis [7, Th.8.5].

Thanks this Lemma, we can notice that, if f € W L (R), where W LI(R) =
(Wh°(R))’, we can define, for all open interval I of R, the function f|, as the following

< fi b >w-riywiey=< f, Ph >w-11®)wieom) -
for all h € Whe(1).
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6.2 Proof of Theorem 1.1
Step 1 (Existence):

First, by Corollary 5.5 we know that for any 7" > 0, the solutions u® of the sys-
tem (P.)-(ID.) obtained with the help of Theorem 3.3, are e-uniformly bounded in
[L((0,T) x R)]". Hence, as € goes to zero, we can extract a subsequence still denoted
by uf, that converges weakly-+ in [L((0,T) x R)]" to some limit u. Then we want to
show that w is a solution of the system (P)-(ID). Indeed, since the passage to the limit
in the linear terms is trivial in [D'((0,T) x R)]"™, it suffices to pass to the limit in the
non-linear term,

a(u) o Oput.

According to Corollary 5.5 we know that for all open and bounded interval I of R there
exists a constant C' independent on € such that:

||u6||[Loo((O,T);Wl,LlogL(I))]M + ||u8||[L°°((O,T)><I)}M + ||atu6||[LQ((O,T);W_I’l(I))]M S C

From the compactness of WlElel([) <« [>(]) (see Lemma 6.3 (i)), we can apply
Simon’s Lemma (ie. Lemma 6.2), with X = [WLlesL(n]" B — [Lo(D)]" and
Y = WYD", which shows that

M

u® is relatively compact in in [L®((0,T) x I)]™ «— [L'((0,T); L>(I))] (6.35)

Then form continuous injection of L*(I) — E.,,(I) (see Lemma 6.3 (ii)), we deduce
that,
ue is relatively compact in [L!((0, T): Eugp(Q))]™. (6.36)

On the other hand, by Corollary 5.5, we notice that d,u® is e-uniformly bounded in
[L>=((0,T); Llog L(I))]™. Moreover, the space [L>((0,T); Llog L(I))]* is the dual
space of [Ll((O,T);Eexp([))]M, because Llog L(I) is the dual space of E..,(I) (see
Lemma 6.3 (ii) and Cazenave, Haraux [9, Th 1.4.19, Page 17]). Then, up to a sub-
sequence

dpuf — Oyu weakly-+ in [L°((0,T); Llog L(I))™ . (6.37)

Form (6.36) and (6.37), we see that we can pass to the limit in the non-linear term in
the sense

[LY((0,T); Eeup(I))]" — strong x [L=((0,T); Llog L(I))™ — weak — .
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Because this is true for any bounded open interval I and for any 7" > 0, we deduce that,

a(u®) ¢ dyu® — a(u) ¢ dyu in D'((0,T) x R)
Consequently, we can pass to the limit in (P.) and get that,

du+a(u)odyu=0 in D'((0,T) x R).

This solution u is also satisfy the following estimates (see for instance Brezis [7, Prop.
3.12]):

(E1) ||aazu||[Loo((o,T);LlogL(R))]M < liminf||8xu€||[LDO((O,T);LlogL(]R))}M <C,

(£2) ||U||[Loo((o,T)xR)]M < hminf||U€||[Loo((o,T)xR)]M < ||u0||[L°O(]R)}M’

At this stage we remark that, thanks to these two estimates we obtain that (a(u) ©
dyu) € [L®((0,T); Llog L(R))]™, which gives, since dyu = —a(u) o dyu, that du €
[L((0,T); Llog L(R))]™, and then v € [C([0,T); Llog L(R))]™.

Step 2 (The initial conditions):

It remains to prove that the initial conditions (ID) coincides with u(-,0). Indeed, by
Corollary 5.5, we see that, for all open bounded interval I of R, uf is e-uniformly bounded
in

M

W20, 7, w1 — [etqo. Ty )]

where W=11(T) is the dual of W1°°(I). Tt follows that, there exists a constant C
independent on ¢, such that, for all ¢, s € [0,7T):

1
" (t) — () s e < Clt = 2.
In particular if we set s = 0, we have:
1 (£) = gl yy—sa gy < C12. (6.38)

Now we pass to the limit in (6.38). Indeed, the functions u°® and u§ are e-uniformly
bounded in [W2((0,T); W-4(1)]™ and [W-21(1)]" respectively. Moreover we know
that u — ug converges weakly-x in [L>((0,T) x )] to u — uq.

Therefore, we can extract a subsequence still denoted by u® —ug, that weakly-* converges
in [W2((0,T); W=4(I)]™ to u — uo. In particular this subsequence converges, for all
t € (0,T), weakly- in [L>((0,¢); W=21(I)]", and consequently it verifies (see for
instance Brezis |7, Prop. 3.12|),
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o 1
[t = vl oo (0 pswr—10 (2 < Mmind [Ju = gl e (0 gyw—11 (1 < CF2

From (6.38) we deduce that
[u(t) — uolljy—11 gy < Ct2,
which proves that u(-,0) = ug in [D'(R)]".

Step 3 (Continuity of solution):
Now, we are going to prove the continuity estimate (1.5). For all h > 0 and (t,z) €

(0,T) x R, we have:
z+h
/‘ @Mtw@'

S 2” 1 H EXP(z,x+h) H 8:zsu”Llog L(xz,x+h)>

lu(t,x + h) —u(t,z)| <

1
- QW”aruHLOO((QT);LlogL(R)),

1
<(C—si——
~ In(;+1)
where we have used in the second line the generalized Holder inequality (see Lemma
6.4) and in last line we have used that 0,u € L*°((0,T"); Llog L(R)). Which proves
finally the continuity in space. Now, we prove the continuity in time, for all § > 0 and
(t,x) € (0,T) x R, we have:

T+
Slutt +6.0) ~u(t.0) = [ fult+dx) = ult. 0]y,

K1
7\
7 N

z+0
< / lu(t+ 9, z) —u(t+ 6, y)|dy,

K>
7\

T+
+/‘ lu(t +0,y) — u(t,y)|dy,

K3

A\

[ ) - e )y

Similarly, as in the last estimate, we can show that:
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z+48 46
Ky + Ky sa/ |amu<t+5,y>|dy,+5/ D,ult, y)|dy,

< 45|11 Ex Pa,ato) | Oxte|| Lo ((0,7): L 10g L(R))

)
<(U—”7m——r.
- Cln(% +1)

Now, we use that u is a solution of (P), and we obtain that:

z+8  pt+6
K2 S/ / |atu($7y)|dy7
T t

t+0 T+6
< / / la(u(s, ) o Duuls, y)|dsdy,
t x

< dMollul| e (o,m)xr) 11| EX P(2.2+8) | x|l oo ((0,7); L 105 L(®) 5

J
<C—7=
= In(3+1)
where we have used in last line that v € L>((0,7") x R), collecting the estimates of K7,
K, and K3, we prove that:

1

K+ Ko+ K) < (O
(Ki+ Ky + ) < In(: +1)’

| =

lu(t + 6, z) —u(t,z)| <

which proves finally the following:

lu(t + 8,2z +h) —u(t,z)] <C (ln(ll—i— D + ln(11+ 1>) :
5 h

7 Some remarks on the uniqueness

In this Section we study the uniqueness of solution of the system (P)-(ID) with

We show some uniqueness results for some particular matrices with M > 2.
For the proof of Theorem 1.5 in Subsection 7.2, we need to recall in the following Subsec-
tion the definition of viscosity solution and some well-known results in this framework.
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7.1 Some useful results for viscosity solutions

The notion of viscosity solutions is quite recente. This concept has been introduced by
Crandall and Lions [10, 11] in 1980, to solve the first-order Hamilton-Jacobi equations.
The theory then extended to the second order equations by the work of Jensen [27]
and Ishii [23]. For good introduction of this theory, we refer to Barles [5] and Bardi,
Capuzzo-Dolcetta [3].

Now, we recall the definition of viscosity solution for the following problem for all 0 <
e<1:

O+ H(t,x,v,0,v) — 0y =0 with x,v € R, t € (0,7). (7.39)

where H : (0,7) x R?* — R is the Hamiltonian and is supposed continuous. We will set

USC((0,T) x R) = {f such that f is upper semicontinuous on (0,7") x R},
LSC((0,T) x R) = {f such that f is lower semicontinuous on (0,7) x R}.

Definition 7.1 (Viscosity subsolution, supersolution and solution)

A function v € USC((0,T) x R) is a viscosity subsolution of (7.39) if it satisfies, for
every (to, o) € (0,T) xR and for every test function ¢ € C*((0,T) xR), that is tangent
from above to v at (ty, zo), the following holds:

8t¢ + H(t07 Zo, U, 8:B¢) - 58:v:v¢ S O

A function v € LSC((0,T) x R) is a viscosity supersolution of (7.39) if it satisfies, for
every (to, zo) € (0,T) x R and for every test function ¢ € C*((0,T) x R), that is tangent
from below to v at (to, xo), the following holds:

8t¢ + H(t07 Lo, U, 8x¢) - €8xx¢ Z 0.

A function v is a viscosity solution of (7.39) if, and only if, it is a sub and a supersolution

of (7.39).

Let us now recall some well-known results.

Remark 7.2 (Classical solution-viscosity solution)
If v is a C* solution of (7.39), then v is a viscosity solution of (7.39).

Lemma 7.3 (Stability result, see Barles [5, Th 2.5])
We suppose that, for e > 0, v° is a viscosity solution of (7.39). If v° — v uniformly on
every compact set then v is a viscosity solution of (7.39) with e = 0.

Lemma 7.4 (Gronwall for viscosity solution)
Let v, a locally bounded USC(0,T) function, which is a viscosity subsolution of the

equation prialel) where o > 0. Assume that v(0) < vy then v < vy €T in (0,T).
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The proof of this Lemma is a direct application of the comparison principle, (see Barles
[5, Th 2.4]).

Remark 7.5

From Lemmata 7.2, 7.3 and from (6.35), we can notice that the solution u® of our system
(P) given in Theorem 1.1 is also a viscosity solution of (P) (where the v/ for j # i are
considered fized to apply Definition 7.1).

7.2 Uniqueness results

In this Subsection we prove Theorem 1.5. Before going on, we recall in the following
Remark a well-known uniqueness results and we recall in Theorem 7.7 the uniqueness
results of W1 solution of (P).

Remark 7.6 (Uniqueness for quasi-monotone Hamiltonians)
If the elements of the matriz A satisfy:

A”+ Z AUZO fO’f‘(Z” Z:]_,,M
j;ﬁi,Ai]’<0

and if O,ut >0 fori=1,..., M, then we can easily check that the Hamiltonian

H;(u, 0,u") = ( Z Aijuj> N7
j=1,..M

is quasi-monotone in the sense of Ishii, Koike [25, (A.3)]. Then the result of Ishii, Koike
[25, Th.4.7] shows that for any initial condition ug € [L=(R)|M satisfying (H1)-(H2),
the system (P) satisfies the comparison principle which implies the uniqueness of the
solution.

We have the following result which seems quite standard:

Theorem 7.7 (Uniqueness of the 1> solution)
Let ug € [WEh°(R)|M and T > 0. Then system (P)-(ID) admits a unique solution in
(W ([0, T) x R)™.

The proof of this Theorem is given in Appendix, because we have not found any proof
of such a result in the literature.

Proof of Theorem 1.5:

Using Theorem 7.7 with a'(u) = Z Ajju?, it is enough to show that the system (P)-
=1, M

(ID) admits a solution in [W1>([0,T) x R)]". To do that, it is enough to prove that

the solution u® of the approximated system obtained in Corollary 5.5 satisfies that 0,u°

is bounded in [L*°((0,T) x R)]™ uniformly in 0 < & < 1. Indeed, we then get the same

29



property for d,u, where w is the limit of u® as ¢ — 0. Moreover, from the equation (P)
satisfied by u and the fact that

we [L2(0,7) x R and 9,u € [L=((0,T) x R)],
we deduce that dyu € [L°((0,T) x R)]™ which shows that u € [W12([0,T) x R)]™.

To simplify, we denote

and we interest in the

£,1 _ )
max w (t,x) = m;(t).

This maximum is reached at least at some point x;(t), because w®" € C*((0,T) x R) N
WhP((0,T) x R) for all 1 < p < 400 (see Lemma 4.1, (4.19)).

In the following we prove in the two cases (i) and (ii) defined in Theorem 1.5 that
m;, for all ¢ = 1,..., M, is bounded uniformly in €. First, deriving with respect to x
the equation (P.) satisfied by u¢ € [C°°((0,T) x R)]", we can see that w® satisfies the
following equation

Dw™" — €Dy w™" + Z AgjuI 9w + Z Ajjwlw™ = 0. (7.40)

j=1,...M j=1,...M

Now, we prove that m; is a viscosity subsolution of the following equation,

%mi(t) + | Z Agw™ (¢, 25 ())w™' (¢, 2;(t)) < 0. (7.41)

1,...M

.....

Indeed, let ¢ € C?(0,T) a test function, such that ¢ > m; and ¢(ty) = m;(to) for some
to € (0,T). From the definition of m;, we can easily check that ¢ > w'(¢,z) and
d(tg) = w'(to, zi(ty)). But, the fact that w™' € C*((0,7) x R), by Remark 7.2 we
know that w®' is a viscosity subsolution of (7.40). We apply Definition 7.1, and the fact
that 0,¢ = 0,.¢ = 0, we get

d . .
ﬁgb(to) + Aijws’] (to, ZL‘i(to))wa’Z(tQ, I‘Z(to)) S 0.

Jj=1,...M

Which proves that m; is a viscosity subsolution of (7.41).
Two cases may accur:
i) Here, we consider the case where M > 2 and A;; > 0 for all j > i. We see the

equation satisfied by m;, we deduce that satisfies (a viscosity subsolution)
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Cm() <= 3 At m ()t (6 n(0) <0

j=1,...,

where we have used the fact that, for j = 1,..., M, A;; > 0 and w®’ > 0. This proves
by Lemma 7.4 (with o = 0) that,

ma(t) < ma(0) = w2, 21 (1)) < [Oytid | (e,

We reason by recurrence: we assume that m; < C for all j < ¢, where C' is a positive
constant independent of ¢, and we prove that m;,; is bounded uniformly in . Indeed,
we know that

d j i
Emzﬂ(t) < - Z Aiprw (8, 25 () w™ (¢, 2344 (1)),
j=1,..M

<= > A w (b a(0)w (G 2 (1)
j<it1

— Z Ai+1,jw€’j(t>%’(t))wg’iﬂ(ta$i+1(t))>

M2j>i+1

We use that A;,,; >0, for M > j > 7+ 1, we obtain that

d €, £,0
() < - D A w4 (8)w T (8 2 (1),
j<i+l
<C ( Z \AHLJ'\) miy1(t).
j<i+l

This implies by Lemma 7.4, with a = C ( > |Ai+17j|>, that
J<i+1
mip(t) < mi+1(0)€aT7

< 10w | Lo mye™
Which proves that for all © = 1,..., M, m; is bounded uniformly in e.

ii) Here, we consider the case where M > 2 and A;; < 0 for all 7 # j. Taking the sum

over the index i, from (7.41) we get that the quantity m(t) = Z m;(t) satisfies (a
i=1,.., M
viscosity subsolution see Bardi et al. [4])
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%m(t) < —”Z Agw™ (t, ;1) )w™* (¢, 2:(1)),
i,j=1,...M

<— D Ayt a(0)w (t xi(t),
ij=1,...M

<0.

where we have used that the matrix A satisfies (H2') and w®* > 0, for 1 = 1,..., M.
Using Lemma 7.4 with o = 0, we get

m(t) <m(0)= Y duuy",

izly---y

<sup > duup(y).
VER s M

which proves (1.7). O

8 Application on the dynamics of dislocations densi-
ties

In this Section, we present a model describing the dynamics of dislocations densities.
We refer to [22| for a physical presentation of dislocations which are (moving) defects
in crystals. Even if the problem is naturally a three-dimensional problem,we will first
assume that the geometry of the problem is invariant by translations in the xs-direction.
This reduces the problem to the study of dislocations densities defined on the plane
(x1,22) and propagation in a given direction b belonging to the plane (21, 22) (which is
called the “Burger’s vector”).

In this setting we consider a finite number of slip directions b € R? and to each b we
will associate a dislocation density. For a detailed physical presentation of a model with
multi-slip directions, we refer to Yefimov, Van der Giessen [41] and Yefimov [40, ch. 5.]
and to Groma, Balogh [21] for the case of a model with a single slip direction . See
also Cannone et al. [8] for a mathematical analysis of the Groma, Balogh model. In
Subsection 77, we present the 2D-model with multi-slip directions.

In the particular geometry where the dislocations densities only depend on the variable

T = x1 + To, this two-dimensional model reduces to one-dimensional model which pre-

sented in In Subsection 8.2. See El Hajj [15] and El Hajj, Forcadel [16] for a study in

the special case of a single slip direction. Finally in Subsection 8.3, we explain how to

recover equation (P) as a model for dislocation dynamics with a’(u) = Z Ajju? for
i=1,....,M

some particular non-negative and symmetric matrix A. ’
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8.1 The 2D-model

We now present in details the two-dimensional model. We denote by X the vector
X = (x1,73). We consider a crystal filling the whole space R? and its displacement
v = (v,v2) : R?> — R? where we have not yet introduced the time dependence for the
moment.

We define the total strain by

(v) = 5 (Vo + V)

6v,~

—, 4,7 € {1,2}.

o0 {1,2}

Now, we assume that the dislocations densities under consideration are associated to
edge dislocations. This means that we consider M slip directions where each direction
is caraterize by a Burgers vectors b* = (b% b5) € R?, for k = 1,..., M. This leads to M
type of dislocations which propagate in the plan (z, ;) following the direction of b,
fork=1,..., M.

where Vv is the gradient with (Vv);; =

The total strain can be splitted in two parts:
e(v) = e+ &P
Here, £° is the elastic strain and P the plastic strain defined by

=y ek (8.42)

k=1,...M

where, for each k = 1, ..., M, the scalar function «* is the plastic displacement associated
to the k-th slip system whose matrix ¢%* is defined by

1
ek — 5 (5’“ Qi+t ® 17“) : (8.43)
where 7i* is unit vector orthogonal to b* and <g"“ ® ﬁk) =k
ij

To simplify the presentation, we assume the simplest possible periodicity property of
the unknowns.

Assumption (H):

i) The function v is Z*-periodic with / vdX =0.
(0,1

ii) For each k =1,..., M, there exists L* € R? such that u* — L* - X is a Z*-periodic.
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iii) The integer M is even with M = 2N and L**N = Lk, and that

[N ij Z‘)’k+N _ _Z‘)’k’ AEtN — 'r_ik,

0k+N _ _ 0k

3 —&

i) We denote by ™ = (7F,75) a vector parallel to b such that N = 7. We require

that L* is chosen such 7% - L*¥ > 0.

The plastic displacement u* is related to the dislocation density associated to the Burgers
vector b*. We have
k-th dislocation density = 7 - Vu* > 0. (8.44)

The stress is then given by
o=A\:¢e", (8.45)

1.e. the coefficients of the matrix o are:

e ..
Uij = E Aijklgkl fOI‘ 1,] = 1,2,
k,l=1,2

where A = (Aijkl)
for m > 0:

are the constant elastic coefficients of the material, satisfying

Z Aijki€ijER > M Z 8% (8.46)

ijkl=1,2 i,j=1,2

ik l=1,2)

for all symmetric matrices € = (527‘)@']" i.e. such that g;; = ¢;.

Finally, for & = 1,..., M, the functions u* and v are then assumed to depend on
(t,X) € (0,T) x R? and to be solutions of the coupled system (see Yefimov [40, ch. 5.]
and Yefimov, Van der Giessen [41]):

(dive =0 on (0,7) x R?,
o =A:(e(v)—¢€?)  on (0,7) x R?,
e(v) =1(Vu+1Vo) on (0,7) x R?,
er = Y MF o on(0,7) xR (8.47)
k=1,...M
ot = (0:e")F* Vi on (0,7)xR?% fork=1,...,M,

\

i.e. in coordinates
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( 8 .
%5 _ on (0,7) x R2,  fori=1,2,
8$‘j
7=1,2
0y = Ajjra (e(v) —€h)) on (0,7) x R?,
kd=1,2
1 /0v;  Ov,
eii(v) = = = + 22 on (0,T) x R2, | fori,j=1,2
2\0x; Oux; (8.48)
el = Z z—:%ikuk on (0,7) x R?
k=1,....M
o = Z aij&??]?k 7 VuF  on (0,T) x R?, fork=1,..., M,
\ ije{1,2}

where the unknowns of the system are u* and the displacement v = (vy,v;) and with
g% defined in (8.43). Here the first equation of (8.47) is the equation of elasticity, while
the last equation of (8.47) is the transport equation satisfied by the plastic displacement
whose velocity is given by the Peach-Koehler force o : €%*. Remark that this implies
in particular that each dislocation density satisfies a conservation law (see the equation
obtained by derivation, using (8.44)). Remark also that our equations are compatible
with our periodicity assumptions (H), (i)-(i4).

8.2 Derivation of the 1D-model

In this Subsection we are interested in a particular geometry where the dislocations
densities depend only on the variable x = z; + x5. This will lead to 1D-model. More
precisely, we make the following:

Assumption (H'):
i) The functions v(t,X) and u*(t,X) — L¥ - X depend on the variable v = x1 + x5.

i)+ =1, fork=1,..., M.
iii) L¥ = LY fork=1,..., M.

For this particular one-dimensional geometry, we denote by an abuse of notation the

k k
function v = v(t, z) which is 1-periodic in z. If we set [* = #, we have

Lk_Lk
Lk~X:lk~x+(%) (x1 — 22).
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-----

is such that for k = 1,..., M, u*(t,x) — I* - x is 1-periodic in x.

Now, we can integrate the equations of elasticity, i.e. the first equation of (8.47). Using
the Z2-periodicity of the unknowns (see assumption (H), (i)-(ii)), and the fact that
gOFHN = g0k (see assumption (H), (44)), we can easily conclude that the strain

1
e as a linear function of (v’ — uJ+N)j:1 _____ ~ and of (/ (! —u? ™) da:) .
0 j=1,.,N

.....

This leads to the following Lemma

Lemma 8.1 (Stress for the 1D-model)
Under assumptions (H), (i)-(ii)-(éit) and (H'), (i)-(éit) and (8.46), we have

1
o Z Agu? + Z Qij/ w dx, fori=1,...,N. (8.50)
j=1,...M j=1,...M 0

where fori,7=1,..., N

Aij=Aji  and Ain;=—Aij = Aijin,

i,J
(8.51)
Qi,j = Qj,z‘ and QH—N,j = —Qz‘,j = Qi,j—l—N-

Moreover the matriz A is non-negative.

The proof of Lemma 8.1 will be given at the end of this Subsection.

Finally using Lemma 8.1, we can eliminate the stress and reduce the problem to a one-
dimensional system of M transport equations only depending on the function u?, for
i=1,..., M. Naturally, from (8.50) and (H"’), (i¢) this 1D-model has the following form

1
6’tu"+< > Ayl + ) Qij/ u’ da:) ou' =0, on(0,T)xR, fori=1,..., M,
j=1,...M j=1,...M 0
(8.52)

----------

with from (8.44)

Ou'>0 fori=1,..., M. (8.53)

Now, we give the proof of Lemma 8.1.
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Proof of Lemma 8.1:
For the 2D-model, let us consider the elastic energy on the periodic cell (using the fact
that e° is Z>-periodic)

1
Eel:—/ A:e®e® dX.
2 (071)2

By definition of o and ¢, we have fori =1,..., M

o:e% = -V, E% (8.54)

On the other hand usind (H’), (i)-(ii7), (with * = x; + x5) we can check that we can
rewrite the elastic energy as

el 1 ! e e
F =3 A:ef et da.
0

Replacing ¢ by its expression (8.49), we get:

1 [t . . 4 .
el — 5/ Z A2J<u] _u_]+N)<uz uz+N) dr
0 ;j=1,..N
1 1
b 2 o[ w-wan) ([w-w ).
i,j=1,...N 0

for some symmetric matrices A; ; = A;;, Q;; = Qj;. In particular, joint to (8.54) this
gives exactly (8.50) with (8.51).

Let us now consider the functions w® = u* — vt such that
1 .
/ w' dr =0 fori=1,...,N, (8.55)
0
From (8.46) that we deduce that

1/t .
0 S Eel = 5/ Z Aijw’w] dx.
0

ij=1,...N

More precisely, for all i = 1,..., N and for all @' € R, we set

T wi on [07 %]7
v _{ —w'  on [4,1

which satisfies (8.55). Finally, we obtain that
e 1 ! —1,—7

Because this is true for every w?, we deduce that A a non-negative matrix. O
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8.3 Heuristic derivation of the non-periodic model

Starting from the model (8.52)-(8.53) where fori = 1,..., M,, u'(t,x)—1"-x is 1-periodic
in x, we now want to rescale the unknowns to make the periodicity disappear. More
precisely, we have the following Lemma:

Lemma 8.2 (Non-periodic model)
Let u be a solution of (8.52)-(8.53) assuming Lemma 8.1 and u'(t,x) —1*-z is 1-periodic
in x. Let
ug(t,x) = u/(6t,62), for a small 6 >0 and for j=1,..., M,
such that, for all j=1,..., M

u}(0,-) — @ (0,), as 6—0, and @ (0,400) =@ N (0,+c0) (8.56)

.....

o’ + ( > Aijuj> dpu' =0,  on(0,T) xR, (8.57)
j=1

-----

with the matriz A is non-negative and O,u* > 0 fori=1,..., M.

We remark that the limit problem (8.57) is of type (P) with (H1") and (H2).
Now, we give a formal proof of Lemma 8.2.

Formal proof of Lemma 8.2:

. : 1
Here, we know that uy — " - x is g—periodic in x, and satisfies fort=1,..., M

8tuf;+< > Agul+s ) Ql-j/ u d:c) dpus =0, on (0,7) xR, (8.58)
i 0
J

To simplify, assume that the initial data us(0,-) converge to a function @(0, -) such that
0,us(0,-) has a support in (—R, R), uniformly in 0, where R a positve constant. We
expect heuristically that the velocity in (8.58) remains uniformly bounded as § — 0.

Therefore, using the finite propagation speed, we see that, there exists a constant C'
independent in 0, such that d,us(t, ) has a support in (=R — Ct, R + Ct) uniformly in
5. Moreover, from (8.56) and the fact that

Z Ql-j/()&ugd:c: Z Qij/(s(uj—u”N)daz,

j=1,...M j=1,..,N 0

38



we deduce that

remains bounded uniformly in §. Then formally the non-local term vanishes and we get
fori=1,..., M

which proves that @ is solution of (8.57), with the matrix A is non-negative . O

9 Appendix: proof of Theorem 7.7

Let uy = (u}); and uy = (ud);, for i = 1,---, M, be two solutions of the system (P) in
WL ((0,T) x R)]™, such that ui(0,-) = ui(0, -).

Then by definition u¢ and u} satisfy respectively the following system, for i = 1,--- , M:
Ol = —a'(uy)Opul,
oyl = —a' (ug)Opub,

Subtracting the two equations we get:
O (uf — uh) = — (a’(u1) — a'(ua)) Opuy — a’(u2)dp(uf — ud).

Multiplying this system by (u? — u3) (1)? where 1)(x) = e/*l, and integrating in space,
we deduce that:

1d., . .
a0 =00 = = [ () = o) (0} = ) 0200

—Awmwwﬁﬂ@@M—%y

Taking the sum over ¢, we get:

I
1d , , A A ' A '
5@< 2 H(ull_ué)w”;(m> - _/ D (a'(un) — a'(ua)) (uf — uh) $*Opu}
i=1,..M Rj—1,...M
I
= .
2 /ZM @ ()" 0p (v — )"



Integrating I by part, we obtain:

I
1
L= 5[ X au)@ui; -y
R j=1,..M
I}f
,:[ N
23 3 ) - o
Ri—1,..M

Next, using the fact that v} is bounded in Wh*°((0,T) xR), fori = 1,..., M, we deduce
that:

[lo1| < %MMl||U2||[Woo((o,T)xR)]M< Z H(Uﬁ - Ué)?/’Hiz(R)> )

i=1,...M

(9.59)

Since 9,(¢¥(x))? = —2sign(z)(¢(x))? and ub is bounded in WH°((0,T) x R), for i =
1,---, M, we obtain:

<0 310~ el

.....

(9.60)

< C<Z H(Uﬁ - UZQWHZ(R))

=1

.....

Now, using the fact that u} is bounded in W1>((0,T) x R), for i = 1,-,-, M, and the
inequality |ab| < 3(a? + b%), we get:

1 j i
| g§M1<M+1)|yu1|y[woo((0,T)XR)]M/ Sl — b
R,_

1., M

1 i i 2
< §M1(M+ 1) || [ oo 0,7 xmy M ( Z | (uf — U2)¢”L2(R)> ; (9.61)

i=1,..M

5 C(FZ - uawm) -

i=1,...M

40



Finally, (9.61), (9.59) and (9.60), imply:

d - o
g7 (_Z | (uf — UE)WEQ(R)) <2(|L] + o] + [I]) < C ( Z e U%)iﬂ”iz(R)) :

i=1,...,M i=1,...M

PINIC W)Y oiryaeey < DI [CAUDERTA ) 2y 7 =0,

ie, u; =usa.ein (0,7) x R. O
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