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INTRODUCTION

The prediction of the heat transfers in ducts with curvature is a great challenge for engineering applications like gas turbine design, heat exchanger or cooling channels for rocket engine. Several experimental investigations have been devoted to centrifugal instabilities. The streamline curvature and the associated pressure gradient generates a strong secondary flow of Prandtl's first kind as described by [START_REF] Chang | Turbulent flow in a strongly curved U-bend and Downstream tangent of square cross-sections[END_REF], [START_REF] Humphrey | Turbulent flow in square duct of strong curvature[END_REF]. Its intensity can reach more than 20 % of the bulk velocity depending on the curvature radius and takes the shape of two large counter rotating coherent structures, called Ekman vortices. The concave curvature generates a centrifugal instability and Görtler vortices develop near this wall [START_REF] Hunt | Effects of small streamline curvature on turbulent duct flow[END_REF]): further downstream, these are moved toward the convex wall by the radial pressure gradient. The curved walls have opposite effect on the flow : the concave wall tends to destabilize the flow whereas stabilizing effect is created by the convex side, as noticed by [START_REF] Muck | The effect of convex surface curvature on turbulent boundary layers[END_REF] and [START_REF] Hoffman | The effect of concave surface curvature on turbulent boundary layers[END_REF]. Numerical studies of this type of flow have been performed by [START_REF] Moser | The effects of curvature in wall-bounded turbulent flows[END_REF], [START_REF] Humphrey | Turbulent flow in square duct of strong curvature[END_REF] and Silva Lopez and Piomelli (2003) : the difficulty is to predict with precision the secondary flow and the related turbulence characteristics. When heat transfer and curved effect are combined, experiments are fewer. Johnson and Launder (1985) investigate heated square-sectioned U-bend and show that the heat transfer is enhanced on the concave wall and reduced on the convex side compared to a flat wall as found by Mayle et. al (1979). [START_REF] Hébrard | Large-eddy simulation of turbulent duct flow : heating and curvature effects[END_REF] and [START_REF] Münch | Large eddy simulation of turbulent flow in curved and S-shape ducts[END_REF] study the combined effect of curvature and heating in a closed duct for turbulent flow using the same numerical code as in the present study. We here perform Large Eddy Simulation (LES) in a heated curved duct to investigate the influence of the Reynolds number on the flow dynamics and on the heat transfer. In the previous works mentioned above an imposed temperature higher on one curved wall was imposed. To simulate situations in closer correspondence with industrial configurations, we present simulations with a uniform heat flux on the convex wall.

NUMERICAL CONFIGURATION

The computer code used for our calculations solves the LES modified three dimensional compressible Navier Stokes equations in curved square ducts (see Salinas and Metais (2002)). The subgrid-scale model is the selective structure function model proposed by Lesieur and Métais (1996). To close the system of formed by the momentum and energy equations , we use three supplementary relations. The Sutherland empirical law describe the molecular viscosity variation with temperature. The gas is considered as an ideal gas with the corresponding equation of state and the turbulent Prandtl number is equal to 0.6. The system of equations in generalized coordinates is solved by mean of the corrector-predictor McCormack scheme with a compact extension devised by [START_REF] Kennedy | Comparison of several numerical Methods for simulation of compressible shear layers[END_REF]. The scheme is of second order in time and fourth order in space. To provide a fully turbulent inlet boundary condition in the curved duct, a LES of a periodic duct, with all its walls at an imposed temperature Tw, is carried out at the same time. This longitudinally straight periodic duct is linked to the spatially growing duct through the characteristics conditions proposed by [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. At the outflow of the curved duct, we also used these conditions by imposing the pressure. The wall boundary conditions are no-slip. We here consider two different values of the Reynolds number based upon the bulk velocity : Re = 6000 and 12000. The Mach number is taken equal to 0.5, and the Prandtl number is equal to 0.7. We use curvilinear coordinates, s in the streamwise direction, n in the direction normal to the curved wall and z in the spanwise direction. The origin of the n coordinate is taken on the concave wall. The different lengths are normalized by the hydraulic diameter D h . All simulations are performed in a curved computational domain of size : 13D h × D h × D h , the curved part is characterized by an inner curvature radius of 10D h and an angle of 30 degrees, see figure 1. The origin O is taken at the inflow on the concave side. The computational domain is discretized using non uniform numerical meshes : a medium grid with 160 × 50 × 50 nodes or a finer grid with 183 × 66 × 66 nodes, along s, n and z directions respectively. An hyperbolic-tangent stretching is applied in the transverse directions n and z, so that n + = z + = 1.8 in wall units. Another stretching in the s direction is applied to avoid the creation of spurious reflected waves. We defined mean quantities as the averaging in time : we note < f (s, n, z) > the mean value for any quantity f(s,n,z,t). The mean components of the velocity : < u >, < v > and < w > are noted U, V and W, and normalized by the bulk or the local friction velocities. The bulk quantity f b corresponds with < f > integrated along the two transverse coordinates. The friction velocities Uτ cc and Uτ cv are based on the wall shear stresses τcc and τcv respectively on the concave and the convex wall. We called n + the distance, from the considered wall, normalized by the local viscous thicknesses. The mean temperature, noted T, is normalized by Tw. We use the fact that the plane z/D h = 0.5 is a symmetry plane for some of the results.

RESULTS

Non heated ducts.

We first carried out simulations without heating : the temperature is the same on each wall of the curved duct and is fixed to a constant value Tw. To validate our grid resolution, we compare simulations performed with the two different grids described above at a Reynolds number equal to 6000. On figure 2, the longitudinal velocity profile U + in the symmetry plane non-dimensionalized by the friction velocity Uτ cc is represented in function of the distance to the concave wall n + .

The displayed log law, defined below, has been proposed by Gavrilakis for flow in square straight duct, taking into account the modification induced by the secondary flow.

U + = 3.2 log n + + 3.9

(1)

We observe a good fit with the theoretical law near the inlet. The results turn out to be independent of the grid resolution and the medium mesh is sufficient for the simulations at Re = 6000. All the results presented below will be based on the a)

U + U + U + n + n + n + b) c)
Figure 2: U + profile for medium, fine grid a) at the inflow, b) the middle of the curved part, c)the outflow. medium mesh for the Reynolds number 6000 and on the finer mesh for 12000. This choice of mesh allows to keep the same minimum values for n + and ∆s + (longitudinal direction) in both cases.

In rectilinear ducts of square cross sections, a secondary transverse flow perpendicular to the bulk flow and denominated as Prandtl's second kind, appears near the duct corners. Eight counter rotating vortices, two in each corner, developed. Their intensity is relatively weak : 2% of the bulk velocity. On figure 3, we represent those secondary flows in various cross sections for both simulations at different Reynolds number. On figures 3 a) and b), we first compare the secondary flow at the inflow of the computational domains. We observe that the LES are perfectly able to reproduce this weak secondary flow. We furthermore notice that, when the Reynolds number increases, the secondary vortices are located closer to the duct corner. This result was previously found in the experiments by [START_REF] Gessner | The origin of secondary flow in turbulent flow along a corner[END_REF]. Further downstream of the duct, curvature effects are present and new instabilities appear. The pressure gradient between the concave and the convex wall now gives rise to two intense secondary vortices called Ekman vortices whose intensity is of the order of 20% of the bulk velocity. This intensity is similar for both Reynolds values. These vortices occupy almost the whole width of the duct at the outflow and their center is located in the vicinity of the convex wall [START_REF] Münch | Large eddy simulation of turbulent flow in curved and S-shape ducts[END_REF]). When the Reynolds number is equal to 12000, the boundary layers are thinner due to the reduced viscosity. This implies that the recirculating vortices can occupy a larger space within the duct core and their center is moved towards away from the walls as compared with the simulation at Reynolds number 6000 (cf. figures 4 a) and b)).

Close to the concave wall, the lack of balance between the centrifugal forces and the radial pressure gradient gives rise to the well known Görtler vortices. On figure 5, we show iso surfaces of positive This criterion based on Q, second invariant of the velocity derivative tensor (see [START_REF] Hunt | Eddies, stream, and convergence zones in turbulent flows[END_REF]), allows to identify the coherent structures. Görtler vortices appear at the beginning of the curved part and are subsequently moved from the concave toward the convex wall. At Reynolds number equal to 12000, the observed structures are more numerous and smaller in size than in the 6000 case (cf. figure 5): the turbulent structures indeed scale on the viscous length which is smaller when the viscosity is reduced.

Q with Q = 0.6U 2 b /D 2 h and Q = 0.8U 2 b /D 2 h in
We next check the Reynolds number impact on the velocity profiles. On the left of figure 6, the local friction velocity Uτ calculated on each curved wall (concave and convex) is plotted in the duct symmetry plane. The two vertical lines on the left part of figure 6 respectively represent the beginning and the end of the curved part. The formation of the two Ekman vortices strongly influences the friction velocity on both walls: on the concave wall, the friction velocity continuously increases in the curved part due to the reinforcement of the Ekman vortices which generate an impinging flow on the concave wall. Conversely, on the convex wall, the friction velocity decreases since the Ekman vortices yields a flow away from the convex wall. The behavior is similar for both Reynolds number values. We check that the friction velocity decreases when the Reynolds increases.

We now show, on figure 7, the profile of U + is plotted in function of the distance the curved wall considered. At the duct inlet, we observe that the profile of U + is almost similar for the two Reynolds numbers. The modification of the secondary flow induces a slight velocity increase for the higher Reynolds number case in the logarithmic zone. As shown on figure 3, the counter rotating vortices develop closer to the corner, their influences on the velocity profile are weaker. In the middle of the curved part, U + is higher than the theoretical logarithmic law close to the convex wall and lower close to the concave wall. This is due to the fact that the longitudinal pressure gradient is favorable on the convex wall and adverse on the opposite wall. The two U + profiles are still very close for both Reynolds numbers. At the outflow, the Reynolds number has a significant effect on the flow behaviour due to the significant modification on the secondary flow showed on figure 4.

U + = U Uτ i

Heated ducts

In this part, we investigate the influence of the Reynolds number on heat transfer. For the considered Reynolds num-a) bers, the gravitational effects are found to be negligible and all the observed flow modifications are imputable to compressibility. On the convex wall of the curved duct, a constant heat flux, Hw, is applied. Hw, defined below, is associated with a Nusselt number taken equal to 6 (k(T ) is the fluid conductivity).

U + U + U + n + n + n + b) c)
Hw = k(T ) ∂T (s, n, z) ∂n | n D h

=1

(2)

N u = Hw/(k(Tw )Tw /D h ) (3)
Two simulations with heating are carried with the two values of Reynolds number 6000 and 12000: the grid resolutions are identical to the non heated case.

The spatial development of the thermal boundary layer is first shown on figure 8 through the instantaneous temperature in the symmetry plane of the curved duct for each value of the Reynolds number. In both cases, the thermal boundary layer thickness reaches n/D h ≈ 0.5 at the outflow. It can be observed, that the fluctuations of the temperature are more important when the Reynolds increases. From the beginning of the curved part, ejections of hot fluid take place on the hot wall. We observe that the increase in the Reynolds number induces an augmentation in the size of the turbulent ejections of hot fluid and the latter are more frequent along the duct at the higher Reynolds.

On figure 9, the mean secondary flow and the mean temperature isolines are represented in a cross section at the end of the curved part. The outer line for the temperature corresponds to T /Tw = 1.1. The secondary flow plays a major role in the heat transfer. Close to the sidewalls, high speed cold fluid first impacts the heated wall and then converges towards the duct symmetry plane: in this convergence phase it is heated by the heated wall. The central convergence region near the heated wall therefore constitutes a stagnation region where the temperature reaches its maximum. The hot fluid is subsequently ejected from this region towards the duct core.

Figure 10 displays the same quantities as figure 9 but in a cross-section at the end of the duct. The intensity of the secondary flow is weaker than in the curved part, but the two recirculation cells are closer to each other. The pocket of hot fluid is larger in size, compared with figure 9, and we observe that the hot fluid reaches n/D h ≈ 0.4 in the symmetry plane for both Reynolds values. Since the Ekman cells are wider at Re = 12000, as showed in the first part, the thermal boundary layer thickness is larger for the higher Reynolds number case ( figure 10 b)). Closer to the sidewalls, since the impacting flow has lost its intensity the thermal boundary layer can also develop. It is interesting to note that the small recirculation vortices form very close to the two corners and that they associated with a localized region of hot fluid.

We now investigate the spatial evolution of the mean temperature on the heated convex wall (see figure 11). T is plotted in function of s/D h in the symmetry plane at z/D h = 0.5 and closer to the sidewalls at z/D h = 0.25. We observe that T is higher at Re = 12000 than at Re = 6000 with a quasi constant difference close to 8 % between the two profiles throughout the duct width. From s/D h = 0.2D h the temperature starts increasing with a faster increase in the high Reynolds number case. This is can be explained in the following way: the viscosity is reduced at high Reynolds number. Since the Prandtl number is taken equal to 0.7, the viscosity decrease induces a diminution of the fluid conductivity k. The fixed value of the heat flux necessarily imposes a larger temperature difference between the wall temperature and the fluid in the duct core. The incoming fluid temperature being identical for both cases, the wall temperature is consequently higher for the large Reynolds number value. Once the fluid enters the curved part, the temperature growth becomes linear with a growth rate which is similar for both values of the Reynolds On figure 12, the profiles of the temperature T on the convex wall are plotted as a function of z/D h at four downstream locations: at the beginning, the middle, the end of the curved part and at the outflow. It confirms that the global augmentation of temperature is more important at Re = 12000. At the beginning of the curved part, the profiles are quasi uniform showing that the development of the thermal boundary layer is identical whatever the distance from the duct corner. Because of the subsequent formation of the Ekman vortices, we assist to a significant temperature amplification for z/D h > 0.3 and a diminution closer to the sidewalls due to the impinging cold fluid from the duct core. The transverse temperature gradient on the heated wall reaches its maximum at the end of the curved section and is more important at high Reynolds number. The progressive disappearance of the Ekman vortices in the straight exit part of the duct is associated with an attenuation of this gradient and the return to a more uniform temperature profile.

CONCLUSION

LES of the turbulent flow in curved heated ducts with square cross-section have been carried out with two different Reynolds number : Re = 6000 and Re = 12000. The aim is to investigate the influence of the Reynolds number on the flow and on the coherent structures. In the straight inlet part of the duct, the system of counter rotating cells is located closer to the duct corners when the Reynolds number increases. In the curved portion of the duct, a strong secondary transverse flow appears due to the radial pressure gradient between the two curved walls which eventually yields the formation of Ekman vortices. At the higher Reynolds, these become wider and their centre is moved away from the duct corner. We then study the heat transfers mechanisms within the duct by imposing a uniform heat flux on the convex wall. The Ekman vortices are found to be associated with a significant temperature gradient on the heated wall. These vortices induce an impingement of cold fluid from the duct core in the region of the heated wall located between the middle plane and the duct corner. This impinging flow gives rise to a converging transverse flow towards the duct middle plane and a stagnation region close to the heated wall where a significant temperature increase is observed. The Ekman vortices are therefore and Re = 12000 at a) the beginning of the curved part, b) the middle of the curved part, c) the end of curved part and d) at the outflow associated with a significant transverse temperature gradient on the heated wall. This gradient is even more pronounced at high Reynolds number. In practical situations, this strong gradient can yield important transverse thermal constraints and the material alteration of the heated wall.
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 34 Figure 3: Cross section of the mean secondary flow at the inflow in a quarter of the duct, a) Re = 6000, b) Re = 12000
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 56 Figure 5: Iso surfaces of Q criterion in the curved part : a) Re = 6000, b) Re = 12000
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 7 Figure 7: Profiles of U + for Re = 6000 and and for Re = 12000 . . . . . and on the concave and the convex wall respectively : a) at the inflow, b) the middle of the curved part, c)the outflow.
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 8 Figure 8: Instantaneous temperature in the symmetry plane for a) Re = 6000 and b) Re = 12000, darker color corresponds to higher temperature.

Figure 9 :Figure 10 :Figure 11 :

 91011 Figure 9: Half cross sections of the mean secondary flow and temperature isolines at the end of the curved part : a) Re = 6000, b) Re = 12000
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 12 Figure 12: Profiles of T /Tw on the convex heated wall as a function of z/D h for Re = 6000 and Re = 12000 at a) the beginning of the curved part, b) the middle of the curved part, c) the end of curved part and d) at the outflow