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Introduction

For a long time, it has been a prevailing dogma in neuroscience that the adult brain is

unable to generate new neurons. Pioneer studies by Altman [2] or Kaplan and Hinds [31]

suggesting that this assumption could be wrong, were received with scepticism or even 

criticism. Nowadays, it is well accepted that neurogenesis persists in discrete regions of the 

adult mammalian brain. However, active adult neural progenitors are restricted to two small 

areas of the telencephalon, the subependymal zone of the lateral ventricle (SEZ) and the 

subgranular zone (SGZ) of the dentate gyrus in the hippocampus  [29,42]. These findings

stimulated a considerable number of studies aiming at isolating neural stem cells and 

understanding their basic biological properties, with the ultimate objective to manipulate them 

and enhance repair and regeneration. 

It is now established that the capacity to produce new neurons as adults is a common 

feature of all vertebrates and also invertebrates [41]. In non-mammalian tetrapods, 

neurogenesis is most documented in birds where generation of new neurons appears restricted 

to a single region, the periventricular zone of the lateral ventricle. This also seems to be the 

case in lizards [41], whereas in amphibians adult neurogenesis is poorly documented apart 

from the olfactory bulb and retina [41]. In contrast, there is increasing information for teleost 

fish, which seem to have an unparalleled capacity to produce new neurons during the adult 

stages. 

Teleost fish are the champions of adult neurogenesis

Teleost fish represent the largest group of actinopterygian fish, a lineage that diverged 

some 450 millions years ago from the sarcopterygian fish, their tetrapod ancestors. Whereas 

there is unfortunately little data on adult neurogenesis in the basal representatives of 

actinopterygians, holosteans (Amia, Lepisosteus,…) and chondrosteans (sturgeon), there is 

quite a lot of evidence suggesting that the adult brain of teleosts exhibits a unique capacity to 
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generate new neurons. In the late 60’s, pioneer studies [34,36,37] demonstrated extensive cell 

proliferation in the telencephalon, diencephalon, cerebellum and spinal cord of fish. Using 

tritiated thymidine it was shown that, although the proliferative activity decreased 

progressively with age and size, the brain of the guppy still exhibited significant proliferative 

activity in the adult [37]. Since then, the existence of widespread periventricular proliferative 

zones (PZ) was confirmed in different teleost species [41]. In the stickleback, detailed 

comparisons of tritiated thymidine incorporation with PCNA and BrdU 

immunohistochemistry showed the presence of many proliferation zones in the entire brain; 

although the number of proliferative cells seemed to be more important in the telencephalon, 

diencephalon and mesencephalon [16]. This study demonstrated that all these PZ were located 

within or immediately below the ventricular layer, with the exception of the cerebellum in 

which proliferation occurred in the parenchyma. More recently, several studies further 

documented the presence of mitogenic zones capable of generating new neurons in many 

parts of the telencephalon, diencephalon, midbrain and cerebellum of zebrafish [1,27,56,73]. 

These data confirmed that adult fish exhibit an enormous potential for neurogenesis,

compared to tetrapods, and that adult neurogenesis not only occurred in regions homologous 

to neurogenic regions in mammals, but also in many other regions throughout the entire brain. 

This is most likely linked to the fact that fish keep growing during their entire lifespan, 

making it necessary to constantly generate new neurons [8,9]. This, of course, suggests that in 

addition to the high proliferative activity, other cellular processes such as apoptosis, 

migration, and differentiation must occur, but these are poorly documented. 

Thus, the question is: Why do fish adult stem cells maintain their mitogenic activity in 

many regions, whereas in other vertebrates adult neurogenesis is limited to just one or two 

discrete areas? Recent data in mammals indicate that a combination of intrinsic and extrinsic 

cues dictates the behaviour of adult neural progenitor [29,51]. In this review, we would like to 
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examine the possibility that one of the mechanisms participating in the establishment of a 

highly permissive environment in the adult fish brain could be linked to their unique capacity 

to produce estrogens, because of a strong expression of the estrogen synthesizing enzyme 

aromatase (estrogen synthase). Indeed, apart from this exaggerated proliferative activity, 

another major feature of the adult fish brain is its exceptionally high aromatase activity. 

Despite the fact that this has been known for some time, the significance of this peculiarity is 

still not clearly understood [54,55]. 

Aromatase, the estrogen-synthesizing enzyme is strongly expressed in radial glial cells 

of the adult fish brain.

The terminal step of estrogen biosynthesis is catalyzed by an enzyme complex termed 

aromatase (estrogen synthase). This key complex, bound to the endoplasmic reticulum

membrane, is formed by the cytochrome P450 aromatase, a heme binding protein produced by 

the cyp19 gene, and by an ubiquitous flavoprotein, the NADPH cytochrome P450 reductase

[40]. Aromatase is expressed in the brain of all vertebrates [7], but fish exhibit several 

interesting and unique features compared to mammals and birds. Firstly, it is known that the 

total amount of enzymatic activity of aromatase (pmol/mg protein) in the brain of fish is one 

hundred to one thousand times higher than in corresponding regions of mammals and birds

[12,54]. Microanatomical and biochemical techniques have shown that an exceptional 

potential for aromatization takes place in the forebrain of fish, particularly in the 

telencephalon, preoptic area and the hypothalamus [67]. Secondly, teleosts possess two 

aromatase genes in their genome. In mammals and birds, aromatase is generated from a single 

cyp19 gene that is regulated by multiple tissue-specific region promoters and alternative 

splicing, resulting in transcript variants but identical coding sequences [11]. In most fish,

there are two distinct genes, cyp19a and cyp19b, each of which is regulated differently and 

encodes a structurally and functionally different aromatase protein [15,66]. Data from a large 
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sample of fish showed that the two genes have consistently different patterns of expression,

CYP19A (Aromatase A) is predominantly expressed in the gonads while CYP19B 

(Aromatase B: AroB) is mainly expressed in the brain [15,24,48,66], providing a good 

example of partition of function between duplicated genes[60].

In the brain of birds and mammals, aromatase was for a long time only reported in 

neurons, notably of the diencephalon and limbic systems [7,72]. However, more recently 

aromatase was described in radial cells of the developing cortex in the mouse [45] and in 

astrocytes of the adult human cortex [71]. In contrast, another unique characteristic of teleosts

is the fact that AroB expression in adults is strictly confined to radial glial cells. Such cells are 

characterized by a small nucleus adjacent to the ventricle and long radial processes 

terminating by end feet at the brain surface [59]. Radial cells are strongly involved in 

embryonic neurogenesis and, in contrast to mammals where they disappear at the end of 

neurogenesis, they largely persist in the adult brain of non-mammals, notably in fish. Strong

expression of AroB in radial glial cells of fish was first shown in the plainfin midshipman 

[18] and then in trout, zebrafish, pejerrey and bluehead wrasse [44,48,50,63]. In the trout and 

zebrafish we showed that both AroB mRNA and protein expression, in adult mature fish, are

strictly confined to radial glial cells. These AroB-expressing cells are most abundant in the 

forebrain, notably in the olfactory bulbs, the telencephalon, the preoptic area and the 

mediobasal hypothalamus, in particular along the lateral and posterior recesses [50]. 

However, consistent with the distribution of the messengers [48], AroB-positive cells were 

also observed in the periventricular layers bordering the optic tectum, the torus semicircularis 

and along the fourth ventricle [48,50]. 

That aromatase B is expressed in radial glial cells in the brain of adult teleosts is also 

supported by the fact that such cells were shown to express a variety of markers; in particular

Brain Lipid Binding Protein (BLBP), a nervous system-specific member of the large family of 



5

hydrophobic ligand binding proteins, which is exclusively expressed in radial glial cells and 

astrocytes throughout the developing brain [1,5,6]. BLBP displays very high expression in 

radial glial cells of zebrafish [1] where it is often co-expressed with AroB (K. Mouriec and N. 

Diotel, unpublished data). In addition, the exclusive expression of AroB in radial glial cells 

was confirmed by the fact that none of these cells express markers of post-mitotic neurons 

such as HuC/D, a RNA-binding protein selectively expressed in neurons, or acetylated tubulin

[18,56]. 

Radial glial cells are progenitor cells in adult fish

The role of radial glial cells in embryonic neurogenesis is well established in birds and 

mammals. First known for serving as scaffolds for neuronal migration during embryonic 

neurogenesis [59], radial glial cells are now considered as progenitor cells able to generate

glial cells (astrocytes, oligodendrocytes and ependymal cells) and neurons [25,26,52,53]. 

More recently, data showed that radial glial cells are the source of all brain neurons not only 

during development, but also in adults [26]. In birds, adult neurogenesis results from 

asymmetric division of the radial glial cells which give rise to newborn neurons migrating 

tangentially and radially along radial extensions to reach the telencephalon [4]. In adult 

mammals, astrocytes from the subventricular zone act as stem cells which divide to generate 

precursors ultimately generating neurons, some of which migrate to colonize olfactory bulbs

[42]. Nevertheless, radial glial cells disappear after the embryogenesis in mammals [52,53]. In 

contrast, radial glial cells persist in other vertebrates, notably in birds [3] and fish [48,59].

However, it is only recently that the implication of radial cells in adult neurogenesis has been 

envisioned. Recent data in zebrafish have further confirmed the very high proliferative 

activity of the brain, already documented in other teleost species [1,27,56,73]. Using BrdU 

immunohistochemistry and aromatase B as a marker of radial glial cells it was found that, at 

short survival times (12 and 24 hours), a large majority of cells exhibiting BrdU labelling
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corresponded to AroB-positive radial cells [56]. The radial nature of proliferative cells in the 

telencephalon and diencephalon was also indicated using antibodies to BLBP [1]. In addition, 

it was shown that, over time, newborn cells clearly move away from the periventricular 

proliferative zones, as indicated by double BrdU/PCNA staining [1,56,73], using radial 

processes as scaffolds [56]. Whilst in most of the forebrain newborn cells appear to move 

radially, actively dividing cells from the ventral subpallium generate rapidly dividing 

progenitors and neuroblasts that reach the olfactory bulb via a rostral migratory stream [1]. In 

the zebrafish, many of the newborn cells differentiate into neurons, as shown by combining 

BrdU and the use of several neuronal markers such as Hu or Acetylated-Tubulin [1,27,56,73]

Thus, at least a subset of AroB-positive radial glial cells represents progenitor cells and is

capable of actively dividing to generate new neurons. As mentioned above, aromatase is the 

only synthetic enzyme of estrogens; indicating that, provided aromatizable androgens are 

available, such cells will produce locally high amounts of estrogens that will act in a paracrine 

or autocrine fashion in these periventricular proliferative regions (Figure 1). Although 

preliminary results (K. Mouriec, unpublished data) indicate that E2 modulates cell 

proliferation in zebrafish, this remains to be thoroughly evaluated. However, increasing 

evidence suggests that estrogens may promote neurogenesis in other vertebrate models.  

Emerging new functions of estrogens in embryonic, adult or reparative neurogenesis

Due to its well-documented synchronizing effects on the reproductive axis, estradiol (E2) is 

best know as a female sexual steroid. However, it is now considered, in both males and 

females, as a hormone exhibiting a myriad of neurotrophic and neuroprotective functions that 

are essential for neuronal development, survival and plasticity throughout life [12,24,62]. This 

variety of effects is correlated to the diversity of the cellular and molecular mechanisms 

underlying estrogen actions. Indeed, estrogenic effects may rely on activation of specific 

intracellular estrogen receptors, ERα and ERβ. These intracellular estrogen receptors 
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modulate gene expression and produce long-term genomic effects on interaction with plasma 

membrane sites that produce rapid non-genomic actions, and also on a growing number of 

receptor-independent mechanisms [69]. 

Estradiol is present in the brain of vertebrates from developmental stages until adulthood and 

is known for influencing neuronal differentiation, survival and plasticity [10,22,64,69].

However, a number of recent data suggest that estrogen could also influence the behaviour of 

progenitors and influence neurogenesis. 

In rodents, it is known that brain aromatase activity is maximal during the embryonic period 

[40]. While aromatase was mostly believed to influence the construction of male specific 

structures according to the aromatization hypothesis [47], it was recently reported that 

aromatase is strongly expressed in radial cells of the embryonic neocortex and that such 

aromatase-expressing radial cells also express ERα [45]. Furthermore, in vitro E2 

administration increased proliferation, while in utero blockade of estrogen receptors decreases 

proliferation of these embryonic cortical progenitor cells [45]. These data, whilst not 

forgetting the situation in adult fish [56], suggest a new functional role for E2 as a 

proliferative agent during critical stages of cerebral cortex development [45]. Such findings

are in agreement with the fact that the brains of adult ERβ-/- knockout mice show regional 

neuronal hypocellularity, especially in the cerebral cortex [30]. While in rodents, the source of 

aromatizable androgens necessary for estrogen production in the cortex is not known, recent 

studies in songbirds (at posthatch day 1and 5) indicated that all the genes required for de novo

estrogen synthesis from cholesterol are expressed in the developing brain of both sexes, with a 

spatial distribution similar to the known pattern of proliferating neuronal precursors along the 

lateral border of the lateral ventricle [43]. 
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De novo synthesis of estrogens from cholesterol is also documented in neurogenic regions in 

the adult rodent, notably in the hippocampus, where the E2 concentrations can be higher than 

in the blood [28]. 

There is also rapidly accumulating data showing that estradiol modulates adult neurogenesis 

in the dentate gyrus of normal [17,20,21] or diabetic rats [61,62], a mechanism that would 

implicate ERα and ERβ [46]. Furthermore, the anatomical and functional implications of 

brain aromatase expression in the neurogenesis construction of vocal and auditory circuits in 

teleost fishes and songbirds, are also well documented [19,57].

In addition, estrogens have long been known for acting as a neuroprotective factor under brain 

repair situations. Until recently [45,71], aromatase expression had been reported in astrocytes 

(in rat) or in radial glial cells (in birds) only after chemical or mechanical lesions [23,57,58]. 

More lately, this increase in estrogen production around the lesions is correlated with 

increased neurogenesis as demonstrated by several recent studies [39,70]. Furthermore, it was 

shown that estradiol enhances neurogenesis following ischemic stroke through ERα and ERβ

signalling [65].

All these data suggest that estrogens should be taken into consideration among other factors 

potentially regulating embryonic, adult and reparative neurogenesis. If it is clear that 

estrogens are locally produced in neurogenic regions, notably in the vicinity or even within 

progenitor cells, many questions remain open regarding the significance of these data. Open 

questions notably concern the regulation of brain aromatase expression and the origin, central 

or peripheral, of aromatizable androgenic precursors.

What triggers aromatase expression in the brain of fish?

The promoter of the zebrafish cyp19b gene has been characterized by several groups 

[13,32,50,68]. Analysis of the promoter sequence revealed the presence of a TATA box,
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several putative cis regulatory elements including an Estrogen-Responsive Element (ERE) 

and an half ERE and pioneer studies indicated that AroB is up-regulated by E2, its own 

product [33,35]. Of particular interest is the finding that if embryos are treated for 2, 3 or 5 

days with E2 (10nM) a very strong up-regulation of AroB messenger, protein and activity is 

observed exclusively in the radial glial cells of zebrafish larvae [50]. This effect is entirely 

blocked by an excess of the pure anti-estrogen ICI 182 780, indicating the requirement of one

of the three zebrafish estrogen receptors [49]. The fact that ERs are necessary for the up-

regulation of AroB, but not sufficient alone, is further evidenced by the fact that ER are 

expressed in many cells in the brain parenchyma that do not express AroB [49].This is further 

indicated by in vitro studies showing that E2 up-regulation of an AroB-reporter gene in the 

presence of E2 was only observed in certain cell contexts, again indicating the need of 

specific factors. Interestingly, strong up-regulation of the zebrafish AroB-luciferase reporter 

in the presence of zebrafish ER was observed only in P19 cells, differentiated into neurons 

and glial cells by retinoic acid, or in U251-MG human astrocytes indicating that a 

“neuroglial” cell context is necessary [14,38,55]. These data correlate well with the fact that 

deletion/mutation of the ERE on the AroB promoter results in the total absence of E2 

induction. Interestingly, deletion/mutation of a sequence upstream of the ERE, named GxrE,

also prevents the E2 stimulation of the AroB-luciferase even when the ERE is intact. As 

shown by gel shift experiments, this sequence is able to bind nuclear extracts from P19 cells 

differentiated into neurons and glial cells by retinoic acid, or in U251-MG human astrocytes, 

but not from other cell lines [50]. These data suggest that ER could act in cooperation with 

some unknown neuro-glial factor to promote the up-regulation of the cyp19b gene in neuro-

glial or glial cells (Figure 2). So, our hypothesis is that a positive autoregulatory loop explains 

the high expression of Aro-B in radial glial cells of adult fish. Indeed, high circulating steroid 

levels will further promote AroB expression in radial cells. Whether such a mechanism is also 
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implicated in expression of aromatase in other vertebrates is unknown and requires urgent 

investigation.

Conclusions

These data stress the originality of the teleost fish brain in which progenitor radial glial cells, 

and not neurons, strongly express the estrogen synthesis enzyme, aromatase. Until recently, it 

was thought that aromatase expression in radial cells was a unique feature of teleosts, but very 

recent data suggest that aromatase is expressed in radial glial cells during embryogenesis or 

under brain repair situations in other vertebrates. In addition, an increasing number of studies 

point to the role of estrogens in cell proliferation and neurogenesis. Overall, this suggests that 

the brain of adult fish possibly presents an exaggeration of a more general mechanism 

involving estrogens in embryonic, adult and reparative neurogenesis. 
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Legends to figure: 

Figure 1: Schematic representation of the current hypothesis regarding the role of radial glial 

cells in adult neurogenesis in fish. Radial glial cells divide by asymmetric division and give 

birth to new cells (1). Such newborn cells can occasionally further divide (2) or migrate along 

the long radial processes (3) to give birth to neurons (4). It is also possible that newborn cells 

undergo apoptosis (5). A large number of in vivo and in vitro data have demonstrated that 

estradiol has the capacity of modulating all these cellular activities.

Figure 2: Schematic representation of the current hypothesis for the strong aromatase B 

expression in the radial cells of fish.  A mandatory cooperation between estrogen receptor and 

a « glial »-specific factor (Gx), binding onto a GxRE sequence upstream the ERE, results in a 

high sensitivity of the cyp19b gene to E2. This hypothesis also explains why testosterone (T)

also up-regulates aromatase B expression.
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