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Geometric Interpretation of Second Elliptic
Integrable System

Idrisse Khemar
(joint work with Francis Burstall)

Abstract.

In this paper we give a geometrical interpretation of all the second elliptic
integrable systems associted to 4-symmetric spaces. We first show that a 4-
symmetric space G/Gq can be embedded into the twistor space of the corre-
sponding symmetric space G/H. Then we prove that the second elliptic system
is equivalent to the vertical harmonicity of an admissible twistor lift J taking
values in G/Goy — S(G/H). We begin the paper by an example: G/H = R*.
We study also the structure of 4-symmetric bundles over Riemannian symmetric
space.

Introduction

The first example of second elliptic integrable system associated to a 4-symmetric
space was given in [12]: the authors showed that the Hamiltonian stationary
Lagrangian surfaces in C? are solution of one such integrable system, and after
they generalized their result to complex two-dimensional Hermitian symmetric
space, [14]. Then we gave in [17] a new class of geometrical problems for sur-
faces in the Euclidean space of dimension 8 by using the identification R® = Q,
and proved that they are solution of a second elliptic integrable system. Using
the left multiplication in O by the vectors of the canonical basis of Im O we
defined a family {w;, 1 < i < 7} of canonical symplectic forms in @. This al-
lowed us to define the notion of wr-isotropic surfaces, for I & {1,...,7}. Using
the cross-product in @ we defined a map p: Gra(Q) — S° from the Grassman-
nian of plan of O to S%. This allowed us to associate to each surface ¥ of O a
function px;: ¥ — S8. In the case of w;-istropic surfaces, ps takes values into
a subsphere S = S(®;¢7;~0Re;) = S9~1|. Then we showed that the surfaces
in O such that px; is harmonic (p-harmonic surfaces) are solutions of a com-
pletely integrable system S. More generally we showed that the w;-isotropic
p-harmonic surfaces are solutions of a completely integrable system S;. Hence
we built a family (S;) indexed by I, of set of surfaces solutions of a integrable
system, all included in § = Sy, such that I C J implies Sy C S;. Each Sy is a
second elliptic integrable system (in the sense of C.L. Terng). This means that



the equations of this system are equivalent to the free curvature equation :
1
doy + 5[0& AN Oé)\] =0,

for all A € C, and where ay = A7 2% + A ta_1 + ap + Aoz + A\2af.

By restriction to H C O of our theory we obtain a new class of surfaces: the
wy-isotropic p-harmonic surfaces of H. Then p(Gro(H)) = S? and |I| = 0,1 or
2. For |I| = 1 we obtain the Hamiltonian Stationary Lagrangian surfaces in
R* and for |I| = 2, the special Lagrangian surfaces. By restriction to Im H, we
obtain the CMC surfaces of R3.

Besides in [18], we found a supersymmetric interpretation of all the second el-
liptic integrable system associated to a 4-symmetric space in terms of super
harmonic maps into a symmetric space. This leads us to conjecture that this
system has a geometrical interpretation in terms of surfaces with values in a
symmetric space, such that a certain associated map is harmonic as this is the
case for Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric
spaces or for p-harmonic surfaces of Q.

In this paper we give the answer to this conjecture. That is to say, we give a
geometrical interpretation — in terms of vertical harmonic twistor lift — of all
the second elliptic integrable systems associated to a 4-symmetric space. Indeed
given a 4-symmetric space G/Gy, and its order four automorphism o: G — G,
then the involution 7 = o2 gives rise to the symmetric space G/H, with H = G.
Then we prove that the second elliptic integrable system associated to the 4-
symmetric space G/Gy is the equation of vertical harmonicity for admissible
twistor lift in G/H. More precisely, given a 4-symmetric space G/Gy, and
its associated symmetric space G/H, then G/Gy is a subbundle of the twistor
space X(G/H). We prove that the second elliptic integrable systems associated
to G/Gy, is the system of equations for maps J: C — G/Gy C X(G/H) such
that J is compatible with the Gauss map of X : C — G/H, the projection of J
into G/H, i.e. X is J-holomorphic (admissible twistor lift), and such that J is
vertically harmonic.

We begin the paper by a example: R%. This case was just mentionned quicly in
the end of [17] as a restriction of the difficult problem in Q. So here we study
it independantly and in details. However, here we give also a formulation of
this problem in terms of twistor lift which is the right formulation. Besides,
in dimension 4 we have unicity of the twistor lift (in X" (G/H) and ¥~ (G/H)
respectively) so we are in this case in the presence of a theory of surface (and
not as in the general case, a theory of twistor lift) and so we can speak about
p-harmonic surfaces in this dimension (which are exactly the solution of the
second elliptic integrable system). In our work we are led to prove some theo-
rems on the structure of 4-symmetric bundles. Indeed we want to answer the
following questions: given a Riemannian symmetric spaces, do there exist 4-
symmetric bundle over it? In other words in its twistor bundle do there exist
4-symmetric subbbudle, and if yes how can we characterize these 4-symmetric
components? are they isomorphic? How are they distributed in the twistor
space 7 Do they form a partition of the twistor space?. etc.. The 4-symmetric



space have been classified (at least in the compact, see [16, 21]). However, our
point, of view is different: we want to have an intrinsic point of view as long
as possible so we deal with the Riemannian symmetric space and its (locally)
4-symmetric bundle defined over it, and we try to forget as much as possible
the four automorphism of the Lie algebra. Our aim is to give a formulation
of our problen as general and intrinsic as possible. For example, our defintion
of vertical harmonicity holds for any Riemannian manifold, moreover we give
the following characterization: define a (locally) 4-symmetric bundle over M
is equivalent to give ourself Jy € 3(T},, M) which leaves invariant the curva-
ture. We obtain the following image: the twistor bundle in the disjoint union of
all the maximal (locally) 4-symmetric subbundle, which are orbits (defined by
some subgroups of Is(M)). Each isomorphism class of orbits defined a different
second elliptic integrable system.

Our paper is organized as follows. In Section 1 we deals with the p-harmonic
surfaces in R*. Section 2 contains our main result: the interpretation of the
second elliptic integrable systems associated to a 4-symmetric space in terms of
the vertical harmonicity of an admissible twistor lift. Then Section 3 and 4 are
devoted to the study of the structure of 4-symmetric bundles over symmetric
spaces. The last Section gives some example of 4-symmetric bundles.

1 p-harmonic surfaces in H

1.1 Cross product, complex structure and Grassmannian
of plan in H

We consider the space R* = H with its canonical basis (1,4,7,k) (which we
denote also by (e;)o<i<3). Let P = ¢A¢’ be a oriented plan of H (itself oriented
by its canonical basis) then there exists an unique positive complex structure
Ip € ¥ (P) on the plan P. Tt is defined by Ip(q) = ¢, Ip(q) = —q if (¢,¢) is
orthogonal. Next, we can extend it in a unique way to a positive (resp. negative)
complex structure of H = P @ P+, J (resp. Jp5) given by

Jy = Ip®Ips
Jp = Ip®—Ip: (1)

(P is oriented so that = P @ P~ is positively oriented). Hence we obtain a
surjective map:
Tt Gro(H) — SH(H)
gNg J;;\q,

(2)

and in the same way a surjective map J~: Gra(H) — X~ (H).
Besides, we have

1
J;;\q/ = Lgx,q = §(Lq’Lli - Lqu—,),

where ¢x1¢' = —Im (q¢-¢') = Im (¢’ - q) is the left cross product (it is a bilinear
skew map from H x H to Im H). Indeed, if (g, ¢’) is orthonormal then ¢x ¢ =



—q¢- ¢ € S(ImH) so Lyx,q is a complex structure of H and it is positive
(because {L,,u € S?} is connected and L; € X (H) because (1, L;(1), j, L;(5))
is positively oriented). Moreover if (¢,q’) is orthonormal then Lgx,,(¢) =

(¢'7)q = ¢'- Hence Lyx,q = J;, - Thus we obtain a diffeomorphism:

TtH) & 52
(} — J(l)' (3)

Under this identification, the map (2) become

pr: Gro(H) — S
qNg — qxpq" .

We can do the same for X7 (H). We obtain that J . , = Ry = —Rgxpg =
1(RyRg — RyR7), where ¢xrq’ = —Im(q-¢') = Im (¢’ - q) is the right cross
product (it is a bilinear skew map from H x H to Im H). Then we have the same
identification between ¥~ (H) and S?, as in (3). Under this identification J~

become
p—: Gry(H) — S?
!

qNg = axrdq .
1.2 Action of SO(4)
Recall the following 2-sheeted covering of SO(4):

x: xS — SO(4)
(a,b) —  LoRy

and set Spin(3)4+ = Lq,a € S3, Spin(3)— = Ry, b € S3, then SO(4) = Spin(3)+
Spin(3)- = Spin(3)_Spin(3)+. We have the two following representation of
Spin(3).:

xt: Ly —int, = LyR; € SO(ImH), Y : Ry — inty, = LRy € SO(Im H).
Then the map p. is Spin(3)-equivariant: for all ¢,¢' € H, g = L, R; € SO(4),

(99) x (9¢) = algxrq)a = int.(qxrq')
(99) xr (9¢') = blaxrd)b = inty(qgxgrq).

Hence we have Vg € SO(4),

pe(9(and)) = x5(pe(a N )

(where we have extended x° to SO(4) in an obvious way: xT(L.R;) = x*(La),
X~ (LaR;) = x~ (Rj). Besides the map J¢ is also Spin(3)-equivariant, in other
words the identification (3) is Spin(3)-equivariant:

Vg € SO(4),

97 5g 9 = LaRy Lyx g RoLa = Lagx g1 = J;(W,) .



The action of Spin(3); = SU(R* R.) (resp. Spin(3)_ = SU(R* L.)) on
Y7 (H) (resp. T (H)) is trivial. Hence SO(4) acts on X¢(H) only by its compo-
nent Spin(3). (in the same way it acts on S? only by its component Spin(3).

via x°). In fact, the equality gJ g~' = e ., results immediately from

the definition of J (;rAq, and the fact that g is a positive isometrie. This natural
equality which is equivalent to what we called the fondamental property in [17]:
(99) x (g99") = x4(q x ¢'), is characteristic of dimension 4: in this case it is pos-
sible to associate in a natural way (which depends only on the metric and the
orientation) to each plan a complex structure, which is not possible in greater
dimension. In dimension 8, we must choose a octonionic structure in R® to do
that. (see [17]).

1.3 The Grassmannian Gry(H) is a product of sphere
Theorem 1 The map
pr xp_: Gro(H) — 82x8?
and — (axpd.axrq)
is a diffeomorphism.

Proof. SO(3) x SO(3) acts transitively on S? x S? so SO(4) acts transitively
on S? x S§2 via x*T x ¥, thus p, x p_ is surjective.
Let p € S(ImH), g = L Ry, ¢ = Lo Ry € SO(4) then we have

p+ > p-(g(Lne)) =py xp-(g'(1Ne)) = (aca ~1beb™!) = (a'ea’ ", beb' )

— d o,V 'be S(e
= (LaRy) ™ (LaRp)(
= g(lAe)=g'(1Ne).

Hence, since SO(4) acts transitively on Gry(H), we have proved that py x p_
is injective and that

pr X p—(g(1A€)) = ps x p_(g'(1 Ne)) = (' 'a,b'"'b) € St(e) x S'(e)

(in the previous sequence of implications, the last propositions implies the first
one so all the propositions are equivalent). This completes the proof. |
As it is the case in [17], it is useful here to introduce a function g. on Spin(3).
corresponding to p.: we define p.,: Spin(3). — S? by pe.(g9) = x5(e) (where
e € S(ImH) = S?), i.e. under the identification Spin(3). = S we have p..(a) =
int,(e) = aea™!, which is nothing but the Hopf fibration S* — S3/S1(e). If
pe(e1 A ez) = e then je.(9) = pe(g(er A ez)). In the following, we will forget
the index e. Hence, if we take e; A es such that p.(e; Aes) = e for e = +1 (i.e.
e1 Aeg = (1 Ae)t which means also that (e, eq,e2) is a direct orthonormal basis



of Im H) then we have the following commutative diagram:

53 x 83 —X 5 SO(4)

g9
ﬁ+Xﬁ—l l 1
g(epnez)

5% % 82 —=— Gry(H)

P+ Xp—

Let us now consider the restriction to Im H = R3 of this diagram. First the uni-
versal covering Spin(3) — SO(3) is obtained by restriction to Ag = {(a,a), a €
S§3} ~ 83 of x: S3 x S — SO(4), which gives the covering (a,a) +— int,.
Then supposing in addition that ej,es € ImH, the restriction to SO(3) of
SO(4) — Gro(H) is only the surjective map g € SO(3) — g(e1 Aez) € Grz(R3?).
And the restriction to Gra(R?) of p4 x p_ gives the diffeomorphism p: u A v €
Gra(R3) — u x v € S?. Finally the restriction to Az of j. x j_ gives the
Hopf fibration g: a € S% +— aea™! € S2. So by restriction to R3, we obtain the
classical commutative diagram:

S8 X, 50(3)

wl

5% —=— Gry(R3)

Remark 1 Besides if we use ¥¢(H) instead of the sphere S? the Hopf fibration
5. become SU(2,Ji5) — SE(H) = SU(2J55)/U(L). = SO()/U(2, J,,)
where U(1)+ = RSl(e) = exp(R.Re), U(l)_ = le(e) = eXp(R.Le).

1.4 The p-harmonic w;-isotropic surfaces

We recall here in the particular case of H = R* our result obtained in [17]
about p-harmonic surfaces. To do that, we need to introduce some notations
and definitions. We have

3
pelgng) =—2> wilg,q)es
=1

where (e;)1<i<s = (4,7,k) and wi = (-, Ji,.,) (i.e. w;L = (L), w;, =
(- Re;)). Let us set, for I & {1,2,3},

Q7 ={P € Gra(H)|wj(P) =0, i €I},

then Qp = Gra(H), Quy = {P € Gro(H), Lagrangian for wy}, and Qi s
the set of special Lagrangian plan (more precisely the wf-Lagrangian plan P such
that detc> (P) = 44 under the identification: x € R* v (x +ixp, 21 +iczpn) €
C?, with (k, 1, kAl) cyclic permutation of (1,2, 3); for example, if (k,1) = (1,2), it
is the identification (z1, z0) € C? +— 214205 € Hfor e = 1 and (21, 22) +— 21+ j22



for e = —1). We have also p-(Qr) = S' = S(@,¢;Rei) = 52,5, {+ex}
for |I| = 0,1,2 respectively. Besides we have for I = {i} C {1,2,3}, that
JH(Qr) = Lgr = S*(RL., ® RL,) is the circle of positive complex structure
which anticommute with L.,; and for I = {i,j} C {1,2,3}, J*(Qr) = Lgr =
[£L.,}.

We denote by G5 the subgroup of Spin(3). which conserves wg, ¢ € I; this is the
subgroup of Spin(3). which commutes with L, i € I. Then G5 = S3, S, {+1}
for |I| =0, 1, 2 respectively. We can also consider instead of Spin(3). the group
SO(4) (which is equivalent to add the component Spin(3)_. which is useless),
then we have G5 = SO(4),U (2, Jix,), SU(2, Ji,,) for [I| = 0,1, 2 respectively.
Let e € S(€,¢;Rei). The inner automorphism , ints; , define on G7 an
involution which gives rise to the symmetric space 57 = G5/G5 (xy and in the
Lie algebra of G5, g7, to the eigenspace decomposition of AdJ7,.:

g7 = go(1) @ g5(I)

with g§(I) = ker(AdJ;,, —Id), g5(I) = ker(AdJ5,, + 1d).

Let us introduce G5 = G5 x R* the group of affine isometries of which the linear
part is in G5, and its Lie algebra: g°(I) = g5 ®R*. Consider the automorphism
of the group Gj: 7¢ = int(—eJiy,,0) with e € S(@,¢;Re;). This is an order
four automorphism which gives us an eigenspace decomposition of g¢(I)®:

() = P )

k€EZy

with %, (1) = g5, = ker(J5,, % i1d), (1) = g5(D)%, §5(1) = g5(1)°. Moreover
we have (g5 (1), 07 (1)] C g5, (1)-
We fix a value of ¢ = £1. Then let us define as in [17]:

Definition 1 Let X be a immersed surface in H, then a map ps: ¥ — S? is
associated to it, defined by px(2) = pe(T.X) i.e. if X: X — H is the immersion
then py = X*pe. We will say that X is p-harmonic if ps, is harmonic. Let
I ¢ {1,2,3}, we will say that ¥ is wy-isotropic if Vz € £, T, € Q5 (i.e. ¥
is W5 -isotropic for all i € I) which is equivalent to: px takes values in ST =
S(®igrRe;) C S2. Hence for |I| = 1, the p-harmonic w$-isotropic surfaces are
the Hamiltonian stationary Lagrangian surfaces in C?, and for |I| = 2, these are
the special Lagrangian surfaces in C? (see above for the identification R* ~ C2).
If it could be some ambiguity as concerned the value of ¢ = £1, we will use the
qualificatifs "left" and "right" respectively to design these two values. A lifted
conformal left (resp. right) wr-isotropic immersion - LCwy - (if I = & we will
say a lifted conformal immersion or simply a lift) is a map U = (F, X): ¥ — G5
such that X is a conformal w5-isotropic immersion and p. o F' = ps,

We have obtained the following result in [17]:

Theorem 2 Let Q be a simply connected open domain, and o a I-form on Q
with values in g(I), then



e « is the Maurer-Cartan form of a LCwy if and only if

da+aANa=0, o’ =0 and o, does not vanish

e furthermore, o corresponds to some p-harmonic wr-isotropic conformal im-
mersion if and only if the extended Maurer-Cartan form ay = A\~2ab +
Aoy 4+ ag+ dag + A2 satisfies

day +ax ANay =0, YA e C*.

Let us recall the proof given in [17].

Proof. To fix ideas, we take ¢ = 1. « is a Maurer-Cartan form if and only
if it satisfies the Maurer-Cartan equation. In this case, it can be integrated
by U = (F,X): Y — G;, « = U LdU,U(z) = 1. Hence o = U~1.dU =
(F~1.dF,F~1.dX). Moreover, F~1.dX = a_1 + «a; is real and g+; = {V &
iLV,V € H} so a1 =a7. Hence o/ =0 <= o’ =a) =0 <= a_; =
(F7185)dz <= F'95 = L (F7'5Y) <= F7'dX = h(godu + gydv) with
h € C®(w,R), qo,q) € C=(Q,5?), {q0,¢,) = 0 and p(qo, q)) = e. Thus we have
"y =0and o, # 0 <= dX = ef(qdu + ¢'dv) with f € C~(w,R), (¢,¢")
orthonormal and p(q, q’') = pe(F) i.e. px = pe(F'). This proves the first point.
Hence we have the decomposition « = as + a1 +ag+ a1 =ah+ o’ | +ap +
o + o4 . Furthermore, using the commutation relations [gx (1), §:(I)] C gx+i (1),
[g+1,0+1] = {0}, we obtain

dax+axAax = A 2(dah + [ag A ab)])
+A7H(daly +[aly Aao] + [af A aj))
1 1
+(da0 + 5[040 A Oéo] + 5[04’2 N 0/2/])
+A(dad + [of Aag] + [a’ 1 Aad)])
+A2(dady 4 [ag A o)),

the coefficient of A\71, A%, \ are respectively the projection of do + a A a on
g-1, g0, g1 respectively so they vanish and hence

day + ax A ay =dBx2 + Bx2 A B2

where 8y = A7lah + ap + Ao is the extended Maurer-Cartan form of 3 =
F~1.dF, the Maurer-Cartan form of the lift ' € G of px € S’. According to
[6], we know that px is harmonic if and only if dBy + B\ A By = 0, VA € C*.
This proves the second point and completes the proof. |

Remark 2 We have p_(z,y) = —Im (Z.y) = p+(Z,7). Hence X: Q — H is
p—-harmonic if and only if X is p;-harmonic, and X is w; -isotropic if and only
if X is w]-isotropic. Besides if U = (F, X): Q — G x H is a left LCw; then
we have F' = L, and aea™! = px = py(q,q') with dX = e*(qdu + ¢'dv), (¢,q")

orthonormal. Thus, p_(g,7) = aea~* and hence U = (R, X) is a right LCw;.



Remark 3 The restriction to ImH = R? of the left (or right) cross product
gives us the usual cross product of R3. Hence a surface in Im H is left (resp.
right) p-harmonic if and only if it is a constant mean curvature surface.

In the same way, it is easy to see that a surface in S3 is left (resp. right)
p-harmonic if and only if it is a constant mean curvature surface.

Remark 4 We can apply now the Dorfmeister-Pedit-Wu method to obtain a
Weierstrass representation of p-harmonic surfaces (see [6, 12, 13, 14, 17, 18]).

2 Second Elliptic Integrable System

2.1 4-symmetric spaces and twistor space

Definition 2 Let M be a Riemannian symmetric space. We will say that a Lie
group G acts symmetrically on M or that M is a G-symmetric space if G acts
transitively and isometrically on M and if there exists a involutive automorphism
of G, o, such that H the isotropy subgroup at a fized point pg € M, satisfies
(G°)° C H C G°. We will say also that G/H is a symmetric realisation of M.
We will say that a G-homogeneous space N = G/Gy is a 4-symmetric bundle
over the G-symmetric space M if there exists an order four automorphism T of
G, such that (G™)° C Gy C G7, and (G,T) gives rise to the symmetric space
M, ie oc=72%and Go C H.

A G-homogeneous space N = G /G is a locally 4-symmetric space if there exists
a order four automorphism of the Lie algebra g = LieG, 7: g — g such that
g” = LieGy. We will say that G/Gy is a locally 4-symmetric bundle over the
G-symmetric space M if 7> = Tyo (and Gy C H).

Let us consider M a G-symmetric space with 7: g — g an order four auto-
morphism such that 72 = Tyo. The automorphism 7 gives us an eigenspace

decomposition of g©:
g“ = @ Ok

k€EZ4

where gy, is the e?*™/2-eigenspace of 7. We have clearly go = g5, gr = g_x and

[0k, 81] C gr+1- We define go, m and g, by

fo=g5, m“=§ @ and g = P .
keZ4~{0}

it is possible because go = g and g_; = g;. Let us set g_; = g_1,01 = g1,
h=go®g2. Then

g=hodm
is the eigenspace decomposition of the involutive automorphism o, b is the Lie
algebra of H, the isotropy subgroup of G at a reference point py, and m is
identified to the tangent space T,,M. Besides we remark that 7, € X(m)
(since Tjme = —ildg_, @ ildg,)", which gives us the following theorem (proved

1We choose a metric in m stabilized by Tlm (and of course by AdH), see section 3.1



in section 3.2).

Theorem 3 Let us consider M a Riemannian G-symmetric space and 7: g — ¢
an order four automorphism such that 72 = Tyo. Let us make G acting on
S(M): g-J =gJg~t. Let Jy € (T, M) be the complex structure corresponding
to Tjm € X(m) (resp. to —Tjy = 'rl;l € X(m)), under the identification T, M =
m. Then the orbit of Jy under the action of G is an immersed submanifold of
Y(M). Denoting by G the stabilizer of Jy, then LieGy = g and thus G/Gy is
a locally 4-symmetric bundle over M, and the natural map

i G/Gy — (M)

9.Go — gJog™'.

is an injective immersion and a morphism of bundle. Moreover, if the image of
G in Is(M) (the group of isometry of M) is closed, then i is an embedding.

2.2 The second elliptic integrable system associated to a
4-symmetric space

We give ourself M a Riemannian G-symmetric space with 7: g — g an order
four automorphism such that 72 = Tyo, and N = G/Gy the associated locally
4-symmetric space given by theorem 3. We use the same notations as in Sec-
tion 2.1. Then let us recall what is a second elliptic system according to C.L.
Terng (see [20]).

Definition 3 The second (g, T)-system is the equation for (ug,ui,u2): C —
EB?:O@—_%

Ozug + [to,u2] =0 (a)
Ozuy + [tg, u1] + [U1,u2] =0 (b) (4)
—0zuo + 0:Uo + [uo, Uo] + [u1, @1] + [ug, 42] = 0. (c)

It is equivalent to say that the 1-form

2
ay = Z AN updz + Nagdz = A 20l + A ) Fao + A + X %l ()
i=0

satisfies the zero curvature equation:
1
da>\+§[a,\/\a>\]20, (6)

for X € C*. We will speak about the (G, T)-system (7 is an automorphism
of LieG = g) when we look at solutions of the (g,7)-system in G, i.e. maps
U: C — G such that their Maurer-Cartan form is solution of the (g, 7)-system,
in other words when we integrate the zero curvature equation (6) in G. We will
call (geometric) solution of the second elliptic integrable system associated to the
locally 4-symmetric space G/Gy a map J: C — G /Gy which can be lifted into a
solution U: C — G of (4).

10



Remark 5 In (4), {Re((a)), (b), (c)} is equivalent to do+ 5[ A ] = 0. Hence
the additionnal condition added to the Maurer-Cartan equation by the zero
curvature equation (6) is Im(dza) + [af, ah]) = 0 or equivalently

d(*OQ) + [Oéo A (*042)] =0.

The first example of second elliptic system was given by F. Hélein and P. Romon
(see [12, 14]): they showed that the equations for Hamiltonian stationary La-
grangian surfaces in 4-dimension Hermitian symmetric spaces are the second
elliptic system associated to certain 4-symmetric spaces. Then in [17], we found
an other example in Q: teh p-harmonic surfaces in @, which by restriction to
H gives us the p-harmonic surfaces in H (studied in section 1) which generalize
the Hamiltonian stationary Lagrangian surfaces in C2.

Definition 4 Let M be a Riemannian manifold and V its Levi-Civita connec-
tion which induces a connection on End(TM). Let us define for each (p,J,) €
Y(M) the orthogonal projection

pr(p, Jp): End(T, M) — T, (5(T,M))

(T, M is an Euclidean vector space so X(T,M) is a submanifold of the Euclidean
space End(T, M) and so T, X(T,M) is a vector subspace of End(T,M) and we
can consider the orthogonal projection on this subspace). Given J: C — (M)
we set

AJ(z) = 4prJ‘(J(z)).V%(V%J).

(in fact we endow the bundle X (M) with the connection defined by the horizontal
distribution (Hy ® (TyS(T,M))L) N Ty (M), where Hy is the connection of
End(TM): TEnd(TM) = H & End(TM)). We will say that J is vertically
harmonic if AJ = 0.

Definition 5 Let (L,j) be a Riemann surface, M a oriented manifold and
X: L — M aimmersion. Let J: L — X*(3(M)) be a almost complex structure
on the vector bundle X*(TM). Then we will say that J is an admissible twistor
lift of X if one of the following equivalent statements holds:

(1) X is J-holomorphic: xdX :=dX oj = JdX

(i) J is an extension of the complex structure on the oriented tangent plan
P = X.(TL) induced by j, the complex structure of L, or equivalently J
induces the complex structure j in L.

(iii) X is a conformal immersion and J stabilizes the tangent plan X.(TL),
i.e. for all z € L, J, stabilizes X,.(T,L) and induces on it the same
orientation, which we will denote by J O X.(TL)

(iv) X is a conformal immersion and J is an extension of the unique positive
complex structure Ip of the tangent plan P = X, (TL).

11



Finally, we will say that a map J: L — X(M) is an admissible twistor lift if
its projection X = pry; 0 J: L — M is an immersion and J is an admissible
twistor lift of it.

Theorem 4 Let L be a simply connected Riemann surface and (G,7) a locally
4-symmetric bundle over a symmetric space M = G/H. Let Jy € X(Tp, M) be
the complex structure corresponding to 'r|;1 (see Section 2.1). Let be Jx: L —

i(G/Go) C X(G/H). Then the two following statements are equivalent:
o Jx is an admissible twistor lift.

o Any lift F: L — G of Jx (FJoF~' = Jx) gives rise to a Maurer-Cartan
form o = F~1.dF which satifies: o/’ | = o = 0 and o’_, does not vanish.

Furthermore, under these statements, Jx: L — %(G/H) is vertically harmonic
if and only if Jx: L — G /G is solution of the second elliptic integrable system
associated to the locally 4-symmetric space (G,T), i.e.

1
day + 5[04,\ ANay] =0, VAeCr,

where ay = A72ah + A7 | + ap + Ao + A2 is the extended Maurer-Cartan
form of a.

Proof. For the first point, let us make F~! acting on the equation dX o j =
Jx.dX, we obtain ay 0 j = Tjy(am) which is equivalent to o’} = ) = 0. Thus
a,l(%) = am(%) = F’l.%—f, and X is an immersion if and only if o/ ; does
not vanish.

For the second point, let us recall that End(T, M) = sym(7,M) éso(TpM) and
given J € (T, M), we have T;3(T, M) = Ant(J) = {A € so(T,M)|AJ+ JA =
0} and (T;%(T,M))* Nso(T,M) = Com(J) = {A € s0(T,M)|[A, J] = 0}.
Now, let us compute the connection X*V on X*(End(T'M)), in terms of the
Lie algebra setting. Let A be a section of X*(End(TM)) and Y a section of
X*(T'M). Let Ay € C°°(L,End(T,,M)) be defined by Ap,, = FAoF~! and
An € C(L,End(m)) its image under the identification 7,,M = m. Then
AF p, corresponds to AdF o Ay, o AdF~! (under the identification TM = [m]).
In particular (Jx )m = Tjm (we suppose F(pg) = 1). We set also Y = AdF().po,
& € C*°(L,m). From now, we do the identification TM = [m] without precising
it. We have

(VA)(Y) = V(AY) - A(VY)
= AdF ([d(An) + [, Am &lm — Am (d§ + [, {]m))
= AdF ((dAn& + (adap 0 Ay — A 0 aday)§) .

Hence
VA = AdF(dAn + [admay, Am]).

12



In particular,?
Vag Jx = 2AdF (admay o T‘m)

(because adyngo commutes with 7),, whereas adgy anticommutes with it) and
thus

Va(ValJx) = 2AdF (adm (0z0) © T)m + [adm (0 ), adm () © 7))
= 2AdF (adm(9:0h) © Tjm + adm ([0, ah]) © Tjm
+ [admad, ady, (ab) o T|m])

= 2AdF (adm(9:0h + [af, b)) © Tjm + [admay, adm () © T)m])

9
oz

but AdF ([admay, adm(ah) © 7)m]) commutes with AdF(7,) = Jx so it is or-
thogonal to T;3(T, M) thus

pr(Jx)-V 2 (V.2 Jx) = 2AdF (adm (9203 + [af, ab]) 0 Tjm) -
Hence, since ady, is injective,
AJx = 0<= 0:ah + [af, a5] = 0. (7)
This completes the proof. |

Remark 6 The equivalence (7) holds for any map Jx: L — i(G/Gp). Indeed,
we have not used the fact that Jx is an admissible twistor lift to prove this
equivalence.

Theorem 5 Let Jx: L — G/Gy — X(G/H) be an admissible twistor lift.
Then Jx: L — G/Gy is harmonic® if and only if X: L — G/H is harmonic
and Jx s vertically harmonic.

Proof. Jx: L — G/Gy is harmonic if and only if the Maurer cartan form
a = F~LdF of the lift F': L — G of Jx (FJoF~! = Jx) satisfies (see [3])

9za) + [ag, o] + [af, )]s =0

(where g =go® g , is the reductive decomposition corresponding to the homo-
geneous space G/, see Section 2.1) which splits into

afa:Q + [O‘g’”aé]l"" [O/ll’ Clklll] 'i/_ [alilaIIO‘L}]
32a71 + [%Oa/ckl] +”[042/a aq] + [/C/H ) 0‘/2]
dza4 + [ag, ] + [ag, o]+ [aly, ay] =

0
0 (8)

then, using o”; = of = 0, we obtain
9za5 + [ag, a5] = 0
dza_y + [ag, 0’ 4] =0
[0/2/, O‘Ll] =0

2In all the proof, we will merge o}, (resp. o) with afc(%) (resp. ag(%)), and in particular

write ‘[a}/, )] instead of ‘[a%(%),ai(%)]’.
3with respect to the killing form.
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(in the second equation, we have used = [of, a}] = —[afy,a’ 1] = 0).
Besides X: L — G/H is harmonic if and only if we have

Dz0iy, + [, ] = 0

which splits into

afalfl + [O‘g’alfl] + [agaall] =0
afall + [O‘g’all] + [agaal—l] =0.

and using o | = o = 0, we obtain

{ dza_; +[ag,a 4] =0

[y, a’ 1] = 0.

This completes the proof. |

3 Structure of 4-symmetric bundles over sym-
metric spaces

3.1 4-symmetric spaces

Let G be a Lie group with Lie algebra g, 7: G — G an order four automorphism
with the fixed point subgroup G7, and the corresponding Lie algebra go = g”.
Let Go be a subgroup of G such that (G7)° C Gy C G7, then LieGy = go
and G/Gy is a 4-symmetric space. The automorphism 7 gives us an eigenspace
decomposition of g& for which we use the notation of section 2.1. Then g =hém
is the eigenspace decomposition of the involutive automorphism o = 72. Let H
be a subgroup of G such that (G°)° C H C G then Lie H = b and G/H is a
symmetric space. We will often suppose that Gy and H are chosen such that
Go = G"NH. With this condition, Gy C H so that G/Gj is a bundle over G/H.
Recall that the tangent bundle 7'M is canonically isomorphic to the subbundle
[m] of the trivial bundle M x g, with fiber Adg(m) over the point x = g.H € M.
Under this identification the canonical G-invariant connection of M is just the
flat differentiation in M x g followed by the projection on [m] along [h] (which
is defined in the same way as m) (see [2] or [4]). For the homogeneous space
N = G/Gqy we have the following reductive decomposition

g=0g0Dg, (10)

can be written g = m @ g2) with [go,g,] C g,. As for the symmetric space
G }H we can identify the tangent bundle TN with the subbundle g,] of the
trivial bundle N x g, with fiber Adg(_l) over the point x = g.Gg € N.
The symmetric space M = G/H (resp. the homogeneous space N = G/G)) is
Riemannian if it admits an G-invariant metric, which is equivalent to say that
m (resp. g1) admit an Ad(H )-invariant (resp. Ad(Gp)-invariant) inner product
or equivalently, that Adw(H) (resp. Adg,(Go)) be relatively compact?. We

4In the litterature, it is often supposed that Ady (H) is compact. We will see that these
two hypothesis are in fact equivalent.
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remark that the Levi-Civita connection coincide with the previous canonical G-
invariant connection and in particular is independant of the G-invariant metric
chosen. We will always suppose that the symmetric spaces M which we consider
are Riemannian. We will in addition to that suppose that the Ad(H )-invariant
inner product in m is also invariant by 7, (such a inner product always exists
when Ady, (H) is compact, see the appendix). We will also suppose that M is
connected, then G° acts transitively on M and so we can suppose that G is
connected.

We want to study the Riemannian symmetric spaces M such that there exists a
4-symmetric space (G, ) which gives rise to M in the same way as above. For
this let us recall the following theorem:

Theorem 6 [2, 15] Let M be a Riemannian manifold.

(a) The group Is(M) of all the isometries of M is a Lie group and acts differ-
entiably on M.

(b) Let po € M, then an isometry f of M is determined by the image f(po) of
the point po and the corresponding tangent map Ty, f (i-e. if f(po) = g(po)
and Ty f = Tpog then f=g).

(c) The isotropy subgroup Is,, (M) = {f € Is(M); f((po) = po} is a closed sub-
group of Is(M) and the linear isotropy representation pp,: f € Isp, (M) +—
Tpo f € O(Tp, M) is an isomorphism from Isp, (M) onto a closed subgroup
of O(T,, M). Hence Is,, (M) is a compact subgroup of Is(M).

(d) If M is a Riemannian homogeneous space, M = G/H with G = Is(M),
H = TIsp, (M) and m an AdH-invariant space such that g = b & m, then
the previous closed subgroup, image of H by the preceding isomorphism
Ppo, i-e. the linear isotropy subgroup H* can be identified to AdwH. More
precisely the linear isometry £ € m — E.pg € Ty, M gives rise to an iso-
morphism from O(m) onto O(T,, M) which sends AdwH onto H*. Hence
the linear adjoint representation of H on m: g € H — Adng € Adw H is
an isomorphism (of Lie groups). H =2 H* = Ad,H.

3.1.1 First convenient hypothesis.

There may be more than one Lie group G acting symmetrically on a Riemannian
symmetric space M. Besides, we have a convenient way to work on Riemannian
symmetric spaces: it is to consider that G is a subgroup of the group of isometries
of M, Is(M), which is equivalent to suppose that G act effectively on M, i.e. H,
the isotropy subgroup at a fixed point pg does not contain non-trivial normal
subgroup of G (see [2]). It is always possible because the kernel K of the natural
morphism ¢g: G — Is(M) is the maximal normal subgroup of G contained in
H°®, and G’ = G/K acts transitively and effectively on M = G/H with isotropy
subgroup H' = H/K. Thus M = G’/H’ and since K C H C G?, then o gives

5K =ker ¢y = ker pp, = ker Adm
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rise to an involutive morphism ¢’: G’ — G’ such that (G’U/)O cH ca.
Now, let us suppose that there exists an order four automorphism 7: G — G
such that 0 = 72. Then it gives rise to an isomorphism 7/: G/K — G/7(K).
We would like that 7(K) = K. It is the case if 7(H) = H: K and 7(K) are
respectively the maximal normal subgroup of G contained in H and 7(H) and
soif 7(H) = H then K = 7(K).

Let us suppose that 7(K) = K, then 7 gives rise to an order four automorphism
7 G/K — G/K such that ¢/ = 7/>. With our convention we have G} =
G n H’, then we obtain a 4-symmetric bundle N/, = G'/G{ over M. Hence,

when G, describes all the possible choice: (G0 ¢ Gy C G'" N H', we obtain
a family of 4-symmetric bundle N’ = G'/Gf{, over M which are discrete covering

of N'. = G'/(G' NH') and of which N’, = G'/(G'™)° is a dicrete covering.

For exampe, if we choose G| = mx(GoK), we obtain the 4-symmetric bundle
over M, N' = (G/K)/rx(GoK) = G/GoK = N/K 8.

Let us come back to the general case (i.e. we do not suppose that 7(K) = K).

Since 7(h) = b, we have 7(H") = H° and thus denoting by K, the maximal
normal subgroup of G contained in H° (we have K° ¢ Ky ¢ K N H?), then
7(Ko) = K for the same reason as above (in particular, if Ky = K i.e. K C H°,
then we are in the prevoius case: 7(K) = K). Hence 7 gives rise to an order four
automorphism 7: G/ Ky, — G/Ky and we are in the case considered above if we
consider the symmetric space M = G/H° (instead of M). Let us precise this
point. Indeed M is a (G/Ko)-symmetric space and G = G/ Ky acts effectively
on it (the isotropy subgroup H = H®/K, does not contain non trivial normal
subgroup of G/Kj): as above o gives rise to an involutive automorphism &
of G = G/Kj such that H = (G?)° and 7 is an order four automorphism of
G/Ky such that 72 = . Finally, as above we obtain a family of 4-symmetric
bundle N = G /G‘o over M when Gy describe the set of all possible choice:
(G cGycGTNH.

Moreover, the involution & of G/ K gives rise also to the G/ K(-symmetric space
M (ie. (G7)° c H/Ko C G? or equivalently M belongs to the family of G /K-
symmetric spaces defined by & (of which M is a discrete covering)).

In the same way, we have 7(G°) = G and thus we can do the same as above
for the symmetric space My, = G/G°.

Nevertheless, in general, it is possible that 7(K) # K and then 7 does
not give rise to an order four automorphism of G’ = G/K but only to the
isomorphism 7': G/K — G/7(K). However, the tangent map Ter’ = T.7 is
an order four automorphism of the Lie algebra Lie(G/K) = Lie(G/7(K)) =
Lie(G/Ky) = g/t, and we have (T.7')? = T.o’, thus N/K = gG/K)/WK(GoK)
is a locally 4-symmetric bundle over M (Lie mx (GoK) = g7 ).

Hence we have two good settings to study the Riemannian symmetric spaces

6Tn the writing N’ = N/K, K does not act freely on N in general: it is K’ = K/K N Go
which acts freely on N and we have N’ = N/K = N/K’. In particular it is possible that
N/K = N for a non trivial K (see section 5.3).

16



M over which a 4-symmetric bundle can be defined, if we want to work only
with subgroup of Is(M).

The first possibility is to consider that we begin by giving ourself an order
four automorphism 7: G — G and that we always choose the Riemannian sym-
metric space M = G/H with H = (G7)° (vespectively M, = G/H with
H = GT2). In other words, in the family of G-symmetric space corresponding
too =712 (i.e. (G7)° € H C G7), we choose the "maximal" one M = G/(G?)°,
which is a discrete covering of all the other (respectively the "minimal" one
Mpnin = G/G°, of which all the other are discrete coverings). Then according
to what precede, we can always suppose that G is a subgroup of IS(M ) (respec-
tively of Is(Mynin)).

The second possibility is to work with locally 4-symmetric spaces. In other
words we begin by a Riemannian symmetric space over which there exists a
locally 4-symmetric bundle. It means that we work with the following setting:
a Riemannian symmetric spaces M with G a subgroup of Is(M) acting sym-
metrically on M and a order four automorphism 7: g — g, such that Tyo = 72.
To define the locally 4-symmetric space N in this setting, we must tell how we

define Go. We will set
Go={g9€ H|AdngoTm o Adpg™t = Tim }- (11)

First, we have to verify that if 7 can be integrated by an automorphism of G,
also denoted by 7, then we have Go = G™ N H. Indeed, if ¢ € G™ N H, then
AdgoToAdg! = Ad(g.7(9)"!) o7 = 7 and since AdH stabilises m, we have
Adng o Tjm © Adng~! = Tjm by taking the restriction to m of the preceding
equation. Conversely, suppose that g € H and Adngo ) oAdng ! = T|m, then
Ad(g.7(g)™1) o Tim = Tjm SO since 7|y, is surjective, Ad(g.7(9) ") jm = Idm and
since the adjoint representation of H on m is injective (because we suppose that
G is a subgroup of Is(M), and thus H is a subgroup of Is,, (M)) it follows that
g-7(9)~t = 1. Finally, g € G™ N H. Thus our definition (11) is coherent with
our convention which holds when 7 can be integrated by an automorphism of
G.

Besides, it is easy to see that Lie Go = {a € hlada|y © Tjm = Tjm © adajm} = go-
(Indeed, Va € go, ada o 7 = 7 o ada, and Va € go, ada o 7 = —7 o ada, moreover
Tjm © adajm = 0 = ada;, = 0 = a = 0 because a € h — ada, is the tangent
map of h € H +— Adh, which is an injective morphism). Hence N = G /G is
a locally 4-symmetric bundle over M.

Further, let 7: G — G be the universal covering of GG, and D = kernw. Then
T can be integrated by 7: G — G. Set & = 72, then com = 7o & and
Tio = Thé = (Ty7)% G acts almost effectively on M with isotropy subgroup
H = 7 !(H) and almost effectively on M = G/H®° which is the universal
covering of M (see [15]). Besides, if G does not act effectively on M, then
we take Dy the maximal normal subgroup of G included in H?, and then we
quotient by it, so that we obtain an effective action of G /Dy on M and 7 gives
rise to an automorphism of G /Dy, according to above. Thus we are in the first
possibility. Besises it is easy to see that Vg € G, Adg = Adn(g) (more precisely
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Tim o Adg = Adn(g) o Tim and we identify g and g so that Thyw = Id). Thus
Go=G NH"={ge H°|Adgo 7 0 Adg™! = 7} C 7 1(Gp) . Hence the
4-symmetric space G / Gy is a disrete covering of the locally 4-symmetric space
G/Gg and we have the following commutative diagram:

é/éo EE— G/Go

l l (12)
M — M.
In conclusion, the two possibilities are equivalent, but we will use the second

one because it works with any symmetric space M, whereas the first needs that
we choose a certain covering of M (for example its universal covering).

Remark 7 We see that in the preceding reasoning (this using the universal
covering G) we need only the automorphism of Lie algebra 7 (and not the
symmetric space M). Hence, we can consider that we work in the Lie algebra
setting and give ourself an order four automorphism 7 of g. Then we consider
the family of associated pairs (G, H) where G is a connected Lie group with
Lie algebra g and H a closed Lie subgroup with Lie algebra h = g?. To each
such pair corresponds the locally symmetric space M = G/H and defining Gy
by (11), the locally 4-symmetric bundle N = G/Gq over M. Let G be a simply
connected Lie group with Lie algebra g, then 7 and o integrates in G and thus
for H the closed subgroup with Lie algebra b, we can take all subgroups such
that (G%)° ¢ H c G° (which implies that H is closed). If we suppose H
connected, i.e. H = (G?)°, then M = G/H is a symmetric space and is also the
universal covering of all the locally symmetric spaces M = G/H when (G, H)
describes all the associated pairs (see [15]), and we have the above commutative
diagram between the 4-symmetric bundle N = G / Go over M and the locally
4-symmetric bundle N = G/Gq over M. Moreover if M is Riemannian then
all the symmetric spaces M = G/H when (G, H) describes all the symmetric
associated pairs are Riemannian (see appendix, corollary 3).

Remark 8 Let us consider M a G-symmetric space, G C Is(M), 7: g — g
an order four automorphism such that 72 = Tio. Then we have 7, € X(m)
(Tjme = —ildg_, @ ildy,) and it is easy to see that

Va € b, mp(a) = ady,' (7)m © adajy o T‘;l).

In other words, under the identification h ~ admb C so(m), 7y is the restriction
to b of Ad7)y,: s0(m) — so(m). Hence 7 is determined by 7),,. Besides 7} is the
tangent map of the isomorphism 7:

TH(g) = Ad;l(r‘m oAdngo T‘;l)a

for g € H° (and more generally for g € Ad," o (Int7/) ! 0 Adw(H)). Under
the identification H ~ Ad,H C O(m) it is the restriction to H° of the invo-
lution Int7,: O(m) — O(m). According to the definition (11) of Go, we have
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Go = H™. Besides 74 (H®) = H°, thus H°/GY is an H°-symmetric space. If
Int 7 (Adw H) = (Adw H), then 75 is defined in H and 75 (H) = H, then H/Gy
is an H-symmetric space (if 77 (H) # H it is only a locally symmetric space).
Obviously, if 7 can be integrated in G then 7y = 7.

Theorem 7 Let M a G-symmetric space, G C Is(M), 7: g — g an order four
automorphism such that 7> = Tyo. Let Aut(m) be the subgroup of O(m) defined
by:

Aut(m) = {F € O(m) | F(adn[v,v))F~! = adn[Fv, Fv']}
it is the subgroup of O(m) which leaves invariant adm ([, Jjmxm) € (A*mx) ®
so(m).Its Lie Algebra

Der(m) = {A € so(m) | [4, adn[v,v']] = adm[Av, 0] + adw[v, AV'], Vv,v" € m}

is the Lie subalgebra of so(m) which (acting by derivation) leaves invariant
adm ([, Jjmxm) € (A*m#) ® so(m).

Then T € Aut(m) and 7 can be extended in an unique way to the Lie algebra
Der(m) & m endowed with the Lie bracket

[(4,v), (A",0")] = (A, A'] + adw[v, V], A" — A" w)

and of which g is a Lie subalgebra, under the inclusion a + v € h & m —
(adma,v) € Der(m) @ m, by setting

T

Tim = Tlm and I\Der(m) = IntT‘m . (13)

Conversely, given T € O(m), the linear map 1 defined by (13) is an automor-
phism of the Lie algebra Der(m) ® m if and only if 7, € Aut(m). Besides it
satisfies 72 = Idper(my @ —Idw (and in particular is of order four) if and only
if Tm € X(m).

Hence, define a locally 4-symmetric bundle over the Riemannian symmetric
space M (which the realisation M = G/H, i.e. T is an automorphism of g
such that 72 = Tio) is equivalent to give ourself T, € X(m) N Aut(m) such
that the order four automorphism 7 of Der(m) @ m stabilizes g = h & m, i.e.
such that Tm(admb)Tn! = adwmb (i.e. adwb is a subalgebra of Der(m) sta-
ble by Adry,). Then 7 = T\q 18 an order four automorphism of g such that
2= Idy © —Idw =Tio.

Proof. First 7, € Aut(m): that follows from the fact that 7 is an automor-
phism, so 7 o ada o 77! = adr(a),Va € g.

Second, Der(m) @m is a Lie subalgebra . We have to check the Jacobi identity is
satisfied. Tt is a straightforward computation (see [15]). Then we have to check
that 7 is an automorphism if and only if 7y, € Aut(m).

If 7o € Aut(m) then

o if A, A" € Der(m), 7([A, A']) = [£(A),(A")] because Tpe,(m) = Int7y is an
automorphism of Der(m).

19



e if A€ Der(m), vem, 7([4,0]) = Tm(Av) = Tw ATy (Tmv) = [T(4), 7(v))]

o if v,v" € m, 7([v,v']) = Intry(adw[v,v']) = adw([Tmy, Tmv']) = [(v), 7(v")]
because 7, € Aut(m).

Finally 7 is an automorphism and the unique extension of 7 (because it is
determined by 7|y, see remark 8).
Conversely if 7 is an automorphism of Lie algebra then

Tmadn ([v,v]) 75" = (zadu ([0, 0])27 ") = (2dz([v, v'])jm = adu([z(v), 2(')]) =

Thus 7 € Aut(m).
The last assertion of the theorem follows from what precedes. This completes
the proof. ]

Remark 9 Let 7, € X(m) then the condition Adry,(admh) = adnbh implies
that there exists an automorphism m of ) defined by Va € h, Adry(adma) =
admTy(a), Le. 7y = ad;l o Ad7y, o ady,. Then the condition 7, € Aut(m) is
equivalent to

75 ([v,V']) = [Tmv, Tw?'], Yu,0" € m.
And obviously, if these two conditions are satisfied then we have 7y = 71, (where

T = 1,4 is given by the theorem 7).

Remark 10 Let us consider the map
s: g € Ispy (M) > Admg 0 T 0 Admg ™" € B(m)

and set Go = {g € Isp,(M)[s(g) = Tjm}. Isp,(M) acts on ¥X(m) by g.J =
Admg o J o Admg™" and s(g9) = ¢.7jm, Go = Stabrg, () (Tjm)- In the same
way, the subgroup H = Is,, (M) NG acts on (M) and Gy = Stabg (7)m). Then
s(Ispy(M)) = Isp, (M) /Gy is a compact submanifold of ¥(m), and s(H) = H/Gq
is a relatively compact (immersed) submanifolds of ¥(m).

3.1.2 Second convenient hypothesis.

An other convenient hypothesis on G is to consider that it is a closed subgroup
of Is(M) (and not only a immersed subgroup). It is always possible to work
with this hypothesis. Let us make precise this point. Let o}, be the symmetry
of M around pg (defined by o): oy, € Is(M), op,(po) = po and Tp,0p, = —Id.
Then o, belongs to the isotropy subgroup Is,, (M) = {f € Is(M); f(po) = po},
and we can define the involution of Is(M):

os(vy = Int(op,): g € Is(M) = 0p, 0 go ap_ol € Is(M).
It is easy to see that we have

(Is(M)7=00)0 C Ts,, (M) C Is(M)7r=00 (14)
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(see [15, 2]). The result of this is that 0: G — G is the restriction of ogg(ar) to
G C Is(M) (they induce oy, on M = G/H and the identity on H, thus, since
G is locally isomorphic to M x H, they are identical, see also [15]). Moreover
there exists an unique subgroup G of Diff(M) such that for any G-invariant
Riemannian metric b on M, the group G is the closure of G in Is(M,b): Is(M,b)
is closed in Diff (M) and so the closure of G in Is(M, b) is its closure in Diff (M)
and thus it does not depend on b (see [2, 15]). Then o extends in an unique

way to an involutive morphism : G — G, which is the restriction of o1s(M) tO
G. Hence denoting by H the isotropy subgroup of G at py, H = Isp, (M) NG,
we have according to (14), (G7)° ¢ H c G?. Besides & gives rise to the cartan
decomposition Lie G’ = Lie H®m.

In addition to that, we have H = H. Indeed, let ®: U x Is,, (M) — Is(M) be
a local trivialisation of Is(M) — M, such that ®(pg,h) = h, and (U x H) =
(U x Isp, (M) NG (take ®(p,h) = ¢(p).h, with ¢: U — G a local section
such that ¢(pg) = 1). Further, if g € Is,, (M) N G and (g,) is a sequence of
G N ®U x Isy, (M)) such that g, — g, then ®"!(g,) = (up,hn) € U x H
converges to ®~1(g) = (po, g), thus h,, — g so g € H.

Moreover, H is a closed subgroup of Isp, (M), thus it is compact. Hence, we
have the symmetric realisation M = G/H and Ady(H) is compact: we have
showed that the hypothesis Ady, (H) relatively compact and Ady(H) compact
gives the same symmetric spaces. Moreover, by using the preceding reasoning
(to prove H = H) it is easy to see that if Ady,(H) is compact then G is closed
in Is(M) (see also [15]) so that the hypothesis "Adw (H) is compact" and "G is
closed in Is(M)" are in fact equivalent.

Besides, the closure of G is the same in Is(M) and in Is(M) with M = G/H®:
since M and M are complete (a Riemannian homogeneous space is complete)
then Is(M) and Is(M) are complete (see [15]), and thus the closure of G in one
of this group is the completed of G.

Now, let us suppose that we have a locally 4-symmetric bundle over M.

Theorem 8 Let us consider M a G-symmetric space with G C Is(M) and
T: g — g an order four automorphism such that 72 = Tyo. Then the extension
T of T, given by theorem 7 stabilizes the Lie algebra, Lie G, of the closure of G
in Is(M):

7(LieG) = LieG.

Then denoting by T := 7,1, the extension of T to Lie G (given by theorem 7),
the subgroup fized by T (defined by (11)) is the closure of Gy:

Go:={g9eH| Tim OAdmgOT:nl = Adng} = Go.

|
Finally the new locally 4-symmetric bundle over M defined by 7 is G /Gy, and
using the notation of remark 10 the fiber of G/Go, So := s(H) = H/Gy is the
closure of the fiber So of G/Go: Sy = s(H) = (H/Gy), in the mazimal fiber
over M: Sy := s(Ispy(M)) = Isp, (M) /Go.
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Theorem 9 Let us consider M a Riemannian symmetric space and M its uni-
versal covering.
o We have Ry, (-,-) = adm ([, |jmxm) and thus

Der(m) = Js,, (M) D Js,, (M) D Lie Hol(M)

Aut(m) D Isp, (M) D Isp, (M) D Hol(M) (15)

(using the identification T,, M =m) and Der(m) ® m = Js(M).

e Moreover the following statements are equivalent:

(i) Tsp, (M) = Tsp, (M) (i.e. Ts(M) =Ts(M))

(it) M = M’ x My, with M’ of the semisimple type (i.e. Is(M") is semisimple)
and My is Euclidean.

(iii) ho = so(mg), where hg and mgy are respectively the Euclidean part of
Jsp, (M) and m respectively, in the decomposition Js(M) = g’ & go, with g’
semisimple and go of the Fuclidean type.

e Besides the following statements are also equivalent:

(Z) j5170 (M) = j5170 (M) D 50(m0)

(ii) ho =0

(iii) Let M = M’ x My be the decomposition of M into the semisimple and Eu-
clidean type, T the group of deck transformations of the covering w: M — M.
Then the projection on the Euclidean factor (of Is(M) = Is(M') x Is(My)) of T
satisfies To =2 Z" with r = dim My so that My/Ty =T".

Further Aut(m) stabilizes Jsp, (M) if and only if one of the 6 previous state-
ments holds i.e. if and only if Js(M)/Is(M) = {0} or so(mg). Denoting by
Aut(m)* the subgroup of Aut(m) which stabilizes Js,, (M), then the mazimal
subalgebra of Js,, (M) stable by Aut(m) is Js, (M) if Aut(m) = Aut(m)* and
b = TJsp, (M) if not.

Theorem 10 Let us consider M a G-symmetric space with G C Is(M) and
T:g — g an order four automorphism such that 7> = Tio.

Then the extension T of T, given by theorem 7 define a maximal locally /-
symmetic bundle over M. Indeed let g be the mazimal subalgebra of Js(M)

stabilized by T and G the subgroup of Is(M) generated by it. Then G is a closed
subgroup of Is(M) acting symmetrically on M, and T\q, define a mazimal locally

4-symmetric bundle over M, with the realisation M = G/H.

We can also define a minimal locally 4-symmetic bundle over M, by considering
the subalgebra g’ @ mq (where g’ is the semisimple part of Js(M) and mg the
Euclidean part of m).

In conclusion, given any (even dimensional) Riemannian symmetric space M,
define over it a locally 4-symmetric bundle is equivalent to give ourself 7, €
X(m) N Aut(m) D E(Tp, M) N1s,,(M). Then the order four automorphism of

Js(M), 7, defined by Ty, define the mazimal locally 4-symmetric bundle over M,
N =G/Go with Gy = {g € H | jmoAdngoT, ! = Adng}. Moreover, any locally

m
THol(M) is the holonomy group of M
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4-symmetric bundle over M is a subbundle of one such mazximal bundle and de-
fine such a subbundle N is equivalent to give ourself a Lie subgroup G C Is(M)
acting symmetrically on M such that 7(g) = g i.e. Adrm(h) =b. In this case,
the closure N of N = G/Gy in the (unique) mazimal locally 4-symmetric bundle
over M, containing N, N, is also a locally 4-symmetric bundle over M and we
have N = G /Gy, M = G/H.

Proof of theorem 8 We have to check that 7(LieG) = LieG, i.e. according
to the theorem 7, Intmy,(Lie H) = Lie H. We still have Intm,(H") = HY, thus
Int7y (H9) = HO. Tt remains to verify that (H)? = HO. But this is simply the
results of the fact that M = G/H? is a discrete covering of M = G//H. Indeed
(H)? is closed thus (H)? D HO and then we have

M _ é/m fibration G/(H)O covering G/H - M

and M 22228, M| hence (H)°/HPO is discret but the two groups are connected
((H)? is enough) thus (H)? = HO. We have proved that 7(Lie G) = Lie G.

Using the notation of remark 10, we have, since H is compact, s(H) = s(H),
hence using the same method as for ﬁ, we can easily show that Go = st (Tjm)N
H = Gy and thus s(H) = H/Gy. Finally, the new locally 4-symmetric space is

G/Gy. This completes the proof. |
Proof of theorem 9 For the first point see [15]. For the following points, see
section 4.1 and 4.2. |

Proof of theorem 10 First G is closed : it a immediate consequence of the
maximality and theorem 8. Then we have to prove that G/Gy is the closure
N of N = G/Gp in G/Gy. Let m;,: G — G/Gy be the projection map, then
we have 75, (G) = G/Go NG = G/Gy (according to definition (11)) and thus
71,(G) C 7y, (G) = N but 74, (G) = G/GoNG = G/Gy (according to definition
(11) and Gy = Gy). Hence G/Gy C N. These are together subbundle (over
M) of N and using a trivialisation of N = G/Go — M (same raisonning as for
H) it is easy to see that the fiber of N (over pg) is H/Go which implies that
G/Gy = N. This completes the proof. |

Remark 11 In particular, if we suppose that we have an order four automor-
phism of G, o = 72. Then since 7 is uniformly continuous, it extends into an
order four automorphism 7: G — G (because Is(M) is complete) and obviously
o =7

Remark 12 According to the definition (11), 7, and —7}y, gives rise to the
same group Go. Moreover 1), = (7'_1)|m and in particular if 7 integrates in G
then G™ = G7 . Besides (t71)2 = (Ty0)~! = Tyo, hence 7~ define the same
locally 4-symmetric bundle over M as 7. Moreover, given any 7, € X(m) N
Aut(m), then —7, € £(m) N Aut(m) and gives rise (according to theorem 7) to
the automorphism 7! which gives rise to the same maximal locally 4-symmetric
bundle over M and the same family of 4-symmetric subbundle over M.
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From now, we will always suppose that G is a closed subgroup of Is(M)°. The
result of this is that the isotropy subgroup of G at the point pg, H = Stabg(po)
is compact and can be identified (via the adjoint representation on m, resp.
via the linear isotropy representation) to a closed subgroup of O(m) (resp. of
O(Tp,M)). Then according to theorem 10, to study the case of non closed
subgroup of Is(M)° (or equivalently the non closed locally 4-symmetric bundle
over M), we have just to consider the non closed subgroups of our closed group
G, acting symmetrically on M, and whose Lie algebra is stable by 7.

3.2 Twistor subbundle

We give ourself a locally 4-symmetric bundle N = G/Gy (defined by an order
four automorphism 7 and by (11)) over a symmetric space M = G/H. We
will show that G/Gy is a subbundle of the twistor bundle ¥(G/H) . Under the
isomorphism between T'M and [m] = {(g.po, Adg(§)), £ € m,g € G}, T, M is
identified to m: £ € m +— &.pg € T),, M is an isomorphism of vector spaces. Then
to Tjm € X(m) (resp. to —7jy, = T‘;l € ¥(m)) corresponds Jy € X(Tp, M), and
more generally to Adg o 7, © Adg~! € ¥(Adg(m)) (resp. Adgo T‘;l o Adg™1)
corresponds gJog~* € X(Ty o M). Thus we have defined a map

i G — S(M)

g — gJog™?

which according to the definition (11) of Gy gives rise under quotient to the
injective map:
i G/Gy — X(M)

9.Go — gJogt.

Moreover, i is an embedding. Indeed, G acts smoothly on the manifolds X(M)
and so the map g € G — gJog~! € X(M) is a subimmersion of constant rank.
Thus i: G/Gy — X(M) is an injective subimmersion and so it is an injective
immersion. We can add that i: G/Stabg(Jy) — G.Jy is an homeomorphism if
the orbit G.Jp is locally closed in (M) (see [5]). We will show directly that
i(G/Go) = G.Jy is a subbundle of ¥(M).

First, let us precise the fibration G/Gy — G/H . We have the isomorphism
of bundle: G/Gy = G xyg H/Gy. In particular, the fiber type of G/Gq is
H/Gy. Besides i is a morphism of bundle (over M). Since ¢ is also an injective
immersion, we can identify the fibers of G/G¢ and i(G/Gy) respectively over
the point g.po € M. The fiber of i(G/Gp) over p = g.po is gSog~! where
So = Int(H)(Jo) C X(Tp, M) is the fiber over po.®

Now let us show that i(G/Gy) is a subbundle of ¥(M). Let 0: U C G/H — G
be a local section of the fibration 7y : G — G/H. Then we have the following
trivialisation of ¥ (U):

O: (p,J) eUxE(Tp, M) — (p,o(p)Jo(p)™t) € 2(U)

8we remark that H C O(Tp, M), Go C U(Tp, M, Jo) and So = H/Go is a compact sub-
manifold of (T, M).
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and we have ®(U x Sp) = | ] {p} x (¢(p)Soc(p)~!) = i(G/Go) N X(U). Thus
peU
i(G/Gy) is a subbundle of (M), hence 7 is an embedding.

Let us recapitulate what precede:

Theorem 11 The map

i: G/Gy — X(M)
9.Go — gJog™" .

is an embedding and a morphism of bundle from G/Gy into X(M). Besides the
fiber of i(G/Go) over the point p = g.po is gSog~ ', with So = Int(H)(Jo) and
Jo € X(Tp, M) corresponding to 7, € X(m) (resp. to Tl;l

Remark 13 If we consider a locally 4-symmetric bundle N = G/Gq over M,
with G not defined by (11), then ¢ is not injective in general: to obtain a
injective map i, we must consider the locally 4-symmetric space G/ (G}) =
(G/K)/G{ where K = ker Ad,, and Gj, is the subgroup of H' = H/K defined
by (11). In particular, we see that in general a 4-symmetric space G/Gy is not
a submanifold of a twistor space (see section 5). Moreover, we can see the aim
of our definition (11) (and in particular of our convention Go = G™ N H): it is
to obtain a injective map i.

Remark 14 For any covering 7: G — G, G acting symmetrically on M, we
have p,(G) = ps,(G) = i5,(G/Gyo) : the locally 4-symmetric subbundle of
Y(M), i5,(G/Go) does not depend on the choice of the group G (we have chosen
for G, the subgroup of Is(M) generated by g).

Moreover, pj,(G) = ij,(N) is a maximal locally 4-symmetric subbundle in
Y(M). Now, suppose that we work with a non closed subgroup G’ C Is(M),
then pj,(G") = i,(G'/G}) is an immersed subbundle in X(M): ®(U x Sj) =

| {p} % (0(p)S4o(p) 1) = i(G"/Ga) NS(U) but the fiber S} = o(p)Sho(p) is
peU

only a (non closed relatively compact) immersed submanifold in (7}, M). And
since i, is an embedding (from N into ¥(M)) we have iy, (G'/Gl) = i4,(N') =
i7,(N'). In others words, taking the closure of G’ in Is(M) is equivalent to take
the closure of N’ in N according to theorem 10 which is equivalent to take the
closure of i, (N’) in 44, (N).

Remark 15 The maximal locally 4-symmetric bundles N are disjoint : these
are orbits in ¥ (M). More precisely these are suborbits of Is(M)°-orbits in
the form G - Jo in (M) N Aut(M) with Aut(M) = || ¢, p x Aut(Tp,M) (see
section 4.1 and 4.2). In particular, (M) N Aut(M) is the disjoint union of all
the maximal locally 4-symmetric bundles over M. Moreover, the set of maximal
locally 4-symmetric bundles over M, N(M), contains the subset N*(M) of
elements which are Is(M)%-orbits, i.e. elements p, (Is(M)°) with Jp € ¥(m) N
Aut*(m) : N*(M) = X(M) N Aut*(M)/Is(M)° € X(M)/Is(M)°.
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Remark 16 The Riemannian manifold M = G/H is orientable if and only
if AdnwH C SO(m) (or equivalently H* C SO(Ty,,M)). Besides 7, € X*(m) ,
and to fix ideas, let us suppose that ¢ = 1. Then, if M is orientable, i is an
embedding from G /Gy into X (M). Moreover, if we work with M = G/H°, we
are sure that H° C SO(T),, M). Hence, if we work with what we called the first
possibility (see section 3.1.1), i takes values in Xt (M). In other words, given a
locally 4-symmetric bundle over M, the corresponding 4-symmetric bundle over
its universal covering M (see remark 7) is embedded in ¥t (M).

Let us consider more generally any covering 7: M — M then it induces the

covering s : (M) — X(M) which is also a morphism of bundle over 7: M —
M. Tt is defined by

T Ji € B(TeM) = Tamo J; o (Tzm) ™t € X(T,M).

Now, let us suppose that 7 comes from a covering 7: G — G and that we
have M = G/H, M = G/H° (symmetric realisation) with H = 7~'(H) and
G CIs(M), G C Is(M) (see above). Then we have

Tzmo (g‘]ﬁog_l) o (Tiﬂ.)_l = gJPog_l-

with & = §.po, g = 7(§). Hence the restriction® of 75 to G/Gy gives rise to the
morphism of bundle (12). Moreover!®

So=Tnt(H)(Jo) = |J hSoh™

heH/H°

with, since H® € SO(T,, M), Sy C X+(T}, M). Further if H C O(T},, M) is not
included in SO(T,, M) (i.e. M is not orientable), then we have

ms(SF(M)) = B(M).

Remark 17 Let us see what happens when we change M, in theorem 4. Let
G be a covering of GG, acting symmetrically on a covering Mof M, n: M — M,
with G C IS(M). Then according to remark 16, we have 7 04, = 4,,, © 7o,
with mg: é/éo — G/Gq the morphism of bundle (over 7: M — M) given by
(12). Then given any solution a of the (g, 7)-system (6), let us integrate it in
G and G respectively, U: L — G, U: L — G with U(0) = 1, U(0) = 1(0is a
reference point in L), we have 7oU = U. Then let us project these lifts in G/GO
and G /Gy respectively: we obtain the geometric solutions J: L — G/Gy and
J: L — G /Gy respectively and we have mg o J = J. Then let us embedd these
into the twistor spaces ¥ (M) and X(M) to obtain the admissible twistor lifts
Jg: L — ij, (G/Gyo) and Jx : L — i;,(G/Go) respectively which are related by

Ty, O Jf( = Jx, and in particular ToX =X.

9i.e. s> O’L'J:ﬁ0 = i‘]Po O o, TQ : é/éo d G/GO given by (12).
101n fact, hSoh~! means obviously T}, pom o (hSoh~1) 0 T}, yom~'. mx allows to consider

the fibers %(Tz M) as included in the fiber (T, M), with z = ().

26



4 Splitting of M into the 3 type of symmetric
space

Theorem 12 [15, 2] Let M be a simply connected Riemannian symmetric space.
Then M is a product
M = My x M_ x My

where My is an Fuclidean space, M_ and M are Riemannian symmetric space
of the compact and noncompact type respectively. In particular

M = My x M’

where M’ has a group of isometries G = Is(M') semisimple and its isotropy
subgroup at po € M', H, (which is connected because M’ is symply connected)
is equal to the holonomy group of M’'. Hence a Riemannian symmetric space
M of which the isometry group is semisimple (which is equivalent to say that its
universal covering have not Euclidean factor, or equivalently the Lie algebra of
G does not contain no trivial abelian ideal, i.e. its Killing form is no degenerate)
has a unique symmetric writing G/H, with G acting effectively. In this unique
realisation, we have necessarely G = Is(M)° 1! and H =1s) (M) = Is,, (M) N
Is(M)°(D Isp, (M)®). Further the Lie algebra Js,,(M) = Der(m) = $Hol(M) is
spanned by [m,m] = {R,,(X,Y), X,Y € T,,,(M)}.

Moreover the covering of such a Riemannian symmetric space M, has a de-
composition into a product of irreducible Riemannian symmetric spaces (i.e the
linear isotropy representation is irreducible)

M:Mlx---xMT.

Theorem 13 Let us consider the decomposition of (g,Tho) into the sum of or-
thogonal (for the Killing form) ideals of the compact, noncompact and Euclidean
type respectively:

g=ldl_dly

and let [, = ho ® my be the eigenspace decomposition of the involution Tio|, .
Suppose now that we have an order four automorphism T:g — g with 72 =
Tio. Then 7(Ia) = la, 7(ha) = ba, T(My) = my for « = 0,—,+. Hence
Tm = @aTma, With T, € X(mg), and 7 is the automorphism of l, defined
by Tm, according to theorem 7 and we have T|2[a = Thoy,. Moreover, we have
Aut(m) =[], Aut(mg).

Corollary 1 Let M be a G-symmetric space, G C Is(M) and 7: g — g an
order four automorphism with '[2 =Tio. Let M be its universal covering, which
has a symmetric realisation M = G/H°, with 7: G — G a covering of G,

H = 7= Y(H) and G C Ts(M), such that T integrates into 7: G — G. Then

11

as usual, we suppose that G is connected
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the decomposition of g into 3 ideals of different type gives rise to the following
decomposition of G: ~

G=LoxL_xLy4
which induces the following decomposition of H° and Gy = H° N G™, corre-
sponding also to the decomposition h = Boha and go = Da(go)a

H° = HyxH_xH, (16)
Gy = (Go)o x (Go)- x (Go)+ - (17)

Hence M = My x M_ x My and N = Ny x N_ x Ny with M, = Lo/H.,,
No = Lo/(Go)o- Besides ¢ and 7 have the decompositions ¢ = [[, 6o and
7 = [l, 7o, and Hy = (G7)°, (Go)a = Ho N LI* = (Ga)o- Na is a 4-
symmetric bundle over M.

Theorem 14 Let us consider the decomposition of (g,Ti0) into the sum of
orthogonal (for the Killing form) ideals:

9=D;_00i (18)

with go abelian and (g;, T10|4,) irreducible, and let g; = b; Sm; be the eigenspace
decomposition of T10|4,. Suppose now that we have an order four automorphism
T:g— g such that 7> = Tyo.

There exists a unique decomposition of g:

g=00® (219]) (19)

where g; = gi or g; = ¢; ® g; with (g;,T10)4,) and (g;,T10|4;) isomorphic,
such that 7(g}) = g}, 7(b;) = b}, 7(m)) = m. Moreover if g, = g; ® g; then
7(g:) = g;, (b)) = b;, 7(m;) = m;. Hence T = STy With Ty € S(Tmr),
and T\g; is the automorphism of g, defined by Tm; according to theorem 7 and
we have T‘Qg; = T10|g/i.

Corollary 2 Let M be a G-symmetric space, G C Is(M) and 7: g — g an
order four automorphism with 7:2 =Tio. Let M be its universal covering, which
has a symmetric realisation M = G/H°, with m: G — G a covering of G,

H=n"Y(H) and G C Is(M), such that T integrates into 7: G — G. _Then the
decomposition of g,(18), gives rise to the following decomposition of G:

é:Loxle---xLT

which induces the following decomposition of H°, corresponding also to the de-
composition h = ®;_gh;:

H®=Hy x Hy x -+ x H,

¢ have the decomposition of 6 = HZ:O o; with &; involution of L; and H; =
(G%)°. Moreover there exists an unique decomposition of G':

G=LyxLyx---xL, (20)
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where L}, = L; or L}, = L; x L; with (L;,6;) and (Lj;,&;) isomorphic. Then
T have the decomposition T = [[._, 7/ with 7/ order four automorphism of L}.
Further, by identifying (L;,0;) and (Lj,6;) (when L) = L; x L;), then in 20,
we have either L, = L; and then 7/ = 7; is an order four automorphism of L;
so that (L)) = (L;)™, or L, = L; x L; and then

’7'1/ (a,b) € Lz X Lz = (O’i(b),a) S Lz X Lz

so that (L))" = A(H;) € H; x H;. Hence M = My x M x --- x M, with
M; = Li/H; and N = N} x N{ x --- x N/, where either N/ = N; = L;/(G;)o
is a 4-symmetric bundle over M;, or N] = G; x G;/A(H;) is a 4-symmetric
bundle over M; x M; = G; x G;/H; x H; (and the fiber H; x H;/A(H;) ~ H; is
a group).

Proof of theorems 13,14 and corollaries 1,2 Use the facts that =, leaves
invariant the metric in m and the restriction to m of the killing form. ]

4.1 The semisimple case

Definition 6 We will say that the Riemannian symmetric space M is of semisim-
ple type if Is(M) is semisimple.

Theorem 15 If M is of semisimple type then each (connected) locally 4-symmetric
bundle over M is mazimal and in the form N° = Ts(M)°/Gl, i.e. is an Is(M)°-
orbit in S(M) N Aut(M). In other words the set of locally 4-symmetric bundles
over M is N'(M) = (M) N Aut(M)/Is(M)° € (M) /1s(M)°.

Remark 18 The "size" of a maximal (locally) 4-symmetric bundle over M in
the twistor bundle (M) depends on the "size" of the isotropy subgroup Is,, (M)
and on Jy € X(Tp,M). In other words, if we want a fiber Sy C X(T,,M) of
maximal dimension, we must find Jy € X(Tp, M) N Aut(T,, M) D L(Tp, M) N
Isp, (M) *? such that T;,S0 = ga(Jo) := {A € Tsp, (M) | AJy + JoA = 0}
is of maximal dimension, or equivalently such that go(Jo) = {4 € Jsp, (M) |
AJy — JpA = 0} is of minimal dimension.

Remark 19 It is possible that there exists different non isomorphic locally
4-symmetric bundles over M (see section 5.3). And it is also possible that there
does not exist locally 4-symmetric bundle over M. For example: M = St x S3,
then Is(M) = SO(2) x SO(4) and Is,, (M) = SO(3), and there does not exist
Jo € B(RY) such that JoSO(3)J; " = SO(3).

Moreover we have the following obvious theorem (see also [16]):

12 Aut(Tp, M)(= Aut(m) under the usual identification) is the group of automorphism of
Tpo M which stabilizes the metric g,, and the curvature R, .
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Theorem 16 Let (g,0) be an orthogonal symmetric Lie algebra. Then set g* =
h&im and o* = Idy & Idim. Then (g*,0*) is an orthogonal symmetric Lie
algebra. If (g,0) is of the compact type then (g*,c*) is of the non compact type
and conversely. Now, for 7, € End(m), set 775 : iv € im +— ity (v). Then

Tm € Aut(m) < 7, € Aut(im)

and T € X(m) if and only if 7 € X(im). In this case (T € Aut(m)NX(M))
let T (resp. 7*) be the automorphism of g (resp. g*) defined by T (resp. i)
and denoting by A € End(VC) the extension to VC of A € End(V) (V real
vector space) then we have

TV =7 ie. TV = T‘%*

Theorem 17 Let M be an irreducible symmetric spaces of type II (compact
type) or type IV (non compact type) then there does not exist any (non trivial)
locally 4-symmetric bundle over M. Equivalently Aut(M)NX(M) = &, in other
words, there does not exist any automorphism 7 of Js(M) such that 72 = Tyo.

Proof. By duality, it is enough to prove the assertion for the compact type.
In this case let M be the universal covering of M, we have M = H x H/A(H)
and &: (a,b) € G x G — (b,a). Then an automorphism 7: g — g must send
g1 = bh @ {0} either on g; or on g = {0} ® b and idem for go, and thus for any
automorphism we have 72 (g:) = g; and hence we can not have 72 = Tyo. This
completes the proof. ]

4.2 The Euclidean case

Theorem 18 Let M = R?" with its canonical inner product. Then Is(M) =
O(2n) x R?"™ the group of affine isometries in R?™. Then for any po € R?", we
have Isp, (M) = {(F,Id — F)po), F € O(2n)} ~ O(2n). In particular for py =0,
Isp, (M) = O(2n). We have Vpy € R*", Is(M) = Is,, (M) x R**. Further
M = G/H is a symmetric realisation with G acting effectively if and only if
G = H x R*™ with H C Is,,(R®") for some py € R*". Then we G = Hy x R?"
with Hy = pro(e,)(H) C O(2n). The cartan involution for this realisation is

o = Int(—1d, 2pg): (h,z) € G+ (h,2(Id — h)py — z)

giving rise to the symmetry around py: oo: x € R*™ — —(x — pg) + po € R?".
Let us fix po = 0, so that for any symmetric realisation H C Isp, (M) = O(2n)
and o = Int(—1d, 0).

All (connected) locally 4-symmetric bundles over M are globally 4-symmetric
bundle over M. The twistor bundle, X(R?") x R®", is a globally 4-symmetric
bundle over M. All the (connected) 4-symmetric bundles over R*™ are in
the form: So x R2™ where Sy is a compact Riemannian symmetric space em-
bedded'?, in X°(R?"). Besides Aut(T,,M) = Is,, (M) = O(2n) so that any

13only immersed if H is not closed in O(2n)
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Jo € (R?") define the mazimal 4-symmetric bundle X(R?*") x R?*™ = O(2n) x
R2 /U (R Jy).

Theorem 19 Let M be an Euclidean Riemannian symmetric space (i.e. its
universal covering is an Euclidean space R*"). Then M = R?" @ T?¢, Is(M) =
O(2p) X (G2¢ @ {£1}) x M (Sqq is the group of permutation) and denot-
ing by m: R*™ — M the universal covering, and py = m(0), then Isp, (M) =
O(2p) x (&34 ® {£1}). Moreover Aut(R?") = O(2n), and Jy € T(R?") define
the (connected) mazimal 4-symmetric bundle over M : (S(FE?!)x {Jojgaus }) X M,
where E?' is the (unique) maximal subspace in R?P stable by Jo. In particular,
Aut* (M) NE(M) = X(R?) x %(R*) x M

Proof. Let #: G — G be a covering of G = Is(M)° acting symmetrically
and effectively on M =R?" and 5: G — G the corresponding involution. Then
setting H = (G?)°, we have according to the previous theorem G' = H x R*" and
H C SO(2n). Then setting D = kerm, D is a discrete central subgroup of G.
Besides it is easy to see that Cent(G) = Cent(H x R?") = R% where R?” is the
maximal subspace of R*" fixed by H,i.e. H C SO(2p) x {Ida,} (2p +2q = 2n).
Hence D = ®)_,Ze; with (e;)1<i<, R-free so that G = Is(M)° = G/D = Hx M’
with M’ = R2?®R24"@R" /Z". Moreover we have o: (h, z) inHxM' — (h, —z)
because & = Int(—Id,0) (see the previous theorem) and thus G = H but the
isotropy subgroup of G at p satisfies H D 7(H) (because H is connected), but
#(H) = H (DN H = {1}) and thus H = H. Thus M = G/H = M’. Now,
we have to compute Is(M), we know that Is(M)° = H x M C SO(2p) x M'.
In the other hand, we know that Is(M) C O(2n) (an isometry is determined by
its tangent map at pg) and thus g € O(2n) is in Is(M) if and only if g(D) =
D which is equivalent to g € [O(2p + 2¢ — ) X (GL.(Z) NOR"))] x M =
[O(2p +2q — ) x (&, x {£Id})] x M. Hence Is(M)°? = SO(2p + 2q — r) and
thus r = 2¢. Finally M = R? & T?7, Is(M) = O(2p) x (&, x {£Id}) x M,
Isp, (M) = O(2p) x (&, x {£Id}), and Is,, (M)° = H = O(2p). We conclude by
remarking that Jy € S(R?") satisfies JoH.J; ' = H for H C SO(2p) connected
and maximal if and only if H = SO(E?) and Jy € S(E?) x S(E™"). This
completes the proof. ]

Remark 20 We can use the second elliptic integrable system in the Euclidean
case to "modelize" this system in the general case. Indeed, let us consider
M a Riemannian symmetric space of the semisimple type (then its isotropy
subgroup H = Is,, (M) is essentially its holonomy group, i.e. they have the
same identity component) with 7: g — g an order four automorphism such that
72 = Tyo. Then we can associate to the corresponding locally 4-symmetric
bundle N over M, the 4-symmetric bundle over My = m = H x m/H : Ny =
Hxm/Gy= Sy xm C X(m) x m, and to the second elliptic integrable system
in N, its "linearized" in Ny. We conjecture that the "concrete" geometrical
interpretation (i.e. in terms of the second fondamental form of the surface X
etc...) is the same for the linearized and the initial system. This is what happens
in dimension 4.

31



Remark 21 The second elliptic integrable system can be viewed as "a cou-
plage" between the harmonic map equaton in Sy = H/Gy and a kind of Dirac
equation in g_1: dzuy + [Ug, u1] + [G@1,u2] = 0. In the Euclidean case, the pro-
jection on the "group part", g = h x m — b, of the second elliptic system is
only the harmonic map equation in H/Gy. In other words, the second elliptic
integrable system is only the harmonic map equation in H/G( and a kind of
Dirac equation in C™ (2 (g_1,Jo)). In particular, if we apply any method of
integrable systems theory using loop groups (DPW, Dressing action etc..) or
something else (spectral curves) to the second elliptic system in G/Gg and then
project in the group part (pr: H x m — H), we obtain the same method applied
to the first elliptic integrable system in H/Gq i.e. the harmonic map equation
in H/Gy. For example, if we apply the DPW method: given p = (u, ftm) a ho-
morphic potential, we have pr(Wg,a, (1)) = WG, (1ty) where We /¢, Wh )G,
are the weierstrass representations for each elliptic system. So to solve the sec-
ond elliptic system, we can first solve the harmonic map equation in H/Gy, by
using any method of integrable systems theory which gives us a lift h in H of
a harmonic map in H/Gy, and then we have to solve the Dirac equation with
parameters ug, ug given by the lift : h=10,h = ug + uz following b = go @ g2
(see [17]). However, the Dirac equation is not intrinsec since it depends on the
lift A of the harmonic map (see [17]).

In the particular case where Sy is a group and H = Gy % Sp, (for example
So = Go x Go/Gyp), then we have a canonical lift and then the Dirac equation
become intrinsec (see [17]). It is in particular what happens for Hamiltonian
stationnary Lagrangian surfaces : in C? we have a intrinsec Dirac equation
whereas in the others Hermitian symmetric spaces this equation does not exist
(see [12]-[14]). It is also what happens in [17] when we take for Sy the subsphere
3 C S5 (S embedds in X (R®) by the left multipication in Q).

5 Example of 4-symmetric bundles

We use the notations of section 3.1.

5.1 The sphere

Let us consider M = $?" = SO(2n + 1)/SO(2n) with G = SO(2n + 1), H =
SO(2n) and the involution o = Intdiag(Idz,, —1). Then G” = SO(2n)| |O~ (2n)x
{—1}. Hence H = (H°)%, Mpin, = RP?" and M4, = S?™.'" We have also

h = s0(2n), m = {((Lt 8) RS RQ”} = {im(v),v € R?}
where iy, : R?™ — m is defined in an obvious way. Now, let us consider the

action of H on m: for h € SO(2n), £ = in(v) € m, we have

Adwh(€) = im(hv)

M0 az is simply connected and M, is the adjoint space.
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hence K = ker Ady, = {Id} and the action of G is effective (in fact SO(2n + 1)
is simple because 2n + 1 is odd). Identifying m with R?" via i, we have: Vh €
SO(2n), Adwh = hie. Ady =Id. Moreover SO(2n + 1) is the connected isom-
etry group of §?”. Now, according to theorem 7, define a locally 4-symmetric
bundle over M = S?" is equivalent to give ourself 7, € ¥(m) N Aut(m) = X(m).
Further, given Jy € X¢(R?"), let us define the order four automorphism of G:
7 = Int(diag(—Jo,1)). Then 72 = o and since 7y = IntJy and 7, = Jo,
we obtain all the locally 4-symmetric bundle over M which are all globally 4-
symmetric bundle over M.

Moreover, we have G™ = com(Jo)NSO(2n) = U(R?*", Jy). Hence G™ = (G7)" =
Go thus Sy = H/Goy = Int(SO(2n))(Jo) = £¢(R*") and thus N = G/Gy =
$E(S2).,

5.2 Real grassmannian

More generally, let p,q € N* such that pq is even and let us consider M =
SO(p + q)/SO(p) x SO(q) = Gr,(RPT?) (oriented p-plans in RPT?). Since p
and ¢ play symmetric roles, we will suppose that p is even and that it has the
biggest divisor in the form 2. We have dim M = pq and the following setting

G=50(p+q), H=50(p) x SO(q); o = Int(diag(Id,, —1Id,)) and
G7 = 50(p) x SO(q) 1O~ (p) x O~ (q).

Then H = (G”)° so that My, = Gry(RP*?) (non oriented p-plan in RP*9) and
. 0 B

Moz = Grp(RPT?) = M. Besides b = so(p)®so(q), and m = {<Bt 0> ,B¢€ g[pﬁq(R)} =

im(gl,4(R)) (im defined in an obvious way).

Now let us compute Ady. For h = diag(A, C) and £ = in(B), we have:

Adnh(€) = im(ABC™).

Under the identification iy we have Adm(A,C) = LaRc-1 = x(4,C), by in-
troducing the morphism x: (4,C) € GL,(R) x GLy(R) — L(A)R(C™') €
GL(gl, ,(R)). Hence K = ker Ady, = {+£Id} if ¢ is even and K = {Id} if not.
Thus the connected isometry group of M, Is(M)°, is G' = G/K = PSO(p + q)
if ¢ is even and G’ = G = SO(p + ¢q) if not. Let us compute Aut(m): we
already know that Aut(m) C H C Aut(m)?. But, it is known that the auto-
morphisms of so(n + 1) are all inner automorphisms by O(n 4+ 1) so we have
Aut(m) = {LaRc1,(A,C) € O(p) xO(q)}. Thus Jo = L(J1)R(J; ') € Aut(m)
is in X(m) if and only if :

(J2,J3) +(—Idp,Id,) if q is even,
(J2,J3) = (-1d,1d,) ifqis odd.

Then the associated order four automorphism is 7 = Int(diag(Jy, Jz)). In partic-
ular, 7(H) = H and 7y = IntJ; xInt.Jo. Besides, Aut(m)NX(m) has respectively
2(p+q+2) or 2(q+1) connected components if g is even or ¢ is odd respectively.
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Each connected component is an Ad, H-orbit and corresponds to the fiber of a
different maximal 4-symmetric bundle over M.
Moreover to fix idea let us suppose that we have J; € L(R?), J; € OS(R?), the
set of orthogonal symmetry in R?, then G™ = U(RP, J;) x S(O(E1) x O(E2))
with Fy = ker(Jz — Id), EF2 = ker(J2 +Id). We have GT C H. Let OS,(R?) =
Int(SO(q))(Id,, —Id4—r) be the set of orthogonal symmetry in R? with dim £y =
r. Then H/G™ = Int(H)(J1, J2) = (RP) x OS,(RY?) (¢ being determined by
Jl) and

G/G™ ={(z,J]),xz € M,J € () x OS,.(z)}. (21)
Now let us compute Gy according to (11): h = (A,C) € H si in Gy if and only
if Adw7(h) = Adwh ie.: if ¢ is odd, 7(h) = h, and Gy = G" N H = G7; if
q is even, 7(h) = £h (and Gy = 7 (G)) with G} = G'" N H'), i.e. h € GT
or 7(h) = —h. The existence of solutions of this last equation depends on p, g
and r (we remark that if h; is a solution then the set of solution is h1G7). One
find that the equation 7(h) = —h (g is even) has a solution in G if and only
if dimE; = dim By = ¢/2 and that this solution is in H if p/2 is even and
in O~ (p) x O~ (q) (the other component of G7) if p/2 is odd. Hence, if p is
divisible by 4, ¢ is even and r = ¢/2 (i.e. Jo € x(X(R?) x OS,/2(R7))), we have
Go = G" | |hiG7. In all the other cases we have Gy = G".
In conclusion, let us denote by NX(r,¢) :== N(Jo) (resp. N%(r,¢)) the maximal
4-symmetric bundle over M corresponding to Jy € x(2°(RP) x OS,.(R?)) (resp.
chi(OS,(RP) x X¢(R?)). Then:

if p is not divisible by 4 or ¢ is odd, N*(r,¢) is given by (21), for all (a,r,¢),

if p is divisible by 4, ¢ not divisible by 4 then for (a,7) # (L,q/2), N%(r,¢) is
given by (21) and for (o, r) = (L, ¢/2) it is given by (22), below,
if p and ¢ are divisible by 4, then for («,r) € {(L,q/2),(R,p/2)}, N*(r,€) is
given by (22), and for the other choices it is given by (21),
N(r,e) = {(z,J),x € M,J € P(¥%(z) x OS,.(z1))} (22)

where P(X¢(z) x OS,(21)) = ¥¢(x) x OS,(z+)/{%Id}. In the cases described
by (22), G/G™ is not a submanifold of ¥(M).

5.3 Complex Grassmannian

Let us consider M = SU(p + q)/S(U(p) x U(q)) = Grpc(CPT?). We have
dim M = 2pq and the following setting

G=SU(p+q), H=SU(p) xU(q)); o =Int(diag(Id,, —Id,)) and
G = H = (G7).

Besides b — s(u(p)@u(q)) and m — {(_OB* ﬁ) Be grp,q(C)} — in(gl, ,(C)).

Let us compute Ady,. For h = diag(A, C) and & = i (B), we have:
Adph(€) = in(ABC™Y).
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Under the identification iy, we have Adw(A4,C) = LaRc—1 = x(A,C), by in-
troducing the morphism x: (4,C) € GL,(C) x GL,(C) — L(A)R(C™') €
GL(gl, ,(C))'5. Hence K = kerAdy = {(Ald,,Ald,), A € C, A+ = 1} =

Uptqld = Zp g (with Upyq = exp(2E7Z)). Thus ' = G/K = PSU(p + ¢) and

H' = S(U(p) x U(q))/Upsq =~ S(U(p) x U(g)). The connected isometry group
is the unitary group of M: Is(M)? =U(M) = G' = PSU(p + q).

It is well known that the group of automorphism of SU (p + ¢) have two compo-
nents (the C-linear one and the anti C-linear one) and is generated by the inner
automorphisms and the complex conjugaison: g € SU(p+q) — g € SU(p+ q).
In particular, Aut(m) = Adw H x{Id, ¢} = x(S(U(p) xU(q))-{(Id,1d), (by, bq)})
with ¢ = L(by)R(b;") : B e gl, ,(C) — B e gl, ,(C), by: v e C" — v € C"
The complex structure in m = gl, ,(C) is defined by L(I,) = R(l;) where
I, = ild,, the canonical complex structure in C", and the two connected com-
ponents of Aut(m) are respectively the elements in Aut(m) which commute and
those which anticomute with this complex structure.

Moreover, Jo = L(J))R(J;') € Aut(m)® = AdnH is in ¥(m) if and only if
(JE,J3) € (—1dp,1d,)U(1). Then let us set ¥y = {(J1,J2) € U(p) x U(q) |
(J%,J3) = A(=1dp,1d,)}. Then we have x(X,) = x(Xo) for all A € U(1) since
Yy = )\%Eo with A2 a root of . Thus according to the following lemma,
Aut(m)? N'X(m) has (p + 1)(¢ + 1) connected components (which are Ady,H-
orbits and corresponds to the fibers of differents maximal 4-symmetric bundles
over M).

Lemma 1 Let J € U(n), then J*> = —Id (resp. J? = 1d) if and only if there
exists h € U(n) such that hJh™! = diag(ild;, —ild,,—;) for some l € {0,...,n}
(resp. hJh=1! = diag(Id,, —Id,,—,) for some r € {0,...,n}).

Then the order four automorphism corresponding to Jy is 7 = Int(diag(Jy, J2),
with!6 J1 € AdU(p)(Z‘Il’p,l) = Z‘GTLC((CP), Jo € AdU(q)(Irﬁqfr) = GTry((j((Cq).
Hence G™ = S(U(l) x U(p—1) x U(r) x U(q —r)), the fiber of the 4-symmetric
space G/G™ is H/G™ = Gr;¢(CP) x Gr, c(C?), and

G/GT = {(z,J), € Gryc(CPTY), J € Gric(z) x Grrc(zh)}.  (23)

Further, G is defined: Adn7(h) = h,h € H, ie. (JAJ', JLCJ; 1) = M4, C)
for some A € K. But it is easy to see that we must have A = 1 and thus Gy = G".
Finally, in the C-linear case, the maximal 4-symmetric bundle N = G/G is
given by (23).

In the antilinear case, Jo = L(J1)R(J.
is in X(m) if and only if (JZ,J3) =
to see that we can only have

) €A ( ) .c, with (‘]1"]2) = (J{bpﬂjébq)a

2
(J1Jy, J5J5) € (—1dp,1dg).U(1). It is easy

(JF,J3) = £(-1d,, 1d,). (24)

5For the following it useful to keep in mind that we have Adwm H = x(S(U(p) x U(q))) =
x(U(p) x U(q)) and ker x = C*Id.
161, p—; = diag(ld;, —Id,—;)
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Hence according to the following lemma:

~if p, ¢ are odd then ¥(m) N Aut(m)®.c = &,

— if p,q are even then the two signs + are realized in (24) and thus X(m) N
Aut(m)?.c has 2 connected components,

— if p, ¢ have opposite parities, then only one sign is realized in (24) and 3(m)N
Aut(m)°.c has one component.

Lemma 2 Let E C C" be a Lagrangian n-plan, i.e. E é_a 1E = C" and let bg
be the asssociated conjugaison: v+ iw — v —iw for v,w € E. then U(N).bg =
br.U(n) does not depend on E and is the of anti C-linear isometries in C™ (the
elements in O(R?*") which anticommute with the complex structure I = ild).
Moreover for any J in thsi set there exists a lagrangian n-plan E such that
J = Jp.bp = bp.Jr with Jp € O(E). Besides J € L(R*™ (resp: OS(R*™)) if
and only if Jg € ¥(E) (resp. OS(E)) and in particular X(R**)NU(n).bgp # @
only if n is even, and X(R?")NU (n).bg C X7 (R?*"). Further given any JyX(R™)
(resp. OS(R™)) there exists h € U(n) such that h.E = R", hJgh™' = J; and
thsu hJh~1 = J1.brn .

Then the order four automorphism corresponding to Jp is 7 = Int(diag(Jy, J2))

0 Id»
with Ji € AdU(p)(Jz.by), J2 € AdU(q)(by) and Jp = (Idp 02). In other
5

words J; is any complex structure in R* anticommuting with I, and J, is any
orthogonal conjugaison in C?. Hence, we have G = Sp(p/2) x SO(q). Hence
U(p) x U(q)/G™ = XT(CP)_ x Lag(C?) where X (CP)_ = X(R*) N Ant(I,)
are the complex structures in R? anticommuting with I, and Lag(C?) are the
oriented Lagangian plan in C?. Thus we have:

H/G™ = S(XT(CP)_xLag(C?)) := {(J, P) € ©1(CP)_xLag(C?) | detc(J)detc(P) =

It is easy to define detc on Lag(C?), and for X1 (CP)_, we set detc(J) = detc(E)
for E any Lagrangian n-plan stable by J (definition independant on the choice
of E). Then

G/G™ = {(z,J, P),x € Gryc(CPT),(J,P) € ©T(x)_ x Lag(z™")}.

Let us compute G/Gy. We have to solve for (A, C) € U(p)xU(q): Jp L0)=

(Jg
A(A, C) for A € U(1) whose the solutions are £z (Sp(p/2) x O(q)). Hence we
have Gy = Go/K = x(U(1)(Sp(p/2) x O(q))) = x(Sp(p/2) x O(q)) =

x(Sp(p/2) x SO(q))  if ¢ is odd
X(GT) | |h1x(GT) if ¢ is even.

Then G' /G = G/Go = U(p+q)/(U(1)(Sp(p/2)xO(q))) = PSU(p+q)/P(Sp(p/2)x

O(q)) hence N = G//Goisequal to (G/GT) /%y, q if gis odd and to (G/G™)/Zo(pq)
if ¢ is even.
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6 Appendix

Theorem 20 Let G be a connected Lie group with an involution o. If Ady, (G°)°
is compact (resp. relatively compact) then AdwH is compact (resp. relatively
compact) for any H such that (G°)° C H C G°.

Proof. According to [1], (G)/(G?)° is finite hence H/(G?)? is finite and the
theorem follows. [ |

Corollary 3 We give ourself the same setting and notations as in remark 7.
If H = (G?)° satisfies Adw H is compact (resp. relatively compact) then for any
symmetric pair (G, H), AdnwH is compact (resp. relatively compact). In other
words if one symmetric pair (associated to (g,0)) is Riemannian then all the
others are also.

Proof. Since G is simply connected, it is the universal covering of G and
we have a covering 7: G — G. Then AdnwH = Ad,H° (there are connected
with the same Lie algebra) hence Ady, H® is compact and then according to the
previous theorem, Ad,, H is compact. |

Corollary 4 Let (G, H) be a symmetric pair with involution o and 7: G —
G an order four automorphism such that 7> = o. Then if AdnH is com-
pact (resp. relatively compact) then the subgroup generated by AdnH and 7y,
Gr(Adw H, 7)) is compact (resp. relatively compact).

Proof. We have 7, (AdnG?)7," = Adw7(G”) = AdnG?. Hence Gr(AdwG”, 7)) =
(AdmG?)Gr (7)) which is (relatively) compact because so is Adn G, accord-
ing to theorem 20 and then Gr(AdnG7,7,) is (relatively) compact because
since Gr(AdwH,Tjm) C (AdnH)Gr(7)y) then AdnG?/AdnH is a covering of
Gr(AdmG?, Tjm)/Gr(Adw H, 7,) which is consequently finite. |

Theorem 21 Let (G, H) be a symmetric pair with involution o and 7: g — g
an order four automorphism such that 72> = Tio. Then if AdwH is relatively
compact then the subgroup generated by AdwH and Ty, Gr(AdnH, 7)) is rel-
atively compact.

Proof. Let G’ = AdG, then C := ker Ad = center of G and we can identify Ad
to the covering 7: G — G/C and G’ to G/C. The automorphism o gives rise to
o' G' — G’ such that o’or = woo. Besides the automorphism 7 integrates in G’
into 7/ defined by 7/ = Int7: Adg € G’ — ToAdgor ™! and we have 7' om = woT

and 72 = ¢’/. Then according to corollary 4, Gr(Ad,G’ U/,T‘m) is relatively
compact since according to corollary 3, Ad,G’ 7 i relatively compact because
AdwH is. Moreover we have G'7 C 7(G?) then (since Adn(g) = Adg Vg € G)
Ade’gl C AdnG7 C Adw H thus Gr(AdwH, 7)) is relatively compact. |
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Theorem 22 Let (g,0) be an orthogonal symmetric Lie algebra™ such that
h = g% contains no ideal # 0 in g. Then for any symmetric pair (G, H) asso-
ciated with (g,h), the associated symmetric spaces M = G/H is Riemannian.
Moreover let G be the simply connected Lie group with Lie algebra g, & integrat-
ing o, H=(G%)° and C the center of G. Then we have H = G°. Further, for
any subgroup S of C put

Hs={g€G|&(g) € 9.5}

The symmetric spaces M associated with (g,0) (i.e. (G, H) is associated with
(g,h)) are exactly the spaces M = G/H with

G=G/S and H=H"/S (25)

where S varies through all &-invariant subgroups of C' and H* varies through
all G-invariant subgroups of G such that HS C H* C Hg. Hence, all the
symmetric spaces M = G/H = G/H* associated with (g,0) cover the adjoint
space of (g,0): M' = G'/G’U/ = G/Hg'® and are covered by M = G/H (the
univeral covering):

M — M — M. (26)

Besides if {-,-) is an AdwG'® “invariant inner product then it is invariant by
adwH = AdwH™ for any H described above, and the coverings (26) are Rie-
mannian, when M, M, M’ are endowed with the corresponding metrics.

Proof. We have only to prove H = G?, since all the rest is an adaptation of
[15] (Ch. VII, thm 9.1) using what precedes. According to [1], G7 is connected
if m(é) is finite with odd order, in particular if G is simply connected. This
completes the proof. [ |
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