
HAL Id: hal-00266503
https://hal.science/hal-00266503v1

Preprint submitted on 23 Mar 2008 (v1), last revised 8 Apr 2009 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric Interpretation of Second Elliptic Integrable
System

Idrisse Khemar

To cite this version:
Idrisse Khemar. Geometric Interpretation of Second Elliptic Integrable System. 2008. �hal-
00266503v1�

https://hal.science/hal-00266503v1
https://hal.archives-ouvertes.fr


ha
l-

00
26

65
03

, v
er

si
on

 1
 -

 2
3 

M
ar

 2
00

8

Geometri Interpretation of Seond ElliptiIntegrable SystemIdrisse Khemar(joint work with Franis Burstall)Abstrat.In this paper we give a geometrial interpretation of all the seond elliptiintegrable systems assoited to 4-symmetri spaes. We �rst show that a 4-symmetri spae G/G0 an be embedded into the twistor spae of the orre-sponding symmetri spae G/H . Then we prove that the seond ellipti systemis equivalent to the vertial harmoniity of an admissible twistor lift J takingvalues in G/G0 →֒ Σ(G/H). We begin the paper by an example: G/H = R4.We study also the struture of 4-symmetri bundles over Riemannian symmetrispae.IntrodutionThe �rst example of seond ellipti integrable system assoiated to a 4-symmetrispae was given in [12℄: the authors showed that the Hamiltonian stationaryLagrangian surfaes in C2 are solution of one suh integrable system, and afterthey generalized their result to omplex two-dimensional Hermitian symmetrispae, [14℄. Then we gave in [17℄ a new lass of geometrial problems for sur-faes in the Eulidean spae of dimension 8 by using the identi�ation R8 = O,and proved that they are solution of a seond ellipti integrable system. Usingthe left multipliation in O by the vetors of the anonial basis of ImO wede�ned a family {ωi, 1 ≤ i ≤ 7} of anonial sympleti forms in O. This al-lowed us to de�ne the notion of ωI-isotropi surfaes, for I & {1, ..., 7}. Usingthe ross-produt in O we de�ned a map ρ : Gr2(O)→ S6 from the Grassman-nian of plan of O to S6. This allowed us to assoiate to eah surfae Σ of O afuntion ρΣ : Σ → S6. In the ase of ωI -istropi surfaes, ρΣ takes values intoa subsphere SI = S(⊕i/∈I,i>0Rei) ≃ S6−|I|. Then we showed that the surfaesin O suh that ρΣ is harmoni (ρ-harmoni surfaes) are solutions of a om-pletely integrable system S. More generally we showed that the ωI -isotropi
ρ-harmoni surfaes are solutions of a ompletely integrable system SI . Henewe built a family (SI) indexed by I, of set of surfaes solutions of a integrablesystem, all inluded in S = S∅, suh that I ⊂ J implies SJ ⊂ SI . Eah SI is aseond ellipti integrable system (in the sense of C.L. Terng). This means that1



the equations of this system are equivalent to the free urvature equation :
dαλ +

1

2
[αλ ∧ αλ] = 0,for all λ ∈ C, and where αλ = λ−2α′

2 + λ−1α−1 + α0 + λα1 + λ2α′′
2 .By restrition to H ⊂ O of our theory we obtain a new lass of surfaes: the

ωI -isotropi ρ-harmoni surfaes of H. Then ρ(Gr2(H)) = S2 and |I| = 0, 1 or
2. For |I| = 1 we obtain the Hamiltonian Stationary Lagrangian surfaes in
R4 and for |I| = 2, the speial Lagrangian surfaes. By restrition to ImH, weobtain the CMC surfaes of R3.Besides in [18℄, we found a supersymmetri interpretation of all the seond el-lipti integrable system assoiated to a 4-symmetri spae in terms of superharmoni maps into a symmetri spae. This leads us to onjeture that thissystem has a geometrial interpretation in terms of surfaes with values in asymmetri spae, suh that a ertain assoiated map is harmoni as this is thease for Hamiltonian stationary Lagrangian surfaes in Hermitian symmetrispaes or for ρ -harmoni surfaes of O.In this paper we give the answer to this onjeture. That is to say, we give ageometrial interpretation � in terms of vertial harmoni twistor lift � of allthe seond ellipti integrable systems assoiated to a 4-symmetri spae. Indeedgiven a 4-symmetri spae G/G0, and its order four automorphism σ : G→ G,then the involution τ = σ2 gives rise to the symmetri spae G/H , with H = Gτ .Then we prove that the seond ellipti integrable system assoiated to the 4-symmetri spae G/G0 is the equation of vertial harmoniity for admissibletwistor lift in G/H . More preisely, given a 4-symmetri spae G/G0, andits assoiated symmetri spae G/H , then G/G0 is a subbundle of the twistorspae Σ(G/H). We prove that the seond ellipti integrable systems assoiatedto G/G0, is the system of equations for maps J : C → G/G0 ⊂ Σ(G/H) suhthat J is ompatible with the Gauss map of X : C→ G/H , the projetion of Jinto G/H , i.e. X is J-holomorphi (admissible twistor lift), and suh that J isvertially harmoni.We begin the paper by a example: R4. This ase was just mentionned quily inthe end of [17℄ as a restrition of the di�ult problem in O. So here we studyit independantly and in details. However, here we give also a formulation ofthis problem in terms of twistor lift whih is the right formulation. Besides,in dimension 4 we have uniity of the twistor lift (in Σ+(G/H) and Σ−(G/H)respetively) so we are in this ase in the presene of a theory of surfae (andnot as in the general ase, a theory of twistor lift) and so we an speak about
ρ-harmoni surfaes in this dimension (whih are exatly the solution of theseond ellipti integrable system). In our work we are led to prove some theo-rems on the struture of 4-symmetri bundles. Indeed we want to answer thefollowing questions: given a Riemannian symmetri spaes, do there exist 4-symmetri bundle over it? In other words in its twistor bundle do there exist4-symmetri subbbudle, and if yes how an we haraterize these 4-symmetriomponents? are they isomorphi? How are they distributed in the twistorspae ? Do they form a partition of the twistor spae?. et.. The 4-symmetri2



spae have been lassi�ed (at least in the ompat, see [16, 21℄). However, ourpoint of view is di�erent: we want to have an intrinsi point of view as longas possible so we deal with the Riemannian symmetri spae and its (loally)4-symmetri bundle de�ned over it, and we try to forget as muh as possiblethe four automorphism of the Lie algebra. Our aim is to give a formulationof our problen as general and intrinsi as possible. For example, our de�ntionof vertial harmoniity holds for any Riemannian manifold, moreover we givethe following haraterization: de�ne a (loally) 4-symmetri bundle over Mis equivalent to give ourself J0 ∈ Σ(Tp0M) whih leaves invariant the urva-ture. We obtain the following image: the twistor bundle in the disjoint union ofall the maximal (loally) 4-symmetri subbundle, whih are orbits (de�ned bysome subgroups of Is(M)). Eah isomorphism lass of orbits de�ned a di�erentseond ellipti integrable system.Our paper is organized as follows. In Setion 1 we deals with the ρ-harmonisurfaes in R4. Setion 2 ontains our main result: the interpretation of theseond ellipti integrable systems assoiated to a 4-symmetri spae in terms ofthe vertial harmoniity of an admissible twistor lift. Then Setion 3 and 4 aredevoted to the study of the struture of 4-symmetri bundles over symmetrispaes. The last Setion gives some example of 4-symmetri bundles.1 ρ-harmoni surfaes in H1.1 Cross produt, omplex struture and Grassmannianof plan in HWe onsider the spae R4 = H with its anonial basis (1, i, j, k) (whih wedenote also by (ei)0≤i≤3). Let P = q∧ q′ be a oriented plan of H (itself orientedby its anonial basis) then there exists an unique positive omplex struture
IP ∈ Σ+(P ) on the plan P . It is de�ned by IP (q) = q′, IP (q′) = −q if (q, q′) isorthogonal. Next, we an extend it in a unique way to a positive (resp. negative)omplex struture of H = P ⊕ P⊥, J+

P (resp. J−
P ) given by

J+
P = IP ⊕ IP⊥

J−
P = IP ⊕−IP⊥ (1)(P⊥ is oriented so that = P ⊕ P⊥ is positively oriented). Hene we obtain asurjetive map:

J+ : Gr2(H) → Σ+(H)
q ∧ q′ 7→ J+

q∧q′

(2)and in the same way a surjetive map J− : Gr2(H)→ Σ−(H).Besides, we have
J+

q∧q′ = Lq×Lq′ =
1

2
(Lq′Lq̄ − LqLq′),where q×Lq′ = −Im (q · q′) = Im (q′ · q̄) is the left ross produt (it is a bilinearskew map from H×H to ImH). Indeed, if (q, q′) is orthonormal then q×Lq′ =3



−q · q′ ∈ S(ImH) so Lq×Lq′ is a omplex struture of H and it is positive(beause {Lu, u ∈ S2} is onneted and Li ∈ Σ+(H) beause (1, Li(1), j, Li(j))is positively oriented). Moreover if (q, q′) is orthonormal then Lq×Lq′(q) =
(q′q̄)q = q′. Hene Lq×Lq′ = J+

q∧q′ . Thus we obtain a di�eomorphism:
Σ+(H)

∼
−→ S2

J 7−→ J(1)
. (3)Under this identi�ation, the map (2) beome

ρ+ : Gr2(H) → S2

q ∧ q′ 7→ q ×L q′ .We an do the same for Σ−(H). We obtain that J−
q∧q′ = Rq×Rq′ = −Rq×Rq′ =

1
2 (Rq′Rq̄ − RqRq′), where q×Rq′ = −Im (q̄ · q′) = Im (q′ · q) is the right rossprodut (it is a bilinear skew map from H×H to ImH). Then we have the sameidenti�ation between Σ−(H) and S2, as in (3). Under this identi�ation J−beome

ρ− : Gr2(H) → S2

q ∧ q′ 7→ q ×R q′ .1.2 Ation of SO(4)Reall the following 2-sheeted overing of SO(4):
χ : S3 × S3 → SO(4)

(a, b) 7→ LaRb̄and set Spin(3)+ = La, a ∈ S3, Spin(3)− = Rb̄, b ∈ S3, then SO(4) = Spin(3)+
Spin(3)− = Spin(3)−Spin(3)+. We have the two following representation of
Spin(3)ε:

χ+ : La 7→ inta = LaRā ∈ SO(ImH), χ− : Rb̄ 7→ intb = LbRb̄ ∈ SO(ImH).Then the map ρε is Spin(3)-equivariant: for all q, q′ ∈ H, g = LaRb̄ ∈ SO(4),
(gq)×L (gq′) = a(q ×L q′)ā = inta(q ×L q′)
(gq)×R (gq′) = b(q ×R q′)b̄ = intb(q ×R q′).Hene we have ∀g ∈ SO(4),

ρε(g(q ∧ q′)) = χε
g(ρε(q ∧ q′))(where we have extended χε to SO(4) in an obvious way: χ+(LaRb̄) = χ+(La),

χ−(LaRb̄) = χ−(Rb̄). Besides the map Jε is also Spin(3)-equivariant, in otherwords the identi�ation (3) is Spin(3)-equivariant:
∀g ∈ SO(4),

gJ+
q∧q′g−1 = LaRb̄ Lq×Lq′ RbLā = La(q×Lq′)a−1 = J+

g(q∧q′) .4



The ation of Spin(3)+ = SU(R4, Re) (resp. Spin(3)− = SU(R4, Le)) on
Σ−(H) (resp. Σ+(H)) is trivial. Hene SO(4) ats on Σε(H) only by its ompo-nent Spin(3)ε (in the same way it ats on S2

ε only by its omponent Spin(3)εvia χε). In fat, the equality gJ+
q∧q′g−1 = J+

g(q∧q′) results immediately fromthe de�nition of J+
q∧q′ and the fat that g is a positive isometrie. This naturalequality whih is equivalent to what we alled the fondamental property in [17℄:

(gq)× (gq′) = χg(q × q′), is harateristi of dimension 4: in this ase it is pos-sible to assoiate in a natural way (whih depends only on the metri and theorientation) to eah plan a omplex struture, whih is not possible in greaterdimension. In dimension 8, we must hoose a otonioni struture in R8 to dothat. (see [17℄).1.3 The Grassmannian Gr2(H) is a produt of sphereTheorem 1 The map
ρ+ × ρ− : Gr2(H) → S2 × S2

q ∧ q′ 7→ (q ×L q′, q ×R q′)is a di�eomorphism.Proof. SO(3) × SO(3) ats transitively on S2 × S2 so SO(4) ats transitivelyon S2 × S2 via χ+ × χ−, thus ρ+ × ρ− is surjetive.Let ρ ∈ S(ImH), g = LaRb̄, g′ = La′Rb̄′ ∈ SO(4) then we have
ρ+ × ρ−(g(1 ∧ e)) = ρ+ × ρ−(g′(1 ∧ e)) ⇐⇒ (aea−1, beb−1) = (a′ea′−1

, b′eb′
−1

)

⇐⇒ a′−1
a, b′

−1
b ∈ S1(e)

=⇒ (La′Rb̄′)
−1(LaRb̄)(1 ∧ e) = 1 ∧ e

=⇒ g(1 ∧ e) = g′(1 ∧ e).Hene, sine SO(4) ats transitively on Gr2(H), we have proved that ρ+ × ρ−is injetive and that
ρ+ × ρ−(g(1 ∧ e)) = ρ+ × ρ−(g′(1 ∧ e))⇐⇒ (a′−1

a, b′
−1

b) ∈ S1(e)× S1(e)(in the previous sequene of impliations, the last propositions implies the �rstone so all the propositions are equivalent). This ompletes the proof. �As it is the ase in [17℄, it is useful here to introdue a funtion ρ̃ε on Spin(3)εorresponding to ρε: we de�ne ρ̃εe : Spin(3)ε → S2 by ρ̃εe(g) = χε
g(e) (where

e ∈ S(ImH) = S2), i.e. under the identi�ation Spin(3)ε = S3 we have ρ̃εe(a) =
inta(e) = aea−1, whih is nothing but the Hopf �bration S3 → S3/S1(e). If
ρε(e1 ∧ e2) = e then ρ̃εe(g) = ρε(g(e1 ∧ e2)). In the following, we will forgetthe index e. Hene, if we take e1 ∧ e2 suh that ρε(e1 ∧ e2) = e for ε = ±1 (i.e.
e1 ∧ e2 = (1∧ e)⊥ whih means also that (e, e1, e2) is a diret orthonormal basis

5



of ImH) then we have the following ommutative diagram:
S3 × S3 χ

−−−−→ SO(4)

ρ̃+×ρ̃−





y





y

g

↓
g(e1∧e2)

S2 × S2 ≃
←−−−−−
ρ+×ρ−

Gr2(H)Let us now onsider the restrition to ImH = R3 of this diagram. First the uni-versal overing Spin(3)→ SO(3) is obtained by restrition to ∆3 = {(a, a), a ∈
S3} ≃ S3 of χ : S3 × S3 → SO(4), whih gives the overing (a, a) 7→ inta.Then supposing in addition that e1, e2 ∈ ImH, the restrition to SO(3) of
SO(4)→ Gr2(H) is only the surjetive map g ∈ SO(3) 7→ g(e1∧ e2) ∈ Gr3(R3).And the restrition to Gr2(R3) of ρ+ × ρ− gives the di�eomorphism ρ : u ∧ v ∈
Gr2(R3) → u × v ∈ S2. Finally the restrition to ∆3 of ρ̃+ × ρ̃− gives theHopf �bration ρ̃ : a ∈ S3 7→ aea−1 ∈ S2. So by restrition to R3, we obtain thelassial ommutative diagram:

S3 χ3
−−−−→ SO(3)

Hopf





y





y

S2 ≃
←−−−− Gr2(R3)Remark 1 Besides if we use Σε(H) instead of the sphere S2 the Hopf �bration

ρ̃ε beome SU(2, J−ε
1∧e) → Σε(H) = SU(2, J−ε

1∧e)/U(1)ε = SO(4)/U(2, Jε
1∧e)where U(1)+ = RS1(e) = exp(R.Re), U(1)− = LS1(e) = exp(R.Le).1.4 The ρ-harmoni ωI-isotropi surfaesWe reall here in the partiular ase of H = R4 our result obtained in [17℄about ρ-harmoni surfaes. To do that, we need to introdue some notationsand de�nitions. We have

ρε(q ∧ q′) = −ε

3
∑

i=1

ωε
i (q, q

′)eiwhere (ei)1≤i≤3 = (i, j, k) and ωε
i = 〈·, Jε

1∧ei
·〉 (i.e. ω+

i = 〈·, Lei
·〉, ω−

i =
〈·, Rei

·〉). Let us set, for I & {1, 2, 3},
Qε

I = {P ∈ Gr2(H)|ωε
i (P ) = 0, i ∈ I},then Q∅ = Gr2(H), Q{k} = {P ∈ Gr2(H), Lagrangian for ωε

k}, and Qε
{k,l} isthe set of speial Lagrangian plan (more preisely the ωε

k-Lagrangian plan P suhthat detC2(P ) = ±i under the identi�ation: x ∈ R4 7→ (x0 + ixk, xl + iεxk∧l) ∈
C2, with (k, l, k∧l) yli permutation of (1, 2, 3); for example, if (k, l) = (1, 2), itis the identi�ation (z1, z2) ∈ C2 7→ z1+z2j ∈ H for ε = 1 and (z1, z2) 7→ z1+jz26



for ε = −1). We have also ρε(QI) = SI = S(
⊕

i/∈I Rei) = S2, S1, {±ek}for |I| = 0, 1, 2 respetively. Besides we have for I = {i} ⊂ {1, 2, 3}, that
J+(QI) = LSI = S1(RLej

⊕ RLek
) is the irle of positive omplex struturewhih antiommute with Lei

; and for I = {i, j} ⊂ {1, 2, 3}, J+(QI) = LSI =
{±Lek

}.We denote by Gε
I the subgroup of Spin(3)ε whih onserves ωε

i , i ∈ I; this is thesubgroup of Spin(3)ε whih ommutes with Lei
, i ∈ I. Then Gε

I = S3, S1, {±1}for |I| = 0, 1, 2 respetively. We an also onsider instead of Spin(3)ε the group
SO(4) (whih is equivalent to add the omponent Spin(3)−ε whih is useless),then we have Gε

I = SO(4), U(2, Jε
1∧ei

), SU(2, Jε
1∧ei

) for |I| = 0, 1, 2 respetively.Let e ∈ S(
⊕

i/∈I Rei). The inner automorphism , intJε
1∧e

, de�ne on Gε
I aninvolution whih gives rise to the symmetri spae SI = Gε

I/Gε
I∩{k} and in theLie algebra of Gε

I , gε
I , to the eigenspae deomposition of AdJε

1∧e:
gε

I = gε
0(I)⊕ gε

2(I)with gε
0(I) = ker(AdJ+

1∧e − Id), gε
2(I) = ker(AdJε

1∧e + Id).Let us introdue Gε
I = Gε

I ⋉R
4 the group of a�ne isometries of whih the linearpart is in Gε

I , and its Lie algebra: gε(I) = gε
I ⊕R

4. Consider the automorphismof the group Gε
I : τε

e = int(−εJε
1∧e, 0) with e ∈ S(

⊕

i/∈I Rei). This is an orderfour automorphism whih gives us an eigenspae deomposition of gε(I)C:
gε(I)C =

⊕

k∈Z4

g̃ε
k(I)with g̃ε

±1(I) = gε
±1 = ker(Jε

1∧e± iId), g̃ε
0(I) = gε

0(I)C, g̃ε
2(I) = gε

2(I)C. Moreoverwe have [g̃ε
k(I), g̃ε

l (I)] ⊂ g̃ε
k+l(I).We �x a value of ε = ±1. Then let us de�ne as in [17℄:De�nition 1 Let Σ be a immersed surfae in H, then a map ρΣ : Σ → S2 isassoiated to it, de�ned by ρΣ(z) = ρε(TzΣ) i.e. if X : Σ→ H is the immersionthen ρΣ = X∗ρε. We will say that Σ is ρ-harmoni if ρΣ is harmoni. Let

I  {1, 2, 3}, we will say that Σ is ωI-isotropi if ∀z ∈ Σ, TzΣ ∈ Qε
I (i.e. Σis ωε

i -isotropi for all i ∈ I) whih is equivalent to: ρΣ takes values in SI =
S(⊕i/∈IRei) ⊂ S2. Hene for |I| = 1, the ρ-harmoni ωε

I -isotropi surfaes arethe Hamiltonian stationary Lagrangian surfaes in C2, and for |I| = 2, these arethe speial Lagrangian surfaes in C2 (see above for the identi�ation R4 ≃ C2).If it ould be some ambiguity as onerned the value of ε = ±1, we will use thequali�atifs "left" and "right" respetively to design these two values. A liftedonformal left (resp. right) ωI-isotropi immersion - LCωI - (if I = ∅ we willsay a lifted onformal immersion or simply a lift) is a map U = (F, X) : Σ→ Gε
Isuh that X is a onformal ωε

I-isotropi immersion and ρ̃e ◦ F = ρΣWe have obtained the following result in [17℄:Theorem 2 Let Ω be a simply onneted open domain, and α a 1-form on Ωwith values in g(I), then 7



• α is the Maurer-Cartan form of a LCωI if and only if
dα + α ∧ α = 0, α′′

−1 = 0 and α′
−1 does not vanish

• furthermore, α orresponds to some ρ-harmoni ωI-isotropi onformal im-mersion if and only if the extended Maurer-Cartan form αλ = λ−2α′
2 +

λ−1α−1 + α0 + λα1 + λ2α′′
2 satis�es

dαλ + αλ ∧ αλ = 0, ∀λ ∈ C∗.Let us reall the proof given in [17℄.Proof. To �x ideas, we take ε = 1. α is a Maurer-Cartan form if and onlyif it satis�es the Maurer-Cartan equation. In this ase, it an be integratedby U = (F, X) : Σ → GI , α = U−1.dU, U(z0) = 1. Hene α = U−1.dU =
(F−1.dF, F−1.dX). Moreover, F−1.dX = α−1 + α1 is real and g±1 = {V ±
iLeV, V ∈ H} so α−1 = α1. Hene α′′

−1 = 0 ⇐⇒ α′′
−1 = α′

1 = 0 ⇐⇒ α−1 =

(F−1 ∂X
∂z )dz ⇐⇒ F−1 ∂X

∂y = Le(F
−1 ∂X

∂x ) ⇐⇒ F−1dX = h(q0du + q′0dv) with
h ∈ C∞(ω,R), q0, q

′
0 ∈ C∞(Ω, S3), 〈q0, q

′
0〉 = 0 and ρ(q0, q

′
0) = e. Thus we have

α′′
−1 = 0 and α′

−1 6= 0 ⇐⇒ dX = ef(qdu + q′dv) with f ∈ C∞(ω,R), (q, q′)orthonormal and ρ(q, q′) = ρ̃e(F ) i.e. ρX = ρ̃e(F ). This proves the �rst point.Hene we have the deomposition α = α2 + α−1 + α0 + α1 = α′
2 + α′

−1 + α0 +
α′′

1 +α′′
2 . Furthermore, using the ommutation relations [g̃k(I), g̃l(I)] ⊂ g̃k+l(I),

[g±1, g±1] = {0}, we obtain
dαλ + αλ ∧ αλ = λ−2(dα′

2 + [α0 ∧ α′
2)])

+λ−1(dα′
−1 + [α′

−1 ∧ α0] + [α′′
1 ∧ α′

2])

+(dα0 +
1

2
[α0 ∧ α0] +

1

2
[α′

2 ∧ α′′
2 ])

+λ(dα′′
1 + [α′′

1 ∧ α0] + [α′
−1 ∧ α′′

2 ])

+λ2(dα′′
2 + [α0 ∧ α′′

2 ]),the oe�ient of λ−1, λ0, λ are respetively the projetion of dα + α ∧ α on
g−1, g0, g1 respetively so they vanish and hene

dαλ + αλ ∧ αλ = dβλ2 + βλ2 ∧ βλ2where βλ = λ−1α′
2 + α0 + λα′′

2 is the extended Maurer-Cartan form of β =
F−1.dF , the Maurer-Cartan form of the lift F ∈ GI of ρX ∈ SI . Aording to[6℄, we know that ρX is harmoni if and only if dβλ + βλ ∧ βλ = 0, ∀λ ∈ C∗.This proves the seond point and ompletes the proof. �Remark 2 We have ρ−(x, y) = −Im (x̄.y) = ρ+(x̄, ȳ). Hene X : Ω → H is
ρ−-harmoni if and only if X̄ is ρ+-harmoni, and X is ω−

I -isotropi if and onlyif X̄ is ω+
I -isotropi. Besides if U = (F, X) : Ω → GI ⋉ H is a left LCωI thenwe have F = La and aea−1 = ρX = ρ+(q, q′) with dX = eω(qdu + q′dv), (q, q′)orthonormal. Thus, ρ−(q̄, q̄′) = aea−1 and hene U = (Rā, X̄) is a right LCωI .8



Remark 3 The restrition to ImH = R3 of the left (or right) ross produtgives us the usual ross produt of R3. Hene a surfae in ImH is left (resp.right) ρ-harmoni if and only if it is a onstant mean urvature surfae.In the same way, it is easy to see that a surfae in S3 is left (resp. right)
ρ-harmoni if and only if it is a onstant mean urvature surfae.Remark 4 We an apply now the Dorfmeister-Pedit-Wu method to obtain aWeierstrass representation of ρ-harmoni surfaes (see [6, 12, 13, 14, 17, 18℄).2 Seond Ellipti Integrable System2.1 4-symmetri spaes and twistor spaeDe�nition 2 Let M be a Riemannian symmetri spae. We will say that a Liegroup G ats symmetrially on M or that M is a G-symmetri spae if G atstransitively and isometrially on M and if there exists a involutive automorphismof G, σ, suh that H the isotropy subgroup at a �xed point p0 ∈ M , satis�es
(Gσ)0 ⊂ H ⊂ Gσ. We will say also that G/H is a symmetri realisation of M .We will say that a G-homogeneous spae N = G/G0 is a 4-symmetri bundleover the G-symmetri spae M if there exists an order four automorphism τ of
G, suh that (Gτ )0 ⊂ G0 ⊂ Gτ , and (G, τ) gives rise to the symmetri spae
M , i.e. σ = τ2 and G0 ⊂ H.A G-homogeneous spae N = G/G0 is a loally 4-symmetri spae if there existsa order four automorphism of the Lie algebra g = Lie G, τ : g → g suh that
gτ = Lie G0. We will say that G/G0 is a loally 4-symmetri bundle over the
G-symmetri spae M if τ2 = T1σ (and G0 ⊂ H).Let us onsider M a G-symmetri spae with τ : g → g an order four auto-morphism suh that τ2 = T1σ. The automorphism τ gives us an eigenspaedeomposition of gC:

gC =
⊕

k∈Z4

g̃kwhere g̃k is the eikπ/2-eigenspae of τ . We have learly g̃0 = gC
0 , g̃k = g̃−k and

[g̃k, g̃l] ⊂ g̃k+l. We de�ne g2, m and g
1
by

g̃2 = gC

2 , mC = g̃−1 ⊕ g̃1 and gC

1
=

⊕

k∈Z4r{0}

g̃k,it is possible beause g̃2 = g̃2 and g̃−1 = g̃1. Let us set g−1 = g̃−1, g1 = g̃1,
h = g0 ⊕ g2 . Then

g = h⊕mis the eigenspae deomposition of the involutive automorphism σ, h is the Liealgebra of H , the isotropy subgroup of G at a referene point p0, and m isidenti�ed to the tangent spae Tp0M . Besides we remark that τ|m ∈ Σ(m)(sine τ|mC = −iIdg−1 ⊕ iIdg1)1, whih gives us the following theorem (proved1We hoose a metri in m stabilized by τ|m (and of ourse by AdH), see setion 3.19



in setion 3.2).Theorem 3 Let us onsider M a Riemannian G-symmetri spae and τ : g→ gan order four automorphism suh that τ2 = T1σ. Let us make G ating on
Σ(M): g ·J = gJg−1. Let J0 ∈ Σ(Tp0M) be the omplex struture orrespondingto τ|m ∈ Σ(m) (resp. to −τ|m = τ−1

|m ∈ Σ(m)), under the identi�ation Tp0M =

m. Then the orbit of J0 under the ation of G is an immersed submanifold of
Σ(M). Denoting by G0 the stabilizer of J0, then LieG0 = gτ and thus G/G0 isa loally 4-symmetri bundle over M , and the natural map

i : G/G0 −→ Σ(M)
g.G0 7−→ gJ0g

−1 .is an injetive immersion and a morphism of bundle. Moreover, if the image of
G in Is(M) (the group of isometry of M) is losed, then i is an embedding.2.2 The seond ellipti integrable system assoiated to a4-symmetri spaeWe give ourself M a Riemannian G-symmetri spae with τ : g → g an orderfour automorphism suh that τ2 = T1σ, and N = G/G0 the assoiated loally4-symmetri spae given by theorem 3. We use the same notations as in Se-tion 2.1. Then let us reall what is a seond ellipti system aording to C.L.Terng (see [20℄).De�nition 3 The seond (g, τ)-system is the equation for (u0, u1, u2) : C →
⊕2

j=0g̃−j ,






∂z̄u2 + [ū0, u2] = 0 (a)
∂z̄u1 + [ū0, u1] + [ū1, u2] = 0 (b)
−∂z̄u0 + ∂z ū0 + [u0, ū0] + [u1, ū1] + [u2, ū2] = 0. (c)

(4)It is equivalent to say that the 1-form
αλ =

2
∑

i=0

λ−iuidz + λiūidz̄ = λ−2α′
2 + λ−1α′

1 + α0 + λα′′
1 + λ2α′′

2 (5)satis�es the zero urvature equation:
dαλ +

1

2
[αλ ∧ αλ] = 0, (6)for λ ∈ C∗. We will speak about the (G, τ)-system (τ is an automorphismof LieG = g) when we look at solutions of the (g, τ)-system in G, i.e. maps

U : C→ G suh that their Maurer-Cartan form is solution of the (g, τ)-system,in other words when we integrate the zero urvature equation (6) in G. We willall (geometri) solution of the seond ellipti integrable system assoiated to theloally 4-symmetri spae G/G0 a map J : C→ G/G0 whih an be lifted into asolution U : C→ G of (4). 10



Remark 5 In (4), {Re((a)), (b), (c)} is equivalent to dα + 1
2 [α∧α] = 0. Henethe additionnal ondition added to the Maurer-Cartan equation by the zerourvature equation (6) is Im(∂z̄α

′
2 + [α′′

0 , α′
2]) = 0 or equivalently

d(⋆α2) + [α0 ∧ (⋆α2)] = 0.The �rst example of seond ellipti system was given by F. Hélein and P. Romon(see [12, 14℄): they showed that the equations for Hamiltonian stationary La-grangian surfaes in 4-dimension Hermitian symmetri spaes are the seondellipti system assoiated to ertain 4-symmetri spaes. Then in [17℄, we foundan other example in O: teh ρ-harmoni surfaes in O, whih by restrition to
H gives us the ρ-harmoni surfaes in H (studied in setion 1) whih generalizethe Hamiltonian stationary Lagrangian surfaes in C2.De�nition 4 Let M be a Riemannian manifold and ∇ its Levi-Civita onne-tion whih indues a onnetion on End(TM). Let us de�ne for eah (p, Jp) ∈
Σ(M) the orthogonal projetion

pr⊥(p, Jp) : End(TpM)→ TJp
(Σ(TpM))(TpM is an Eulidean vetor spae so Σ(TpM) is a submanifold of the Eulideanspae End(TpM) and so TJp

Σ(TpM) is a vetor subspae of End(TpM) and wean onsider the orthogonal projetion on this subspae). Given J : C → Σ(M)we set
∆J(z) = 4pr⊥(J(z)).∇ ∂

∂z̄
(∇ ∂

∂z
J).(in fat we endow the bundle Σ(M) with the onnetion de�ned by the horizontaldistribution (HJ ⊕ (TJΣ(TpM))⊥) ∩ TJΣ(M), where HJ is the onnetion of

End(TM) : TEnd(TM) = H ⊕ End(TM)). We will say that J is vertiallyharmoni if ∆J = 0.De�nition 5 Let (L, j) be a Riemann surfae, M a oriented manifold and
X : L→M a immersion. Let J : L→ X∗(Σ(M)) be a almost omplex strutureon the vetor bundle X∗(TM). Then we will say that J is an admissible twistorlift of X if one of the following equivalent statements holds:(i) X is J-holomorphi: ⋆dX := dX ◦ j = J.dX(ii) J is an extension of the omplex struture on the oriented tangent plan

P = X∗(TL) indued by j, the omplex struture of L, or equivalently Jindues the omplex struture j in L.(iii) X is a onformal immersion and J stabilizes the tangent plan X∗(TL),i.e. for all z ∈ L, Jz stabilizes X∗(TzL) and indues on it the sameorientation, whih we will denote by J 	 X∗(TL)(iv) X is a onformal immersion and J is an extension of the unique positiveomplex struture IP of the tangent plan P = X∗(TL).11



Finally, we will say that a map J : L → Σ(M) is an admissible twistor lift ifits projetion X = prM ◦ J : L → M is an immersion and J is an admissibletwistor lift of it.Theorem 4 Let L be a simply onneted Riemann surfae and (G, τ) a loally4-symmetri bundle over a symmetri spae M = G/H. Let J0 ∈ Σ(Tp0M) bethe omplex struture orresponding to τ−1
|m (see Setion 2.1). Let be JX : L →

i(G/G0) ⊂ Σ(G/H). Then the two following statements are equivalent:
• JX is an admissible twistor lift.
• Any lift F : L → G of JX (FJ0F

−1 = JX) gives rise to a Maurer-Cartanform α = F−1.dF whih sati�es: α′′
−1 = α′

1 = 0 and α′
−1 does not vanish.Furthermore, under these statements, JX : L→ Σ(G/H) is vertially harmoniif and only if JX : L→ G/G0 is solution of the seond ellipti integrable systemassoiated to the loally 4-symmetri spae (G, τ), i.e.

dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ C∗,where αλ = λ−2α′

2 + λ−1α′
−1 + α0 + λα′′

1 + λ2α′′
2 is the extended Maurer-Cartanform of α.Proof. For the �rst point, let us make F−1 ating on the equation dX ◦ j =

JX .dX , we obtain αm ◦ j = τ|m(αm) whih is equivalent to α′′
−1 = α′

1 = 0. Thus
α−1(

∂
∂z ) = αm( ∂

∂z ) = F−1.∂X
∂z , and X is an immersion if and only if α′

−1 doesnot vanish.For the seond point, let us reall that End(TpM) = sym(TpM)
⊥
⊕ so(TpM) andgiven J ∈ Σ(TpM), we have TJΣ(TpM) = Ant(J) = {A ∈ so(TpM)|AJ + JA =

0} and (TJΣ(TpM))⊥ ∩ so(TpM) = Com(J) = {A ∈ so(TpM)|[A, J ] = 0}.Now, let us ompute the onnetion X∗∇ on X∗(End(TM)), in terms of theLie algebra setting. Let A be a setion of X∗(End(TM)) and Y a setion of
X∗(TM). Let A0 ∈ C∞(L, End(Tp0M)) be de�ned by AF.p0 = FA0F

−1 and
Am ∈ C∞(L, End(m)) its image under the identi�ation Tp0M = m. Then
AF.p0 orresponds to AdF ◦ Am ◦ AdF−1 (under the identi�ation TM = [m]).In partiular (JX)m = τ|m (we suppose F (p0) = 1). We set also Y = AdF (ξ).p0,
ξ ∈ C∞(L, m). From now, we do the identi�ation TM = [m] without preisingit. We have

(∇A)(Y ) = ∇(AY )−A(∇Y )

= AdF ([d(Amξ) + [α, Am.ξ]]m −Am(dξ + [α, ξ]m))

= AdF ((dAmξ + (adαh ◦Am −Am ◦ adαh)ξ) .Hene
∇A = AdF (dAm + [admαh, Am]).12



In partiular,2
∇ ∂

∂z
JX = 2AdF (admα′

2 ◦ τ|m)(beause admg0 ommutes with τ|m whereas adg2 antiommutes with it) andthus
∇ ∂

∂z̄
(∇ ∂

∂z
JX) = 2AdF

(

adm(∂z̄α
′
2) ◦ τ|m + [adm(α′′

h), adm(α′
2) ◦ τ|m]

)

= 2AdF
(

adm(∂z̄α
′
2) ◦ τ|m + adm([α′′

0 , α′
2]) ◦ τ|m

+ [admα′′
2 , adm(α′

2) ◦ τ|m]
)

= 2AdF
(

adm(∂z̄α
′
2 + [α′′

0 , α′
2]) ◦ τ|m + [admα′′

2 , adm(α′
2) ◦ τ|m]

)but AdF
(

[admα′′
2 , adm(α′

2) ◦ τ|m]
) ommutes with AdF (τ|m) = JX so it is or-thogonal to TJΣ(TpM) thus

pr⊥(JX).∇ ∂
∂z̄

(∇ ∂
∂z

JX) = 2AdF
(

adm(∂z̄α
′
2 + [α′′

0 , α′
2]) ◦ τ|m

)

.Hene, sine adm is injetive,
∆JX = 0⇐⇒ ∂z̄α

′
2 + [α′′

0 , α′
2] = 0. (7)This ompletes the proof. �Remark 6 The equivalene (7) holds for any map JX : L→ i(G/G0). Indeed,we have not used the fat that JX is an admissible twistor lift to prove thisequivalene.Theorem 5 Let JX : L → G/G0 →֒ Σ(G/H) be an admissible twistor lift.Then JX : L → G/G0 is harmoni3 if and only if X : L → G/H is harmoniand JX is vertially harmoni.Proof. JX : L → G/G0 is harmoni if and only if the Maurer artan form

α = F−1.dF of the lift F : L→ G of JX (FJ0F
−1 = JX) satis�es (see [3℄)

∂z̄α
′
1 + [α′′

0 , α′
1] + [α′′

1 , α′
1]g

1
= 0(where g = g0 ⊕ g

1
is the redutive deomposition orresponding to the homo-geneous spae G/G0, see Setion 2.1) whih splits into







∂z̄α
′
2 + [α′′

0 , α′
2] + [α′′

1 , α′
1] + [α′′

−1, α
′
−1] = 0

∂z̄α
′
−1 + [α′′

0 , α′
−1] + [α′′

2 , α′
1] + [α′′

1 , α′
2] = 0

∂z̄α
′
1 + [α′′

0 , α′
1] + [α′′

2 , α′
−1] + [α′′

−1, α
′
2] = 0.

(8)then, using α′′
−1 = α′

1 = 0, we obtain






∂z̄α
′
2 + [α′′

0 , α′
2] = 0

∂z̄α
′
−1 + [α′′

0 , α′
−1] = 0

[α′′
2 , α′

−1] = 02In all the proof, we will merge α′
k
(resp. α′′

k
) with α′

k
( ∂

∂z
) (resp. α′′

k
( ∂

∂z̄
)), and in partiularwrite `[α′′

k
, α′

l
]' instead of `[α′′

k
( ∂

∂z̄
), α′

l
( ∂

∂z
)]'.3with respet to the killing form. 13



(in the seond equation, we have used = [α′′
1 , α′

2] = −[α′′
2 , α′

−1] = 0).Besides X : L→ G/H is harmoni if and only if we have
∂z̄α

′
m + [α′′

h, α′
m] = 0whih splits into

{

∂z̄α
′
−1 + [α′′

0 , α′
−1] + [α′′

2 , α′
1] = 0

∂z̄α
′
1 + [α′′

0 , α′
1] + [α′′

2 , α′
−1] = 0.

(9)and using α′′
−1 = α′

1 = 0, we obtain
{

∂z̄α
′
−1 + [α′′

0 , α′
−1] = 0

[α′′
2 , α′

−1] = 0.This ompletes the proof. �3 Struture of 4-symmetri bundles over sym-metri spaes3.1 4-symmetri spaesLet G be a Lie group with Lie algebra g, τ : G→ G an order four automorphismwith the �xed point subgroup Gτ , and the orresponding Lie algebra g0 = gτ .Let G0 be a subgroup of G suh that (Gτ )0 ⊂ G0 ⊂ Gτ , then Lie G0 = g0and G/G0 is a 4-symmetri spae. The automorphism τ gives us an eigenspaedeomposition of gC for whih we use the notation of setion 2.1. Then g = h⊕mis the eigenspae deomposition of the involutive automorphism σ = τ2. Let Hbe a subgroup of G suh that (Gσ)0 ⊂ H ⊂ Gσ then LieH = h and G/H is asymmetri spae. We will often suppose that G0 and H are hosen suh that
G0 = Gτ ∩H . With this ondition, G0 ⊂ H so that G/G0 is a bundle over G/H .Reall that the tangent bundle TM is anonially isomorphi to the subbundle
[m] of the trivial bundle M ×g, with �ber Adg(m) over the point x = g.H ∈M .Under this identi�ation the anonial G-invariant onnetion of M is just the�at di�erentiation in M × g followed by the projetion on [m] along [h] (whihis de�ned in the same way as m) (see [2℄ or [4℄). For the homogeneous spae
N = G/G0 we have the following redutive deomposition

g = g0 ⊕ g
1

(10)(g
1
an be written g

1
= m⊕ g2) with [g0, g1

] ⊂ g
1
. As for the symmetri spae

G/H , we an identify the tangent bundle TN with the subbundle [g
1
] of thetrivial bundle N × g, with �ber Adg(g

1
) over the point x = g.G0 ∈ N .The symmetri spae M = G/H (resp. the homogeneous spae N = G/G0) isRiemannian if it admits an G-invariant metri, whih is equivalent to say that

m (resp. g1) admit an Ad(H)-invariant (resp. Ad(G0)-invariant) inner produtor equivalently, that Adm(H) (resp. Adg1(G0)) be relatively ompat4. We4In the litterature, it is often supposed that Adm(H) is ompat. We will see that thesetwo hypothesis are in fat equivalent. 14



remark that the Levi-Civita onnetion oinide with the previous anonial G-invariant onnetion and in partiular is independant of the G-invariant metrihosen. We will always suppose that the symmetri spaes M whih we onsiderare Riemannian. We will in addition to that suppose that the Ad(H)-invariantinner produt in m is also invariant by τ|m (suh a inner produt always existswhen Adm(H) is ompat, see the appendix). We will also suppose that M isonneted, then G0 ats transitively on M and so we an suppose that G isonneted.We want to study the Riemannian symmetri spaes M suh that there exists a4-symmetri spae (G, τ) whih gives rise to M in the same way as above. Forthis let us reall the following theorem:Theorem 6 [2, 15℄ Let M be a Riemannian manifold.(a) The group Is(M) of all the isometries of M is a Lie group and ats di�er-entiably on M .(b) Let p0 ∈M , then an isometry f of M is determined by the image f(p0) ofthe point p0 and the orresponding tangent map Tp0f (i.e. if f(p0) = g(p0)and Tp0f = Tp0g then f = g).() The isotropy subgroup Isp0(M) = {f ∈ Is(M); f((p0) = p0} is a losed sub-group of Is(M) and the linear isotropy representation ρp0 : f ∈ Isp0(M) 7→
Tp0f ∈ O(Tp0M) is an isomorphism from Isp0(M) onto a losed subgroupof O(Tp0M). Hene Isp0(M) is a ompat subgroup of Is(M).(d) If M is a Riemannian homogeneous spae, M = G/H with G = Is(M),
H = Isp0(M) and m an AdH-invariant spae suh that g = h ⊕ m, thenthe previous losed subgroup, image of H by the preeding isomorphism
ρp0 , i.e. the linear isotropy subgroup H∗ an be identi�ed to AdmH. Morepreisely the linear isometry ξ ∈ m 7→ ξ.p0 ∈ Tp0M gives rise to an iso-morphism from O(m) onto O(Tp0M) whih sends AdmH onto H∗. Henethe linear adjoint representation of H on m: g ∈ H 7→ Admg ∈ AdmH isan isomorphism (of Lie groups). H ∼= H∗ ∼= AdmH.3.1.1 First onvenient hypothesis.There may be more than one Lie group G ating symmetrially on a Riemanniansymmetri spae M . Besides, we have a onvenient way to work on Riemanniansymmetri spaes: it is to onsider that G is a subgroup of the group of isometriesof M , Is(M), whih is equivalent to suppose that G at e�etively on M , i.e. H ,the isotropy subgroup at a �xed point p0 does not ontain non-trivial normalsubgroup of G (see [2℄). It is always possible beause the kernel K of the naturalmorphism φH : G → Is(M) is the maximal normal subgroup of G ontained in

H 5, and G′ = G/K ats transitively and e�etively on M = G/H with isotropysubgroup H ′ = H/K. Thus M = G′/H ′ and sine K ⊂ H ⊂ Gσ, then σ gives5K = ker φH = ker ρp0 = ker Adm 15



rise to an involutive morphism σ′ : G′ → G′ suh that (G′σ
′

)0 ⊂ H ′ ⊂ G′σ
′ .Now, let us suppose that there exists an order four automorphism τ : G → Gsuh that σ = τ2. Then it gives rise to an isomorphism τ ′ : G/K → G/τ(K).We would like that τ(K) = K. It is the ase if τ(H) = H : K and τ(K) arerespetively the maximal normal subgroup of G ontained in H and τ(H) andso if τ(H) = H then K = τ(K).Let us suppose that τ(K) = K, then τ gives rise to an order four automorphism

τ ′ : G/K → G/K suh that σ′ = τ ′2. With our onvention we have G′
0 =

G′τ
′

∩H ′, then we obtain a 4-symmetri bundle N ′
min = G′/G′

0 over M . Hene,when G′
0 desribes all the possible hoie: (G′τ

′

)0 ⊂ G′
0 ⊂ G′τ

′

∩H ′, we obtaina family of 4-symmetri bundle N ′ = G′/G′
0 over M whih are disrete overingof N ′

min = G′/(G′τ
′

∩H ′) and of whih N ′
max = G′/(G′τ

′

)0 is a direte overing.For exampe, if we hoose G′
0 = πK(G0K), we obtain the 4-symmetri bundleover M , N ′ = (G/K)/πK(G0K) = G/G0K = N/K 6.Let us ome bak to the general ase (i.e. we do not suppose that τ(K) = K).Sine τ(h) = h, we have τ(H0) = H0 and thus denoting by K0 the maximalnormal subgroup of G ontained in H0 (we have K0 ⊂ K0 ⊂ K ∩ H0), then

τ(K0) = K0 for the same reason as above (in partiular, if K0 = K i.e. K ⊂ H0,then we are in the prevoius ase: τ(K) = K). Hene τ gives rise to an order fourautomorphism τ̃ : G/K0 → G/K0 and we are in the ase onsidered above if weonsider the symmetri spae M̃ = G/H0 (instead of M). Let us preise thispoint. Indeed M̃ is a (G/K0)-symmetri spae and G̃ = G/K0 ats e�etivelyon it (the isotropy subgroup H̃ = H0/K0 does not ontain non trivial normalsubgroup of G/K0): as above σ gives rise to an involutive automorphism σ̃of G̃ = G/K0 suh that H̃ = (G̃σ̃)0 and τ̃ is an order four automorphism of
G/K0 suh that τ̃2 = σ̃. Finally, as above we obtain a family of 4-symmetribundle Ñ = G̃/G̃0 over M̃ when G̃0 desribe the set of all possible hoie:
(G̃τ̃ )0 ⊂ G̃0 ⊂ G̃τ̃ ∩ H̃ .Moreover, the involution σ̃ of G/K0 gives rise also to the G/K0-symmetri spae
M (i.e. (G̃σ̃)0 ⊂ H/K0 ⊂ G̃σ̃ or equivalently M belongs to the family of G/K0-symmetri spaes de�ned by σ̃ (of whih M̃ is a disrete overing)).In the same way, we have τ(Gσ) = Gσ and thus we an do the same as abovefor the symmetri spae Mmin = G/Gσ.Nevertheless, in general, it is possible that τ(K) 6= K and then τ doesnot give rise to an order four automorphism of G′ = G/K but only to theisomorphism τ ′ : G/K → G/τ(K). However, the tangent map Teτ

′ = Teτ̃ isan order four automorphism of the Lie algebra Lie(G/K) = Lie(G/τ(K)) =
Lie(G/K0) = g/k, and we have (Teτ

′)2 = Teσ
′, thus N/K = (G/K)/πK(G0K)is a loally 4-symmetri bundle over M (Lie πK(G0K) = gTeτ ′).Hene we have two good settings to study the Riemannian symmetri spaes6In the writing N ′ = N/K, K does not at freely on N in general: it is K ′ = K/K ∩ G0whih ats freely on N and we have N ′ = N/K = N/K ′. In partiular it is possible that

N/K = N for a non trivial K (see setion 5.3).16



M over whih a 4-symmetri bundle an be de�ned, if we want to work onlywith subgroup of Is(M).The �rst possibility is to onsider that we begin by giving ourself an orderfour automorphism τ : G→ G and that we always hoose the Riemannian sym-metri spae M̃ = G/H with H = (Gτ2

)0 (respetively Mmin = G/H with
H = Gτ2). In other words, in the family of G-symmetri spae orrespondingto σ = τ2 (i.e. (Gσ)0 ⊂ H ⊂ Gσ), we hoose the "maximal" one M̃ = G/(Gσ)0,whih is a disrete overing of all the other (respetively the "minimal" one
Mmin = G/Gσ, of whih all the other are disrete overings). Then aordingto what preede, we an always suppose that G is a subgroup of Is(M̃) (respe-tively of Is(Mmin)).The seond possibility is to work with loally 4-symmetri spaes. In otherwords we begin by a Riemannian symmetri spae over whih there exists aloally 4-symmetri bundle. It means that we work with the following setting:a Riemannian symmetri spaes M with G a subgroup of Is(M) ating sym-metrially on M and a order four automorphism τ : g→ g, suh that T1σ = τ2.To de�ne the loally 4-symmetri spae N in this setting, we must tell how wede�ne G0. We will set

G0 = {g ∈ H |Admg ◦ τ|m ◦Admg−1 = τ|m}. (11)First, we have to verify that if τ an be integrated by an automorphism of G,also denoted by τ , then we have G0 = Gτ ∩ H . Indeed, if g ∈ Gτ ∩ H , then
Adg ◦ τ ◦ Adg−1 = Ad(g.τ(g)−1) ◦ τ = τ and sine AdH stabilises m, we have
Admg ◦ τ|m ◦ Admg−1 = τ|m by taking the restrition to m of the preedingequation. Conversely, suppose that g ∈ H and Admg ◦ τ|m ◦Admg−1 = τ|m, then
Ad(g.τ(g)−1) ◦ τ|m = τ|m so sine τ|m is surjetive, Ad(g.τ(g)−1)|m = Idm andsine the adjoint representation of H on m is injetive (beause we suppose that
G is a subgroup of Is(M), and thus H is a subgroup of Isp0(M)) it follows that
g.τ(g)−1 = 1. Finally, g ∈ Gτ ∩H . Thus our de�nition (11) is oherent withour onvention whih holds when τ an be integrated by an automorphism of
G.Besides, it is easy to see that Lie G0 = {a ∈ h| ada|m ◦ τ|m = τ|m ◦ ada|m} = g0.(Indeed, ∀a ∈ g0, ada ◦ τ = τ ◦ ada, and ∀a ∈ g2, ada ◦ τ = −τ ◦ ada, moreover
τ|m ◦ ada|m = 0 ⇒ ada|m = 0 ⇒ a = 0 beause a ∈ h 7→ ada|m is the tangentmap of h ∈ H 7→ Adh|m whih is an injetive morphism). Hene N = G/G0 isa loally 4-symmetri bundle over M .Further, let π : G̃ → G be the universal overing of G, and D = kerπ. Then
τ an be integrated by τ̃ : G̃ → G. Set σ̃ = τ̃2, then σ ◦ π = π ◦ σ̃ and
T1σ = T1σ̃ = (T1τ̃)2. G̃ ats almost e�etively on M with isotropy subgroup
H̃ = π−1(H) and almost e�etively on M̃ = G̃/H̃0 whih is the universalovering of M (see [15℄). Besides, if G̃ does not at e�etively on M̃ , thenwe take D0 the maximal normal subgroup of G̃ inluded in H̃0, and then wequotient by it, so that we obtain an e�etive ation of G̃/D0 on M̃ and τ̃ givesrise to an automorphism of G̃/D0, aording to above. Thus we are in the �rstpossibility. Besises it is easy to see that ∀g ∈ G̃, Adg = Adπ(g) (more preisely17



T1π ◦ Adg = Adπ(g) ◦ T1π and we identify g̃ and g so that T1π = Id). Thus
G̃0 = G̃τ̃ ∩ H̃0 = {g ∈ H̃0|Adg ◦ τ|m ◦ Adg−1 = τ|m} ⊂ π−1(G0) . Hene the4-symmetri spae G̃/G̃0 is a disrete overing of the loally 4-symmetri spae
G/G0 and we have the following ommutative diagram:

G̃/G̃0 −−−−→ G/G0




y





y

M̃ −−−−→ M .

(12)In onlusion, the two possibilities are equivalent, but we will use the seondone beause it works with any symmetri spae M , whereas the �rst needs thatwe hoose a ertain overing of M (for example its universal overing).Remark 7 We see that in the preeding reasoning (this using the universalovering G̃) we need only the automorphism of Lie algebra τ (and not thesymmetri spae M). Hene, we an onsider that we work in the Lie algebrasetting and give ourself an order four automorphism τ of g. Then we onsiderthe family of assoiated pairs (G, H) where G is a onneted Lie group withLie algebra g and H a losed Lie subgroup with Lie algebra h = gσ. To eahsuh pair orresponds the loally symmetri spae M = G/H and de�ning G0by (11), the loally 4-symmetri bundle N = G/G0 over M . Let G̃ be a simplyonneted Lie group with Lie algebra g, then τ and σ integrates in G̃ and thusfor H̃ the losed subgroup with Lie algebra h, we an take all subgroups suhthat (G̃σ̃)0 ⊂ H̃ ⊂ G̃σ̃ (whih implies that H̃ is losed). If we suppose H̃onneted, i.e. H̃ = (G̃σ̃)0, then M̃ = G̃/H̃ is a symmetri spae and is also theuniversal overing of all the loally symmetri spaes M = G/H when (G, H)desribes all the assoiated pairs (see [15℄), and we have the above ommutativediagram between the 4-symmetri bundle Ñ = G̃/G̃0 over M̃ and the loally4-symmetri bundle N = G/G0 over M . Moreover if M̃ is Riemannian thenall the symmetri spaes M = G/H when (G, H) desribes all the symmetriassoiated pairs are Riemannian (see appendix, orollary 3).Remark 8 Let us onsider M a G-symmetri spae, G ⊂ Is(M), τ : g → gan order four automorphism suh that τ2 = T1σ. Then we have τ|m ∈ Σ(m)(τ|mC = −iIdg−1 ⊕ iIdg1) and it is easy to see that
∀a ∈ h, τ|h(a) = ad−1

m (τ|m ◦ ada|m ◦ τ−1
|m ).In other words, under the identi�ation h ≃ admh ⊂ so(m), τ|h is the restritionto h of Adτ|m : so(m)→ so(m). Hene τ is determined by τ|m. Besides τ|h is thetangent map of the isomorphism τH :

τH(g) = Ad−1
m (τ|m ◦Admg ◦ τ−1

|m ),for g ∈ H0 (and more generally for g ∈ Ad−1
m ◦ (Intτ|m)−1 ◦ Adm(H)). Underthe identi�ation H ≃ AdmH ⊂ O(m) it is the restrition to H0 of the invo-lution Intτ|m : O(m) → O(m). Aording to the de�nition (11) of G0, we have18



G0 = HτH . Besides τH(H0) = H0, thus H0/G0
0 is an H0-symmetri spae. If

Intτ|m(AdmH) = (AdmH), then τH is de�ned in H and τH(H) = H , then H/G0is an H-symmetri spae (if τH(H) 6= H it is only a loally symmetri spae).Obviously, if τ an be integrated in G then τH = τ|H .Theorem 7 Let M a G-symmetri spae, G ⊂ Is(M), τ : g→ g an order fourautomorphism suh that τ2 = T1σ. Let Aut(m) be the subgroup of O(m) de�nedby:
Aut(m) = {F ∈ O(m) | F (adm[v, v′])F−1 = adm[Fv, Fv′]}it is the subgroup of O(m) whih leaves invariant adm([·, ·]|m×m) ∈ (Λ2m∗) ⊗

so(m).Its Lie Algebra
Der(m) = {A ∈ so(m) | [A, adm[v, v′]] = adm[Av, v′] + adm[v, Av′], ∀v, v′ ∈ m}is the Lie subalgebra of so(m) whih (ating by derivation) leaves invariant

adm([·, ·]|m×m) ∈ (Λ2m∗)⊗ so(m).Then τ|m ∈ Aut(m) and τ an be extended in an unique way to the Lie algebra
Der(m)⊕m endowed with the Lie braket

[(A, v), (A′, v′)] = ([A, A′] + adm[v, v′], A.v′ −A′.v)and of whih g is a Lie subalgebra, under the inlusion a + v ∈ h ⊕ m 7→
(adma, v) ∈ Der(m)⊕m, by setting

τ |m = τ|m and τ |Der(m) = Intτ|m . (13)Conversely, given τm ∈ O(m), the linear map τ de�ned by (13) is an automor-phism of the Lie algebra Der(m) ⊕ m if and only if τm ∈ Aut(m). Besides itsatis�es τ2 = IdDer(m) ⊕ −Idm (and in partiular is of order four) if and onlyif τm ∈ Σ(m).Hene, de�ne a loally 4-symmetri bundle over the Riemannian symmetrispae M (whih the realisation M = G/H, i.e. τ is an automorphism of gsuh that τ2 = T1σ) is equivalent to give ourself τm ∈ Σ(m) ∩ Aut(m) suhthat the order four automorphism τ of Der(m) ⊕ m stabilizes g = h ⊕ m, i.e.suh that τm(admh)τ−1
m = admh (i.e. admh is a subalgebra of Der(m) sta-ble by Adτm). Then τ = τ |g is an order four automorphism of g suh that

τ2 = Idh ⊕−Idm = T1σ.Proof. First τ|m ∈ Aut(m): that follows from the fat that τ is an automor-phism, so τ ◦ ada ◦ τ−1 = adτ(a) , ∀a ∈ g.Seond, Der(m)⊕m is a Lie subalgebra . We have to hek the Jaobi identity issatis�ed. It is a straightforward omputation (see [15℄). Then we have to hekthat τ is an automorphism if and only if τm ∈ Aut(m).If τm ∈ Aut(m) then
• if A, A′ ∈ Der(m), τ ([A, A′]) = [τ (A), τ (A′)] beause τDer(m) = Intτm is anautomorphism of Der(m). 19



• if A ∈ Der(m), v ∈ m, τ ([A, v]) = τm(A.v) = τmAτ−1
m (τm.v) = [τ (A), τ (v)]

• if v, v′ ∈ m, τ ([v, v′]) = Intτm(adm[v, v′]) = adm([τmv, τmv′]) = [τ(v), τ (v′)]beause τm ∈ Aut(m).Finally τ is an automorphism and the unique extension of τ (beause it isdetermined by τ|m, see remark 8).Conversely if τ is an automorphism of Lie algebra then
τmadm([v, v′])τ−1

m = (τadm([v, v′])τ−1)|m = (adτ ([v, v′]))|m = adm([τ (v), τ (v′)]) = adm([τmv, τmv′]).Thus τm ∈ Aut(m).The last assertion of the theorem follows from what preedes. This ompletesthe proof. �Remark 9 Let τm ∈ Σ(m) then the ondition Adτm(admh) = admh impliesthat there exists an automorphism τh of h de�ned by ∀a ∈ h, Adτm(adma) =
admτh(a), i.e. τh = ad−1

m ◦ Adτm ◦ adm. Then the ondition τm ∈ Aut(m) isequivalent to
τh([v, v′]) = [τmv, τmv′], ∀v, v′ ∈ m.And obviously, if these two onditions are satis�ed then we have τh = τ|h (where

τ = τg is given by the theorem 7).Remark 10 Let us onsider the map
s : g ∈ Isp0(M) 7→ Admg ◦ τ|m ◦Admg−1 ∈ Σ(m)and set G0 = {g ∈ Isp0(M)|s(g) = τ|m}. Isp0(M) ats on Σ(m) by g.J =

Admg ◦ J ◦ Admg−1 and s(g) = g.τ|m, G0 = StabIsp0 (M)(τ|m). In the sameway, the subgroup H = Isp0(M)∩G ats on Σ(M) and G0 = StabH(τ|m). Then
s(Isp0(M)) = Isp0(M)/G0 is a ompat submanifold of Σ(m), and s(H) = H/G0is a relatively ompat (immersed) submanifolds of Σ(m).3.1.2 Seond onvenient hypothesis.An other onvenient hypothesis on G is to onsider that it is a losed subgroupof Is(M) (and not only a immersed subgroup). It is always possible to workwith this hypothesis. Let us make preise this point. Let σp0 be the symmetryof M around p0 (de�ned by σ): σp0 ∈ Is(M), σp0(p0) = p0 and Tp0σp0 = −Id.Then σp0 belongs to the isotropy subgroup Isp0(M) = {f ∈ Is(M); f(p0) = p0},and we an de�ne the involution of Is(M):

σIs(M) = Int(σp0 ) : g ∈ Is(M) 7→ σp0 ◦ g ◦ σ−1
p0
∈ Is(M).It is easy to see that we have

(Is(M)σIs(M))0 ⊂ Isp0(M) ⊂ Is(M)σIs(M) (14)20



(see [15, 2℄). The result of this is that σ : G→ G is the restrition of σIs(M) to
G ⊂ Is(M) (they indue σp0 on M = G/H and the identity on H , thus, sine
G is loally isomorphi to M ×H , they are idential, see also [15℄). Moreoverthere exists an unique subgroup Ḡ of Diff(M) suh that for any G-invariantRiemannian metri b on M , the group Ḡ is the losure of G in Is(M, b): Is(M, b)is losed in Diff(M) and so the losure of G in Is(M, b) is its losure in Diff(M)and thus it does not depend on b (see [2, 15℄). Then σ extends in an uniqueway to an involutive morphism σ̄ : Ḡ→ Ḡ, whih is the restrition of σIs(M) to
Ḡ. Hene denoting by Ĥ the isotropy subgroup of Ḡ at p0, Ĥ = Isp0(M) ∩ Ḡ,we have aording to (14), (Ḡσ̄)0 ⊂ Ĥ ⊂ Ḡσ̄. Besides σ̄ gives rise to the artandeomposition Lie Ḡ = Lie Ĥ ⊕m.In addition to that, we have Ĥ = H̄. Indeed, let Φ: U × Isp0(M) → Is(M) bea loal trivialisation of Is(M) → M , suh that Φ(p0, h) = h, and Φ(U ×H) =
Φ(U × Isp0(M)) ∩ G (take Φ(p, h) = φ(p).h, with φ : U → G a loal setionsuh that φ(p0) = 1). Further, if g ∈ Isp0(M) ∩ Ḡ and (gn) is a sequene of
G ∩ Φ(U × Isp0(M)) suh that gn → g, then Φ−1(gn) = (un, hn) ∈ U × Honverges to Φ−1(g) = (p0, g), thus hn → g so g ∈ H̄ .Moreover, H̄ is a losed subgroup of Isp0(M), thus it is ompat. Hene, wehave the symmetri realisation M = Ḡ/H̄ and Adm(H̄) is ompat: we haveshowed that the hypothesis Adm(H) relatively ompat and Adm(H) ompatgives the same symmetri spaes. Moreover, by using the preeding reasoning(to prove Ĥ = H̄) it is easy to see that if Adm(H) is ompat then G is losedin Is(M) (see also [15℄) so that the hypothesis "Adm(H) is ompat" and "G islosed in Is(M)" are in fat equivalent.Besides, the losure of G is the same in Is(M) and in Is(M̃) with M̃ = G/H0:sine M and M̃ are omplete (a Riemannian homogeneous spae is omplete)then Is(M) and Is(M̃) are omplete (see [15℄), and thus the losure of G in oneof this group is the ompleted of G.Now, let us suppose that we have a loally 4-symmetri bundle over M .Theorem 8 Let us onsider M a G-symmetri spae with G ⊂ Is(M) and
τ : g→ g an order four automorphism suh that τ2 = T1σ. Then the extension
τ of τ , given by theorem 7 stabilizes the Lie algebra, Lie Ḡ, of the losure of Gin Is(M):

τ (Lie Ḡ) = Lie Ḡ.Then denoting by τ̄ := τ |Lie Ḡ the extension of τ to Lie Ḡ (given by theorem 7),the subgroup �xed by τ̄ (de�ned by (11)) is the losure of G0:
Ĝ0 := {g ∈ H̄ | τ|m ◦Admg ◦ τ−1

|m = Admg} = Ḡ0.Finally the new loally 4-symmetri bundle over M de�ned by τ̄ is Ḡ/Ḡ0, andusing the notation of remark 10 the �ber of Ḡ/Ḡ0, Ŝ0 := s(H̄) = H̄/Ḡ0 is thelosure of the �ber S0 of G/G0: S0 = s(H) = (H/G0), in the maximal �berover M : S0 := s(Isp0(M)) = Isp0(M)/G0.21



Theorem 9 Let us onsider M a Riemannian symmetri spae and M̃ its uni-versal overing.
• We have Rp0(·, ·) = adm([·, ·]|m×m) and thus 7

Der(m) = Isp0(M̃) ⊃ Isp0(M) ⊃ Lie Hol(M)

Aut(m) ⊃ Isp0(M̃) ⊃ Isp0(M) ⊃ Hol(M)
(15)(using the identi�ation Tp0M = m) and Der(m)⊕m = Is(M̃).

• Moreover the following statements are equivalent:(i) Isp0(M̃) = Isp0(M) (i.e. Is(M̃) = Is(M))(ii) M = M ′ ×M0, with M ′ of the semisimple type (i.e. Is(M ′) is semisimple)and M0 is Eulidean.(iii) h0 = so(m0), where h0 and m0 are respetively the Eulidean part of
Isp0(M) and m respetively, in the deomposition Is(M) = g′ ⊕ g0, with g′semisimple and g0 of the Eulidean type.
• Besides the following statements are also equivalent:(i) Isp0(M̃) = Isp0(M)⊕ so(m0)(ii) h0 = 0(iii) Let M̃ = M ′×M0 be the deomposition of M̃ into the semisimple and Eu-lidean type, Γ the group of dek transformations of the overing π : M̃ → M .Then the projetion on the Eulidean fator (of Is(M̃) = Is(M ′)× Is(M0)) of Γsatis�es Γ0

∼= Zr with r = dimM0 so that M0/Γ0 = Tr.Further Aut(m) stabilizes Isp0(M) if and only if one of the 6 previous state-ments holds i.e. if and only if Is(M̃)/Is(M) = {0} or so(m0). Denoting by
Aut(m)∗ the subgroup of Aut(m) whih stabilizes Isp0(M), then the maximalsubalgebra of Isp0(M) stable by Aut(m) is Isp0(M) if Aut(m) = Aut(m)∗ and
h′ = Isp0(M

′) if not.Theorem 10 Let us onsider M a G-symmetri spae with G ⊂ Is(M) and
τ : g→ g an order four automorphism suh that τ2 = T1σ.Then the extension τ of τ , given by theorem 7 de�ne a maximal loally 4-symmeti bundle over M . Indeed let g be the maximal subalgebra of Is(M)stabilized by τ and G the subgroup of Is(M) generated by it. Then G is a losedsubgroup of Is(M) ating symmetrially on M , and τ |g, de�ne a maximal loally4-symmetri bundle over M , with the realisation M = G/H.We an also de�ne a minimal loally 4-symmeti bundle over M , by onsideringthe subalgebra g′ ⊕ m0 (where g′ is the semisimple part of Is(M) and m0 theEulidean part of m).In onlusion, given any (even dimensional) Riemannian symmetri spae M ,de�ne over it a loally 4-symmetri bundle is equivalent to give ourself τm ∈
Σ(m) ∩ Aut(m) ⊃ Σ(Tp0M) ∩ Isp0(M). Then the order four automorphism of
Is(M̃), τ , de�ned by τm, de�ne the maximal loally 4-symmetri bundle over M ,
N = G/G0 with G0 = {g ∈ H | τ|m◦Admg◦τ−1

|m = Admg}. Moreover, any loally7Hol(M) is the holonomy group of M 22



4-symmetri bundle over M is a subbundle of one suh maximal bundle and de-�ne suh a subbundle N is equivalent to give ourself a Lie subgroup G ⊂ Is(M)ating symmetrially on M suh that τ (g) = g i.e. Adτm(h) = h. In this ase,the losure N̄ of N = G/G0 in the (unique) maximal loally 4-symmetri bundleover M , ontaining N , N , is also a loally 4-symmetri bundle over M and wehave N̄ = Ḡ/Ḡ0, M = Ḡ/H̄.Proof of theorem 8 We have to hek that τ (Lie Ḡ) = Lie Ḡ, i.e. aordingto the theorem 7, Intτm(Lie H̄) = Lie H̄ . We still have Intτm(H0) = H0, thus
Intτm(H0) = H0. It remains to verify that (H̄)0 = H0. But this is simply theresults of the fat that M̃ = Ḡ/H0 is a disrete overing of M = Ḡ/H̄ . Indeed
(H̄)0 is losed thus (H̄)0 ⊃ H0 and then we have

M̃ = Ḡ/H0 �bration
−−−−−→ Ḡ/(H̄)0

overing
−−−−−→ Ḡ/H̄ = Mand M̃

overing
−−−−−→M , hene (H̄)0/H0 is disret but the two groups are onneted((H̄)0 is enough) thus (H̄)0 = H0. We have proved that τ (Lie Ḡ) = Lie Ḡ.Using the notation of remark 10, we have, sine H̄ is ompat, s(H̄) = s(H),hene using the same method as for Ĥ , we an easily show that Ĝ0 := s−1(τ|m)∩

H̄ = Ḡ0 and thus s(H̄) = H̄/Ḡ0. Finally, the new loally 4-symmetri spae is
Ḡ/Ḡ0. This ompletes the proof. �Proof of theorem 9 For the �rst point see [15℄. For the following points, seesetion 4.1 and 4.2. �Proof of theorem 10 First G is losed : it a immediate onsequene of themaximality and theorem 8. Then we have to prove that Ḡ/Ḡ0 is the losure
N̄ of N = G/G0 in G/G0. Let πJ0 : G → G/G0 be the projetion map, thenwe have πJ0(G) = G/G0 ∩ G = G/G0 (aording to de�nition (11)) and thus
πJ0(Ḡ) ⊂ πJ0(G) = N̄ but πJ0(Ḡ) = Ḡ/G0∩Ḡ = Ḡ/Ḡ0 (aording to de�nition(11) and Ĝ0 = Ḡ0). Hene Ḡ/Ḡ0 ⊂ N̄ . These are together subbundle (over
M) of N and using a trivialisation of N = G/Ḡ0 →M (same raisonning as for
Ĥ) it is easy to see that the �ber of N̄ (over p0) is H̄/Ḡ0 whih implies that
Ḡ/Ḡ0 = N̄ . This ompletes the proof. �Remark 11 In partiular, if we suppose that we have an order four automor-phism of G, σ = τ2. Then sine τ is uniformly ontinuous, it extends into anorder four automorphism τ̄ : Ḡ→ Ḡ (beause Is(M) is omplete) and obviously
σ̄ = τ̄2.Remark 12 Aording to the de�nition (11), τ|m and −τ|m gives rise to thesame group G0. Moreover τ|m = (τ−1)|m and in partiular if τ integrates in Gthen Gτ = Gτ−1 . Besides (τ−1)2 = (T1σ)−1 = T1σ, hene τ−1 de�ne the sameloally 4-symmetri bundle over M as τ . Moreover, given any τm ∈ Σ(m) ∩
Aut(m), then −τm ∈ Σ(m) ∩Aut(m) and gives rise (aording to theorem 7) tothe automorphism τ−1 whih gives rise to the same maximal loally 4-symmetribundle over M and the same family of 4-symmetri subbundle over M .23



From now, we will always suppose that G is a losed subgroup of Is(M)0. Theresult of this is that the isotropy subgroup of G at the point p0, H = StabG(p0)is ompat and an be identi�ed (via the adjoint representation on m, resp.via the linear isotropy representation) to a losed subgroup of O(m) (resp. of
O(Tp0M)). Then aording to theorem 10, to study the ase of non losedsubgroup of Is(M)0 (or equivalently the non losed loally 4-symmetri bundleover M), we have just to onsider the non losed subgroups of our losed group
G, ating symmetrially on M , and whose Lie algebra is stable by τ .3.2 Twistor subbundleWe give ourself a loally 4-symmetri bundle N = G/G0 (de�ned by an orderfour automorphism τ and by (11)) over a symmetri spae M = G/H . Wewill show that G/G0 is a subbundle of the twistor bundle Σ(G/H) . Under theisomorphism between TM and [m] = {(g.p0, Adg(ξ)), ξ ∈ m, g ∈ G}, Tp0M isidenti�ed to m: ξ ∈ m 7→ ξ.p0 ∈ Tp0M is an isomorphism of vetor spaes. Thento τ|m ∈ Σ(m) (resp. to −τ|m = τ−1

|m ∈ Σ(m)) orresponds J0 ∈ Σ(Tp0M), andmore generally to Adg ◦ τ|m ◦ Adg−1 ∈ Σ(Adg(m)) (resp. Adg ◦ τ−1
|m ◦ Adg−1)orresponds gJ0g

−1 ∈ Σ(Tg.p0M). Thus we have de�ned a map
ρJ0 : G −→ Σ(M)

g 7−→ gJ0g
−1whih aording to the de�nition (11) of G0 gives rise under quotient to theinjetive map:

i : G/G0 −→ Σ(M)
g.G0 7−→ gJ0g

−1 .Moreover, i is an embedding. Indeed, G ats smoothly on the manifolds Σ(M)and so the map g ∈ G 7→ gJ0g
−1 ∈ Σ(M) is a subimmersion of onstant rank.Thus i : G/G0 → Σ(M) is an injetive subimmersion and so it is an injetiveimmersion. We an add that i : G/StabG(J0) → G.J0 is an homeomorphism ifthe orbit G.J0 is loally losed in Σ(M) (see [5℄). We will show diretly that

i(G/G0) = G.J0 is a subbundle of Σ(M).First, let us preise the �bration G/G0 → G/H . We have the isomorphismof bundle: G/G0
∼= G ×H H/G0. In partiular, the �ber type of G/G0 is

H/G0. Besides i is a morphism of bundle (over M). Sine i is also an injetiveimmersion, we an identify the �bers of G/G0 and i(G/G0) respetively overthe point g.p0 ∈ M . The �ber of i(G/G0) over p = g.p0 is gS0g
−1 where

S0 = Int(H)(J0) ⊂ Σ(Tp0M) is the �ber over p0.8Now let us show that i(G/G0) is a subbundle of Σ(M). Let σ : U ⊂ G/H → Gbe a loal setion of the �bration πH : G → G/H . Then we have the followingtrivialisation of Σ(U):
Φ: (p, J) ∈ U × Σ(Tp0M) 7−→ (p, σ(p)Jσ(p)−1) ∈ Σ(U)8we remark that H ⊂ O(Tp0M), G0 ⊂ U(Tp0M, J0) and S0 = H/G0 is a ompat sub-manifold of Σ(Tp0M). 24



and we have Φ(U × S0) =
⊔

p∈U

{p} × (σ(p)S0σ(p)−1) = i(G/G0) ∩ Σ(U). Thus
i(G/G0) is a subbundle of Σ(M), hene i is an embedding.Let us reapitulate what preede:Theorem 11 The map

i : G/G0 −→ Σ(M)
g.G0 7−→ gJ0g

−1 .is an embedding and a morphism of bundle from G/G0 into Σ(M). Besides the�ber of i(G/G0) over the point p = g.p0 is gS0g
−1, with S0 = Int(H)(J0) and

J0 ∈ Σ(Tp0M) orresponding to τ|m ∈ Σ(m) (resp. to τ−1
|m ) .Remark 13 If we onsider a loally 4-symmetri bundle N = G/G0 over M ,with G0 not de�ned by (11), then i is not injetive in general: to obtain ainjetive map i, we must onsider the loally 4-symmetri spae G/π−1

K (G′
0) =

(G/K)/G′
0 where K = kerAdm and G′

0 is the subgroup of H ′ = H/K de�nedby (11). In partiular, we see that in general a 4-symmetri spae G/G0 is nota submanifold of a twistor spae (see setion 5). Moreover, we an see the aimof our de�nition (11) (and in partiular of our onvention G0 = Gτ ∩H): it isto obtain a injetive map i.Remark 14 For any overing π : G̃ → G, G̃ ating symmetrially on M , wehave ρ̃J0(G̃) = ρJ0(G) = iJ0(G/G0) : the loally 4-symmetri subbundle of
Σ(M), iJ0(G/G0) does not depend on the hoie of the group G (we have hosenfor G, the subgroup of Is(M) generated by g).Moreover, ρJ0(G) = iJ0(N) is a maximal loally 4-symmetri subbundle in
Σ(M). Now, suppose that we work with a non losed subgroup G′ ⊂ Is(M),then ρJ0(G

′) = iJ0(G
′/G′

0) is an immersed subbundle in Σ(M): Φ(U × S′
0) =

⊔

p∈U

{p}× (σ(p)S′
0σ(p)−1) = i(G′/G′

0)∩Σ(U) but the �ber S′
p = σ(p)S′

0σ(p)−1 isonly a (non losed relatively ompat) immersed submanifold in Σ(TpM). Andsine iJ0 is an embedding (from N into Σ(M)) we have iJ0(Ḡ
′/Ḡ′

0) = iJ0(N̄
′) =

iJ0(N̄
′). In others words, taking the losure of G′ in Is(M) is equivalent to takethe losure of N ′ in N aording to theorem 10 whih is equivalent to take thelosure of iJ0(N

′) in iJ0(N).Remark 15 The maximal loally 4-symmetri bundles N are disjoint : theseare orbits in Σ(M). More preisely these are suborbits of Is(M)0-orbits inthe form G · J0 in Σ(M) ∩ Aut(M) with Aut(M) =
⊔

p∈M p × Aut(TpM) (seesetion 4.1 and 4.2). In partiular, Σ(M) ∩ Aut(M) is the disjoint union of allthe maximal loally 4-symmetri bundles over M . Moreover, the set of maximalloally 4-symmetri bundles over M , N (M), ontains the subset N ∗(M) ofelements whih are Is(M)0-orbits, i.e. elements ρJ0(Is(M)0) with J0 ∈ Σ(m) ∩
Aut∗(m) : N ∗(M) = Σ(M) ∩Aut∗(M)/Is(M)0 ⊂ Σ(M)/Is(M)0.25



Remark 16 The Riemannian manifold M = G/H is orientable if and onlyif AdmH ⊂ SO(m) (or equivalently H∗ ⊂ SO(Tp0M)). Besides τ|m ∈ Σε(m) ,and to �x ideas, let us suppose that ε = 1. Then, if M is orientable, i is anembedding from G/G0 into Σ+(M). Moreover, if we work with M̃ = G/H0, weare sure that H0 ⊂ SO(Tp0M̃). Hene, if we work with what we alled the �rstpossibility (see setion 3.1.1), i takes values in Σ+(M̃). In other words, given aloally 4-symmetri bundle over M , the orresponding 4-symmetri bundle overits universal overing M̃ (see remark 7) is embedded in Σ+(M̃).Let us onsider more generally any overing π : M̃ → M then it indues theovering πΣ : Σ(M̃)→ Σ(M) whih is also a morphism of bundle over π : M̃ →
M . It is de�ned by

πΣ : Jx̃ ∈ Σ(Tx̃M̃) 7→ Tx̃π ◦ Jx̃ ◦ (Tx̃π)−1 ∈ Σ(TxM).Now, let us suppose that π omes from a overing π̃ : G̃ → G and that wehave M = G/H , M̃ = G̃/H̃0 (symmetri realisation) with H̃ = π̃−1(H) and
G ⊂ Is(M), G̃ ⊂ Is(M̃) (see above). Then we have

Tx̃π ◦ (g̃Jp̃0 g̃
−1) ◦ (Tx̃π)−1 = gJp0g

−1.with x̃ = g̃.p̃0, g = π̃(g̃). Hene the restrition9 of πΣ to G̃/G̃0 gives rise to themorphism of bundle (12). Moreover10
S0 = Int(H)(J0) =

⋃

h∈H̃/H̃0

hS̃0h
−1with, sine H̃0 ⊂ SO(Tp0M̃), S̃0 ⊂ Σ+(Tp0M̃). Further if H ⊂ O(Tp0M) is notinluded in SO(Tp0M) (i.e. M is not orientable), then we have

πΣ(Σ+(M̃)) = Σ(M).Remark 17 Let us see what happens when we hange M , in theorem 4. Let
G̃ be a overing of G, ating symmetrially on a overing M̃ of M , π : M̃ →M ,with G̃ ⊂ Is(M̃). Then aording to remark 16, we have πΣ ◦ iJp̃0

= iJp0
◦ π0,with π0 : G̃/G̃0 → G/G0 the morphism of bundle (over π : M̃ → M) given by(12). Then given any solution α of the (g, τ)-system (6), let us integrate it in

G̃ and G respetively, Ũ : L → G̃, U : L → G with Ũ(0) = 1, U(0) = 1 (0 is areferene point in L), we have π̃◦Ũ = U . Then let us projet these lifts in G̃/G̃0and G/G0 respetively: we obtain the geometri solutions J̃ : L → G̃/G̃0 and
J : L→ G/G0 respetively and we have π0 ◦ J̃ = J . Then let us embedd theseinto the twistor spaes Σ(M̃) and Σ(M) to obtain the admissible twistor lifts
J̃X̃ : L→ iJ̃0

(G̃/G̃0) and JX : L→ iJ0(G/G0) respetively whih are related by
πΣ ◦ J̃X̃ = JX , and in partiular π ◦ X̃ = X .9i.e. πΣ ◦ iJp̃0

= iJp0
◦ π0, π0 : G̃/G̃0 → G/G0 given by (12).10In fat, hS̃0h−1 means obviously Th.p0

π ◦ (hS̃0h−1) ◦ Th.p0
π−1. πΣ allows to onsiderthe �bers Σ(Tx̃M̃) as inluded in the �ber Σ(TxM), with x = π(x̃).26



4 Splitting of M into the 3 type of symmetrispaeTheorem 12 [15, 2℄ Let M be a simply onneted Riemannian symmetri spae.Then M is a produt
M = M0 ×M− ×M+where M0 is an Eulidean spae, M− and M+ are Riemannian symmetri spaeof the ompat and nonompat type respetively. In partiular

M = M0 ×M ′where M ′ has a group of isometries G = Is(M ′) semisimple and its isotropysubgroup at p0 ∈ M ′, H, (whih is onneted beause M ′ is symply onneted)is equal to the holonomy group of M ′. Hene a Riemannian symmetri spae
M of whih the isometry group is semisimple (whih is equivalent to say that itsuniversal overing have not Eulidean fator, or equivalently the Lie algebra of
G does not ontain no trivial abelian ideal, i.e. its Killing form is no degenerate)has a unique symmetri writing G/H, with G ating e�etively. In this uniquerealisation, we have neessarely G = Is(M)0 11 and H = Is0p0

(M) = Isp0(M) ∩
Is(M)0(⊃ Isp0(M)0). Further the Lie algebra Isp0(M) = Der(m) = Hol(M) isspanned by [m, m] = {Rp0(X, Y ), X, Y ∈ Tp0(M)}.Moreover the overing of suh a Riemannian symmetri spae M , has a de-omposition into a produt of irreduible Riemannian symmetri spaes (i.e thelinear isotropy representation is irreduible)

M̃ = M1 × · · · ×Mr.Theorem 13 Let us onsider the deomposition of (g, T1σ) into the sum of or-thogonal (for the Killing form) ideals of the ompat, nonompat and Eulideantype respetively:
g = l0 ⊕ l− ⊕ l+and let lα = hα ⊕mα be the eigenspae deomposition of the involution T1σ|lα .Suppose now that we have an order four automorphism τ : g → g with τ2 =

T1σ. Then τ(lα) = lα, τ(hα) = hα, τ(mα) = mα for α = 0,−, +. Hene
τm = ⊕ατmα

, with τmα
∈ Σ(mα), and τ|lα is the automorphism of lα de�nedby τmα

aording to theorem 7 and we have τ2
|lα

= T1σ|lα . Moreover, we have
Aut(m) =

∏

α Aut(mα).Corollary 1 Let M be a G-symmetri spae, G ⊂ Is(M) and τ : g → g anorder four automorphism with τ2 = T1σ. Let M̃ be its universal overing, whihhas a symmetri realisation M̃ = G̃/H̃0, with π : G̃ → G a overing of G,
H̃ = π−1(H) and G̃ ⊂ Is(M̃), suh that τ integrates into τ̃ : G̃ → G̃. Then11as usual, we suppose that G is onneted27



the deomposition of g into 3 ideals of di�erent type gives rise to the followingdeomposition of G̃:
G̃ = L0 × L− × L+whih indues the following deomposition of H̃0 and G̃0 = H̃0 ∩ G̃τ̃ , orre-sponding also to the deomposition h = ⊕αhα and g0 = ⊕α(g0)α:

H̃0 = H0 ×H− ×H+ (16)
G̃0 = (G0)0 × (G0)− × (G0)+ . (17)Hene M̃ = M0 ×M− × M+ and Ñ = N0 × N− × N+ with Mα = Lα/Hα,

Nα = Lα/(G0)α. Besides σ̃ and τ̃ have the deompositions σ̃ =
∏

α σ̃α and
τ̃ =

∏

α τ̃α, and Hα = (G̃σ̃α)0, (G0)α = Hα ∩ Lτα
α = (Gα)0. Nα is a 4-symmetri bundle over Mα.Theorem 14 Let us onsider the deomposition of (g, T1σ) into the sum oforthogonal (for the Killing form) ideals:

g = ⊕r
i=0gi (18)with g0 abelian and (gi, T1σ|gi

) irreduible, and let gi = hi⊕mi be the eigenspaedeomposition of T1σ|gi
. Suppose now that we have an order four automorphism

τ : g→ g suh that τ2 = T1σ.There exists a unique deomposition of g:
g = g0 ⊕ (⊕r′

i=1g
′
i) (19)where g′i = gi or g′i = gi ⊕ gj with (gi, T1σ|gi

) and (gj , T1σ|gj
) isomorphi,suh that τ(g′i) = g′i, τ(h′i) = h′i, τ(m′

i) = m′
i. Moreover if g′i = gi ⊕ gj then

τ(gi) = gj, τ(hi) = hj , τ(mi) = mj . Hene τm = ⊕r′

i=0τm′

i
with τm′

i
∈ Σ(τm′

i
),and τ|g′

i
is the automorphism of g′i de�ned by τm′

i
aording to theorem 7 andwe have τ2

|g′

i
= T1σ|g′

i
.Corollary 2 Let M be a G-symmetri spae, G ⊂ Is(M) and τ : g → g anorder four automorphism with τ2 = T1σ. Let M be its universal overing, whihhas a symmetri realisation M̃ = G̃/H̃0, with π : G̃ → G a overing of G,

H̃ = π−1(H) and G̃ ⊂ Is(M̃), suh that τ integrates into τ̃ : G̃→ G̃. Then thedeomposition of g,(18), gives rise to the following deomposition of G̃:
G̃ = L0 × L1 × · · · × Lrwhih indues the following deomposition of H̃0, orresponding also to the de-omposition h = ⊕r

i=0hi:
H̃0 = H0 ×H1 × · · · ×Hr

σ̃ have the deomposition of σ̃ =
∏r

i=0 σ̃i with σ̃i involution of Li and Hi =

(G̃σ̃i)0. Moreover there exists an unique deomposition of G̃:
G̃ = L′

0 × L1 × · · · × L′
r′ (20)28



where L′
i = Li or L′

i = Li × Lj with (Li, σ̃i) and (Lj, σ̃j) isomorphi. Then
τ have the deomposition τ̃ =

∏r′

i=0 τ̃ ′
i with τ̃ ′

i order four automorphism of L′
i.Further, by identifying (Li, σ̃i) and (Lj , σ̃j) (when L′

i = Li × Lj), then in 20,we have either L′
i = Li and then τ̃ ′

i = τ̃i is an order four automorphism of Liso that (L′
i)

τ̃ ′

i = (Li)
τ̃i , or L′

i = Li × Li and then
τ̃ ′
i : (a, b) ∈ Li × Li 7→ (σi(b), a) ∈ Li × Liso that (L′

i)
τ̃ ′

i = ∆(Hi) ⊂ Hi × Hi. Hene M̃ = M0 × M1 × · · · × Mr with
Mi = Li/Hi and Ñ = N ′

0 × N ′
1 × · · · × N ′

r′ where either N ′
i = Ni = Li/(Gi)0is a 4-symmetri bundle over Mi, or N ′

i = Gi × Gi/∆(Hi) is a 4-symmetribundle over Mi×Mi = Gi×Gi/Hi×Hi (and the �ber Hi×Hi/∆(Hi) ≃ Hi isa group).Proof of theorems 13,14 and orollaries 1,2 Use the fats that τm leavesinvariant the metri in m and the restrition to m of the killing form. �4.1 The semisimple aseDe�nition 6 We will say that the Riemannian symmetri spae M is of semisim-ple type if Is(M) is semisimple.Theorem 15 If M is of semisimple type then eah (onneted) loally 4-symmetribundle over M is maximal and in the form N0 = Is(M)0/G0, i.e. is an Is(M)0-orbit in Σ(M)∩Aut(M). In other words the set of loally 4-symmetri bundlesover M is N (M) = Σ(M) ∩Aut(M)/Is(M)0 ⊂ Σ(M)/Is(M)0.Remark 18 The "size" of a maximal (loally) 4-symmetri bundle over M inthe twistor bundle Σ(M) depends on the "size" of the isotropy subgroup Isp0(M)and on J0 ∈ Σ(Tp0M). In other words, if we want a �ber S0 ⊂ Σ(Tp0M) ofmaximal dimension, we must �nd J0 ∈ Σ(Tp0M) ∩ Aut(Tp0M) ⊃ Σ(Tp0M) ∩
Isp0(M) 12 suh that TJ0S0 = g2(J0) := {A ∈ Isp0(M) | AJ0 + J0A = 0}is of maximal dimension, or equivalently suh that g0(J0) = {A ∈ Isp0(M) |
AJ0 − J0A = 0} is of minimal dimension.Remark 19 It is possible that there exists di�erent non isomorphi loally4-symmetri bundles over M (see setion 5.3). And it is also possible that theredoes not exist loally 4-symmetri bundle over M . For example: M = S1× S3,then Is(M) = SO(2) × SO(4) and Isp0(M) = SO(3), and there does not exist
J0 ∈ Σ(R4) suh that J0SO(3)J−1

0 = SO(3).Moreover we have the following obvious theorem (see also [16℄):12Aut(Tp0M)(= Aut(m) under the usual identi�ation) is the group of automorphism of
Tp0M whih stabilizes the metri gp0 and the urvature Rp0 .
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Theorem 16 Let (g, σ) be an orthogonal symmetri Lie algebra. Then set g∗ =
h ⊕ im and σ∗ = Idh ⊕ Idim. Then (g∗, σ∗) is an orthogonal symmetri Liealgebra. If (g, σ) is of the ompat type then (g∗, σ∗) is of the non ompat typeand onversely. Now, for τm ∈ End(m), set τ∗

m : iv ∈ im 7→ iτm(v). Then
τm ∈ Aut(m)⇐⇒ τ∗

m ∈ Aut(im)and τm ∈ Σ(m) if and only if τ∗
m ∈ Σ(im). In this ase (τm ∈ Aut(m) ∩ Σ(M))let τ (resp. τ∗) be the automorphism of g (resp. g∗) de�ned by τm (resp. τ∗

m)and denoting by AC ∈ End(V C) the extension to V C of A ∈ End(V ) (V realvetor spae) then we have
τC = τ∗C i.e. τ∗ = τC

|g∗Theorem 17 Let M be an irreduible symmetri spaes of type II (ompattype) or type IV (non ompat type) then there does not exist any (non trivial)loally 4-symmetri bundle over M . Equivalently Aut(M)∩Σ(M) = ∅, in otherwords, there does not exist any automorphism τ of Is(M) suh that τ2 = T1σ.Proof. By duality, it is enough to prove the assertion for the ompat type.In this ase let M̃ be the universal overing of M , we have M̃ = H ×H/∆(H)and σ̃ : (a, b) ∈ G × G 7→ (b, a). Then an automorphism τ : g → g must send
g1 = h⊕ {0} either on g1 or on g2 = {0} ⊕ h and idem for g2, and thus for anyautomorphism we have τ2(gi) = gi and hene we an not have τ2 = T1σ. Thisompletes the proof. �4.2 The Eulidean aseTheorem 18 Let M = R2n with its anonial inner produt. Then Is(M) =
O(2n)⋉R2n the group of a�ne isometries in R2n. Then for any p0 ∈ R2n, wehave Isp0(M) = {(F, Id−F )p0), F ∈ O(2n)} ≃ O(2n). In partiular for p0 = 0,
Isp0(M) = O(2n). We have ∀p0 ∈ R2n, Is(M) = Isp0(M) ⋉ R2n. Further
M = G/H is a symmetri realisation with G ating e�etively if and only if
G = H ⋉ R2n with H ⊂ Isp0(R

2n) for some p0 ∈ R2n. Then we G = H0 ⋉ R2nwith H0 = prO(2n)(H) ⊂ O(2n). The artan involution for this realisation is
σ = Int(−Id, 2p0) : (h, x) ∈ G 7→ (h, 2(Id− h)p0 − x)giving rise to the symmetry around p0: σ0 : x ∈ R2n 7→ −(x − p0) + p0 ∈ R2n.Let us �x p0 = 0, so that for any symmetri realisation H ⊂ Isp0(M) = O(2n)and σ = Int(−Id, 0).All (onneted) loally 4-symmetri bundles over M are globally 4-symmetribundle over M . The twistor bundle, Σ(R2n) × R2n, is a globally 4-symmetribundle over M . All the (onneted) 4-symmetri bundles over R2n are inthe form: S0 × R2n where S0 is a ompat Riemannian symmetri spae em-bedded13, in Σε(R2n). Besides Aut(Tp0M) = Isp0(M) = O(2n) so that any13only immersed if H is not losed in O(2n)30



J0 ∈ Σ(R2n) de�ne the maximal 4-symmetri bundle Σ(R2n)× R2n = O(2n)⋉
R2n/U(R2n, J0).Theorem 19 Let M be an Eulidean Riemannian symmetri spae (i.e. itsuniversal overing is an Eulidean spae R2n). Then M = R2n⊕T2q, Is(M) =
O(2p) × (S2q ⊗ {±1}) ⋉ M (S2q is the group of permutation) and denot-ing by π : R2n → M the universal overing, and p0 = π(0), then Isp0(M) =
O(2p) × (S2q ⊗ {±1}). Moreover Aut(R2n) = O(2n), and J0 ∈ Σ(R2n) de�nethe (onneted) maximal 4-symmetri bundle over M : (Σ(E2l)×{J0|E2l⊥})×M ,where E2l is the (unique) maximal subspae in R2p stable by J0. In partiular,
Aut∗(M) ∩ Σ(M) = Σ(R2p)× Σ(R2q)×M .Proof. Let π̃ : G̃ → G be a overing of G = Is(M)0 ating symmetriallyand e�etively on M̃ = R2n and σ̃ : G̃→ G̃ the orresponding involution. Thensetting H̃ = (G̃σ̃)0, we have aording to the previous theorem G̃ = H̃⋉R2n and
H̃ ⊂ SO(2n). Then setting D = kerπ, D is a disrete entral subgroup of G̃.Besides it is easy to see that Cent(G̃) = Cent(H̃ ×R2n) = R2p where R2p is themaximal subspae of R2n �xed by H̃ , i.e. H̃ ⊂ SO(2p)×{Id2q} (2p +2q = 2n).Hene D = ⊕r

i=1Zei with (ei)1≤i≤r R-free so that G = Is(M)0 = G̃/D = H̃⋉M ′with M ′ = R2p⊕R2q−r⊕Rr/Zr. Moreover we have σ : (h, x) inH̃×M ′ → (h,−x)beause σ̃ = Int(−Id, 0) (see the previous theorem) and thus Gσ = H̃ but theisotropy subgroup of G at p0 satis�es H ⊃ π̃(H̃) (beause H̃ is onneted), but
π̃(H̃) = H̃ (D ∩ H̃ = {1}) and thus H = H̃ . Thus M = G/H = M ′. Now,we have to ompute Is(M), we know that Is(M)0 = H ⋉M ⊂ SO(2p) ⋉M ′.In the other hand, we know that Is(M) ⊂ O(2n) (an isometry is determined byits tangent map at p0) and thus g ∈ O(2n) is in Is(M) if and only if g(D) =
D whih is equivalent to g ∈ [O(2p + 2q − r) × (GLr(Z) ∩ O(Rr))] ⋉ M =
[O(2p + 2q − r) × (Sr ⋉ {±Id})] ⋉M . Hene Is(M)0 = SO(2p + 2q − r) andthus r = 2q. Finally M = R2p ⊕ T2q, Is(M) = O(2p) × (Sr ⋉ {±Id}) ⋉M ,
Isp0(M) = O(2p)× (Sr ⋉ {±Id}), and Isp0(M)0 = H = O(2p). We onlude byremarking that J0 ∈ Σ(R2n) satis�es J0HJ−1

0 = H for H ⊂ SO(2p) onnetedand maximal if and only if H = SO(E2l) and J0 ∈ Σ(E2l) × Σ(E2l⊥). Thisompletes the proof. �Remark 20 We an use the seond ellipti integrable system in the Eulideanase to "modelize" this system in the general ase. Indeed, let us onsider
M a Riemannian symmetri spae of the semisimple type (then its isotropysubgroup H = Isp0(M) is essentially its holonomy group, i.e. they have thesame identity omponent) with τ : g→ g an order four automorphism suh that
τ2 = T1σ. Then we an assoiate to the orresponding loally 4-symmetribundle N over M , the 4-symmetri bundle over M0 = m = H ⋉ m/H : N0 =
H ⋉ m/G0 = S0 × m ⊂ Σ(m)× m, and to the seond ellipti integrable systemin N , its "linearized" in N0. We onjeture that the "onrete" geometrialinterpretation (i.e. in terms of the seond fondamental form of the surfae Xet...) is the same for the linearized and the initial system. This is what happensin dimension 4. 31



Remark 21 The seond ellipti integrable system an be viewed as "a ou-plage" between the harmoni map equaton in S0 = H/G0 and a kind of Diraequation in g−1: ∂z̄u1 + [ū0, u1] + [ū1, u2] = 0. In the Eulidean ase, the pro-jetion on the "group part", g = h ⋉ m → h, of the seond ellipti system isonly the harmoni map equation in H/G0. In other words, the seond elliptiintegrable system is only the harmoni map equation in H/G0 and a kind ofDira equation in Cn (∼= (g−1, J0)). In partiular, if we apply any method ofintegrable systems theory using loop groups (DPW, Dressing ation et..) orsomething else (spetral urves) to the seond ellipti system in G/G0 and thenprojet in the group part (pr : H⋉m→ H), we obtain the same method appliedto the �rst ellipti integrable system in H/G0 i.e. the harmoni map equationin H/G0. For example, if we apply the DPW method: given µ = (µh, µm) a ho-morphi potential, we have pr(WG/G0
(µ)) =WH/G0

(µh) where WG/G0
,WH/G0are the weierstrass representations for eah ellipti system. So to solve the se-ond ellipti system, we an �rst solve the harmoni map equation in H/G0, byusing any method of integrable systems theory whih gives us a lift h in H ofa harmoni map in H/G0, and then we have to solve the Dira equation withparameters u0, u2 given by the lift : h−1∂zh = u0 + u2 following h = g0 ⊕ g2(see [17℄). However, the Dira equation is not intrinse sine it depends on thelift h of the harmoni map (see [17℄).In the partiular ase where S0 is a group and H = G0 ⋊ S0, (for example

S0 = G0 × G0/G0), then we have a anonial lift and then the Dira equationbeome intrinse (see [17℄). It is in partiular what happens for Hamiltonianstationnary Lagrangian surfaes : in C2 we have a intrinse Dira equationwhereas in the others Hermitian symmetri spaes this equation does not exist(see [12℄-[14℄). It is also what happens in [17℄ when we take for S0 the subsphere
S3 ⊂ S6 (S6 embedds in Σ+(R8) by the left multipiation in O).5 Example of 4-symmetri bundlesWe use the notations of setion 3.1.5.1 The sphereLet us onsider M = S2n = SO(2n + 1)/SO(2n) with G = SO(2n + 1), H =
SO(2n) and the involution σ = Intdiag(Id2n,−1). Then Gσ = SO(2n)

⊔

O−(2n)×
{−1}. Hene H = (Hσ)0, Mmin = RP2n and Mmax = S2n.14 We have also

h = so(2n), m =

{(

0 v
−vt 0

)

, v ∈ R2n

}

= {im(v), v ∈ R2n}where im : R2n → m is de�ned in an obvious way. Now, let us onsider theation of H on m: for h ∈ SO(2n), ξ = im(v) ∈ m, we have
Admh(ξ) = im(h.v)14Mmax is simply onneted and Mmin is the adjoint spae.32



hene K = kerAdm = {Id} and the ation of G is e�etive (in fat SO(2n + 1)is simple beause 2n + 1 is odd). Identifying m with R2n via im we have: ∀h ∈
SO(2n), Admh = h i.e. Adm = Id. Moreover SO(2n + 1) is the onneted isom-etry group of S2n. Now, aording to theorem 7, de�ne a loally 4-symmetribundle over M = S2n is equivalent to give ourself τm ∈ Σ(m)∩Aut(m) = Σ(m).Further, given J0 ∈ Σε(R2n), let us de�ne the order four automorphism of G:
τ = Int(diag(−J0, 1)). Then τ2 = σ and sine τH = IntJ0 and τ|m = J0,we obtain all the loally 4-symmetri bundle over M whih are all globally 4-symmetri bundle over M .Moreover, we have Gτ = com(J0)∩SO(2n) = U(R2n, J0). Hene Gτ = (Gτ )0 =
G0 thus S0 = H/G0 = Int(SO(2n))(J0) = Σε(R2n) and thus N = G/G0 =
Σε(S2n).5.2 Real grassmannianMore generally, let p, q ∈ N∗ suh that pq is even and let us onsider M =
SO(p + q)/SO(p) × SO(q) = Grp(Rp+q) (oriented p-plans in Rp+q). Sine pand q play symmetri roles, we will suppose that p is even and that it has thebiggest divisor in the form 2r. We have dim M = pq and the following setting

G = SO(p + q), H = SO(p)× SO(q); σ = Int(diag(Idp,−Idq)) and
Gσ = SO(p)× SO(q)

⊔

O−(p)×O−(q).Then H = (Gσ)0 so that Mmin = Gr∗p(Rp+q) (non oriented p-plan in Rp+q) and
Mmax = Grp(Rp+q) = M . Besides h = so(p)⊕so(q), andm =

{(

0 B
−Bt 0

)

, B ∈ glp,q(R)

}

=

im(glp,q(R)) (im de�ned in an obvious way).Now let us ompute Adm. For h = diag(A, C) and ξ = im(B), we have:
Admh(ξ) = im(ABC−1).Under the identi�ation im we have Adm(A, C) = LARC−1 = χ(A, C), by in-troduing the morphism χ : (A, C) ∈ GLp(R) × GLq(R) 7→ L(A)R(C−1) ∈

GL(glp,q(R)). Hene K = kerAdm = {±Id} if q is even and K = {Id} if not.Thus the onneted isometry group of M , Is(M)0, is G′ = G/K = PSO(p + q)if q is even and G′ = G = SO(p + q) if not. Let us ompute Aut(m): wealready know that Aut(m) ⊂ H ⊂ Aut(m)0. But, it is known that the auto-morphisms of so(n + 1) are all inner automorphisms by O(n + 1) so we have
Aut(m) = {LARC−1 , (A, C) ∈ O(p)×O(q)}. Thus J0 = L(J1)R(J−1

2 ) ∈ Aut(m)is in Σ(m) if and only if :
{

(J2
1 , J2

2 ) = ±(−Idp, Idq) if q is even,
(J2

1 , J2
2 ) = (−Idp, Idq) if q is odd.Then the assoiated order four automorphism is τ = Int(diag(J1, J2)). In parti-ular, τ(H) = H and τH = IntJ1×IntJ2. Besides, Aut(m)∩Σ(m) has respetively

2(p+q+2) or 2(q+1) onneted omponents if q is even or q is odd respetively.33



Eah onneted omponent is an AdmH-orbit and orresponds to the �ber of adi�erent maximal 4-symmetri bundle over M .Moreover to �x idea let us suppose that we have J1 ∈ Σ(Rp), J2 ∈ OS(Rq), theset of orthogonal symmetry in Rq, then Gτ = U(Rp, J1) × S(O(E1) × O(E2))with E1 = ker(J2 − Id), E2 = ker(J2 + Id). We have Gτ ⊂ H . Let OSr(Rq) =
Int(SO(q))(Idr,−Idq−r) be the set of orthogonal symmetry in Rq with dimE1 =
r. Then H/Gτ = Int(H)(J1, J2) = Σε(Rp) × OSr(Rq) (ε being determined by
J1) and

G/Gτ = {(x, J), x ∈M, J ∈ Σε(x)×OSr(x
⊥)}. (21)Now let us ompute G0 aording to (11): h = (A, C) ∈ H si in G0 if and onlyif Admτ(h) = Admh i.e.: if q is odd, τ(h) = h, and G0 = Gτ ∩ H = Gτ ; if

q is even, τ(h) = ±h (and G0 = π−1
K (G′

0) with G′
0 = G′τ

′

∩ H ′), i.e. h ∈ Gτor τ(h) = −h. The existene of solutions of this last equation depends on p, qand r (we remark that if h1 is a solution then the set of solution is h1G
τ ). One�nd that the equation τ(h) = −h (q is even) has a solution in Gσ if and onlyif dimE1 = dimE2 = q/2 and that this solution is in H if p/2 is even andin O−(p) × O−(q) (the other omponent of Gσ) if p/2 is odd. Hene, if p isdivisible by 4, q is even and r = q/2 (i.e. J0 ∈ χ(Σ(Rp)×OSq/2(R

q))), we have
G0 = Gτ

⊔

h1G
τ . In all the other ases we have G0 = Gτ .In onlusion, let us denote by NL(r, ε) := N(J0) (resp. NR(r, ε)) the maximal4-symmetri bundle over M orresponding to J0 ∈ χ(Σε(Rp)×OSr(Rq)) (resp.

chi(OSr(Rp)× Σε(Rq)). Then:if p is not divisible by 4 or q is odd, Nα(r, ε) is given by (21), for all (α, r, ε),if p is divisible by 4, q not divisible by 4 then for (α, r) 6= (L, q/2), Nα(r, ε) isgiven by (21) and for (α, r) = (L, q/2) it is given by (22), below,if p and q are divisible by 4, then for (α, r) ∈ {(L, q/2), (R, p/2)}, Nα(r, ε) isgiven by (22), and for the other hoies it is given by (21),
Nα(r, ε) = {(x, J), x ∈M, J ∈ P (Σε(x) ×OSr(x

⊥))} (22)where P (Σε(x)×OSr(x
⊥)) = Σε(x) ×OSr(x

⊥)/{±Id}. In the ases desribedby (22), G/Gτ is not a submanifold of Σ(M).5.3 Complex GrassmannianLet us onsider M = SU(p + q)/S(U(p) × U(q)) = Grp,C(Cp+q). We have
dimM = 2pq and the following setting

G = SU(p + q), H = S(U(p)× U(q)); σ = Int(diag(Idp,−Idq)) and
Gσ = H = (Gσ)0.Besides h = s(u(p)⊕u(q)) andm =

{(

0 B
−B∗ 0

)

, B ∈ glp,q(C)

}

= im(glp,q(C)).Let us ompute Adm. For h = diag(A, C) and ξ = im(B), we have:
Admh(ξ) = im(ABC−1).34



Under the identi�ation im we have Adm(A, C) = LARC−1 = χ(A, C), by in-troduing the morphism χ : (A, C) ∈ GLp(C) × GLq(C) 7→ L(A)R(C−1) ∈
GL(glp,q(C))15. Hene K = kerAdm = {(λIdp, λIdq), λ ∈ C, λp+q = 1} =

Ûp+qId ≃ Zp+q (with Ûp+q = exp( 2iπ
p+qZ)). Thus G′ = G/K = PSU(p + q) and

H ′ = S(U(p) × U(q))/Ûp+q ≃ S(U(p) × U(q)). The onneted isometry groupis the unitary group of M : Is(M)0 = U(M) = G′ = PSU(p + q).It is well known that the group of automorphism of SU(p+ q) have two ompo-nents (the C-linear one and the anti C-linear one) and is generated by the innerautomorphisms and the omplex onjugaison: g ∈ SU(p + q) 7→ ḡ ∈ SU(p + q).In partiular, Aut(m) = AdmH⋊{Id, c} = χ(S(U(p)×U(q)) ·{(Id, Id), (bp, bq)})with c = L(bp)R(b−1
q ) : B ∈ glp,q(C) 7→ B̄ ∈ glp,q(C), bn : v ∈ Cn 7→ v̄ ∈ Cn.The omplex struture in m = glp,q(C) is de�ned by L(Ip) = R(Iq) where

In = iIdn the anonial omplex struture in Cn, and the two onneted om-ponents of Aut(m) are respetively the elements in Aut(m) whih ommute andthose whih antiomute with this omplex struture.Moreover, J0 = L(J1)R(J−1
2 ) ∈ Aut(m)0 = AdmH is in Σ(m) if and only if

(J2
1 , J2

2 ) ∈ (−Idp, Idq)U(1). Then let us set Σλ = {(J1, J2) ∈ U(p) × U(q) |
(J2

1 , J2
2 ) = λ(−Idp, Idq)}. Then we have χ(Σλ) = χ(Σ0) for all λ ∈ U(1) sine

Σλ = λ
1
2 Σ0 with λ

1
2 a root of λ. Thus aording to the following lemma,

Aut(m)0 ∩ Σ(m) has (p + 1)(q + 1) onneted omponents (whih are AdmH-orbits and orresponds to the �bers of di�erents maximal 4-symmetri bundlesover M).Lemma 1 Let J ∈ U(n), then J2 = −Id (resp. J2 = Id) if and only if thereexists h ∈ U(n) suh that hJh−1 = diag(iIdl,−iIdn−l) for some l ∈ {0, . . . , n}(resp. hJh−1 = diag(Idr,−Idn−r) for some r ∈ {0, . . . , n}).Then the order four automorphism orresponding to J0 is τ = Int(diag(J1, J2),with16 J1 ∈ AdU(p)(iIl,p−l) ∼= iGrl,C(Cp), J2 ∈ AdU(q)(Ir,q−r) ∼= Grr,C(Cq).Hene Gτ = S(U(l)×U(p− l)×U(r)×U(q− r)), the �ber of the 4-symmetrispae G/Gτ is H/Gτ = Grl,C(Cp)×Grr,C(Cq), and
G/Gτ = {(x, J), x ∈ Grp,C(Cp+q), J ∈ Grl,C(x)×Grr,C(x⊥)}. (23)Further, G0 is de�ned: Admτ(h) = h, h ∈ H , i.e. (J1AJ−1

1 , J2CJ−1
2 ) = λ(A, C)for some λ ∈ K. But it is easy to see that we must have λ = 1 and thus G0 = Gτ .Finally, in the C-linear ase, the maximal 4-symmetri bundle N = G/G0 isgiven by (23).In the antilinear ase, J0 = L(J1)R(J−1

2 ) ∈ Aut(m)0.c, with (J1, J2) = (J ′
1bp, J

′
2bq),is in Σ(m) if and only if (J2

1 , J2
2 ) = (J ′

1J
′
1, J

′
2J

′
2) ∈ (−Idp, Idq).U(1). It is easyto see that we an only have

(J2
1 , J2

2 ) = ±(−Idp, Idq). (24)15For the following it useful to keep in mind that we have AdmH = χ(S(U(p) × U(q))) =
χ(U(p) × U(q)) and ker χ = C∗Id.16Il,p−l = diag(Idl,−Idp−l) 35



Hene aording to the following lemma:� if p, q are odd then Σ(m) ∩Aut(m)0.c = ∅,� if p, q are even then the two signs ± are realized in (24) and thus Σ(m) ∩
Aut(m)0.c has 2 onneted omponents,� if p, q have opposite parities, then only one sign is realized in (24) and Σ(m)∩
Aut(m)0.c has one omponent.Lemma 2 Let E ⊂ Cn be a Lagrangian n-plan, i.e. E

⊥
⊕ iE = Cn and let bEbe the asssoiated onjugaison: v + iw 7→ v − iw for v, w ∈ E. then U(N).bE =

bE.U(n) does not depend on E and is the of anti C-linear isometries in Cn (theelements in O(R2n) whih antiommute with the omplex struture I = iId).Moreover for any J in thsi set there exists a lagrangian n-plan E suh that
J = JE .bE = bE .JE with JE ∈ O(E). Besides J ∈ Σ(R2n (resp: OS(R2n)) ifand only if JE ∈ Σ(E) (resp. OS(E)) and in partiular Σ(R2n) ∩ U(n).bE 6= ∅only if n is even, and Σ(R2n)∩U(n).bE ⊂ Σ+(R2n). Further given any J1Σ(Rn)(resp. OS(Rn)) there exists h ∈ U(n) suh that h.E = Rn, hJEh−1 = J1 andthsu hJh−1 = J1.bRn.Then the order four automorphism orresponding to J0 is τ = Int(diag(J1, J2))with J1 ∈ AdU(p)(J p

2
.bp), J2 ∈ AdU(q)(bq) and J p

2
=

(

0 Id p
2

−Id p
2

0

). In otherwords J1 is any omplex struture in R2p antiommuting with Ip and J2 is anyorthogonal onjugaison in Cq. Hene, we have Gτ = Sp(p/2)× SO(q). Hene
U(p) × U(q)/Gτ = Σ+(Cp)− × Lag(Cq) where Σ+(Cp)− = Σ(R2p) ∩ Ant(Ip)are the omplex strutures in R2p antiommuting with Ip and Lag(Cq) are theoriented Lagangian plan in Cq. Thus we have:
H/Gτ = S(Σ+(Cp)−×Lag(Cq)) := {(J, P ) ∈ Σ+(Cp)−×Lag(Cq) | detC(J)detC(P ) = 1}.It is easy to de�ne detC on Lag(Cq), and for Σ+(Cp)−, we set detC(J) = detC(E)for E any Lagrangian n-plan stable by J (de�nition independant on the hoieof E). Then

G/Gτ = {(x, J, P ), x ∈ Grp,C(Cp+q), (J, P ) ∈ Σ+(x)− × Lag(x⊥)}.Let us omputeG/G0. We have to solve for (A, C) ∈ U(p)×U(q): (J p
2
ĀJ−1

p
2

, C̄) =

λ(A, C) for λ ∈ U(1) whose the solutions are ±λ
1
2 (Sp(p/2)× O(q)). Hene wehave G′

0 = G0/K = χ(U(1)(Sp(p/2)×O(q))) = χ(Sp(p/2)×O(q)) =

{

χ(Sp(p/2)× SO(q)) if q is odd
χ(Gτ )

⊔

h1χ(Gτ ) if q is even.ThenG′/G′
0 = G/G0 = U(p+q)/(U(1)(Sp(p/2)×O(q))) = PSU(p+q)/P (Sp(p/2)×

O(q)) heneN = G/G0 is equal to (G/Gτ )/Zp+q if q is odd and to (G/Gτ )/Z2(p+q)if q is even. 36



6 AppendixTheorem 20 Let G be a onneted Lie group with an involution σ. If Adm(Gσ)0is ompat (resp. relatively ompat) then AdmH is ompat (resp. relativelyompat) for any H suh that (Gσ)0 ⊂ H ⊂ Gσ.Proof. Aording to [1℄, (Gσ)/(Gσ)0 is �nite hene H/(Gσ)0 is �nite and thetheorem follows. �Corollary 3 We give ourself the same setting and notations as in remark 7.If H̃ = (G̃σ̃)0 satis�es AdmH̃ is ompat (resp. relatively ompat) then for anysymmetri pair (G, H), AdmH is ompat (resp. relatively ompat). In otherwords if one symmetri pair (assoiated to (g, σ)) is Riemannian then all theothers are also.Proof. Sine G̃ is simply onneted, it is the universal overing of G andwe have a overing π : G̃ → G. Then AdmH̃ = AdmH0 (there are onnetedwith the same Lie algebra) hene AdmH0 is ompat and then aording to theprevious theorem, AdmH is ompat. �Corollary 4 Let (G, H) be a symmetri pair with involution σ and τ : G →
G an order four automorphism suh that τ2 = σ. Then if AdmH is om-pat (resp. relatively ompat) then the subgroup generated by AdmH and τ|m,
Gr(AdmH, τ|m) is ompat (resp. relatively ompat).Proof. We have τ|m(AdmGσ)τ−1

|m = Admτ(Gσ) = AdmGσ. HeneGr(AdmGσ, τ|m) =

(AdmGσ)Gr(τ|m) whih is (relatively) ompat beause so is AdmGσ, aord-ing to theorem 20 and then Gr(AdmGσ, τ|m) is (relatively) ompat beausesine Gr(AdmH, τ|m) ⊂ (AdmH)Gr(τ|m) then AdmGσ/AdmH is a overing of
Gr(AdmGσ, τ|m)/Gr(AdmH, τ|m) whih is onsequently �nite. �Theorem 21 Let (G, H) be a symmetri pair with involution σ and τ : g → gan order four automorphism suh that τ2 = T1σ. Then if AdmH is relativelyompat then the subgroup generated by AdmH and τ|m, Gr(AdmH, τ|m) is rel-atively ompat.Proof. Let G′ = AdG, then C := kerAd = enter of G and we an identify Adto the overing π : G→ G/C and G′ to G/C. The automorphism σ gives rise to
σ′ : G′ → G′ suh that σ′◦π = π◦σ. Besides the automorphism τ integrates in G′into τ ′ de�ned by τ ′ = Intτ : Adg ∈ G′ 7→ τ ◦Adg◦τ−1 and we have τ ′◦π = π◦τand τ ′2 = σ′. Then aording to orollary 4, Gr(AdmG′σ

′

, τ|m) is relativelyompat sine aording to orollary 3, AdmG′σ
′ is relatively ompat beause

AdmH is. Moreover we have G′σ
′

⊂ π(Gσ) then (sine Adπ(g) = Adg ∀g ∈ G)
AdmG′σ

′

⊂ AdmGσ ⊂ AdmH thus Gr(AdmH, τ|m) is relatively ompat. �37



Theorem 22 Let (g, σ) be an orthogonal symmetri Lie algebra17 suh that
h = gσ ontains no ideal 6= 0 in g. Then for any symmetri pair (G, H) asso-iated with (g, h), the assoiated symmetri spaes M = G/H is Riemannian.Moreover let G̃ be the simply onneted Lie group with Lie algebra g, σ̃ integrat-ing σ, H̃ = (G̃σ̃)0 and C̃ the enter of G̃. Then we have H̃ = G̃σ̃. Further, forany subgroup S of C̃ put

HS = {g ∈ G̃ | σ̃(g) ∈ g.S}.The symmetri spaes M assoiated with (g, σ) (i.e. (G, H) is assoiated with
(g, h)) are exatly the spaes M = G/H with

G = G̃/S and H = H∗/S (25)where S varies through all σ̃-invariant subgroups of C̃ and H∗ varies throughall σ̃-invariant subgroups of G̃ suh that H̃S ⊂ H∗ ⊂ HS. Hene, all thesymmetri spaes M = G/H = G̃/H∗ assoiated with (g, σ) over the adjointspae of (g, σ): M ′ = G′/G′σ
′

= G̃/HC̃
18 and are overed by M̃ = G̃/H̃ (theuniveral overing):

M̃ →M →M ′. (26)Besides if 〈·, ·〉 is an AdmG′σ
′ -invariant inner produt then it is invariant by

admH = AdmH∗ for any H desribed above, and the overings (26) are Rie-mannian, when M, M̃, M ′ are endowed with the orresponding metris.Proof. We have only to prove H̃ = G̃σ̃, sine all the rest is an adaptation of[15℄ (Ch. VII, thm 9.1) using what preedes. Aording to [1℄, G̃σ̃ is onnetedif π1(G̃) is �nite with odd order, in partiular if G̃ is simply onneted. Thisompletes the proof. �Referenes[1℄ J. An, Z. Wang, On the realization of Riemannian symmetri spaes inLie groups II preprint arXiv: math/0504120.[2℄ A.L. Besse, Einstein Manifolds, Spinger-Verlag, Berlin, Heidelberg, NewYork, 1987.[3℄ F.E. Burstall, F. Pedit, Harmoni maps via Adler-Kostant-Symes Theory,Harmoni maps and integrable systems, A.P. Fordy, J.C. Wood (Eds.),Vieweg (1994), 221-272.17i.e. σ is an involutive automorphism and h = gσ is ompatly embedded in g (see [15℄)18with the notation of the proof of theorem 21. For any (G, H) symmetri pair assoiatedwith (g, σ), we have G′ = AdG = Int(g) the group of inner automorphism of g (see [15℄) and
σ indues an automorphism σ′ of G′ = Int(g).38
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