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Geometri
 Interpretation of Se
ond Ellipti
Integrable SystemIdrisse Khemar(joint work with Fran
is Burstall)Abstra
t.In this paper we give a geometri
al interpretation of all the se
ond ellipti
integrable systems asso
ited to 4-symmetri
 spa
es. We �rst show that a 4-symmetri
 spa
e G/G0 
an be embedded into the twistor spa
e of the 
orre-sponding symmetri
 spa
e G/H . Then we prove that the se
ond ellipti
 systemis equivalent to the verti
al harmoni
ity of an admissible twistor lift J takingvalues in G/G0 →֒ Σ(G/H). We begin the paper by an example: G/H = R4.We study also the stru
ture of 4-symmetri
 bundles over Riemannian symmetri
spa
e.Introdu
tionThe �rst example of se
ond ellipti
 integrable system asso
iated to a 4-symmetri
spa
e was given in [12℄: the authors showed that the Hamiltonian stationaryLagrangian surfa
es in C2 are solution of one su
h integrable system, and afterthey generalized their result to 
omplex two-dimensional Hermitian symmetri
spa
e, [14℄. Then we gave in [17℄ a new 
lass of geometri
al problems for sur-fa
es in the Eu
lidean spa
e of dimension 8 by using the identi�
ation R8 = O,and proved that they are solution of a se
ond ellipti
 integrable system. Usingthe left multipli
ation in O by the ve
tors of the 
anoni
al basis of ImO wede�ned a family {ωi, 1 ≤ i ≤ 7} of 
anoni
al symple
ti
 forms in O. This al-lowed us to de�ne the notion of ωI-isotropi
 surfa
es, for I & {1, ..., 7}. Usingthe 
ross-produ
t in O we de�ned a map ρ : Gr2(O)→ S6 from the Grassman-nian of plan of O to S6. This allowed us to asso
iate to ea
h surfa
e Σ of O afun
tion ρΣ : Σ → S6. In the 
ase of ωI -istropi
 surfa
es, ρΣ takes values intoa subsphere SI = S(⊕i/∈I,i>0Rei) ≃ S6−|I|. Then we showed that the surfa
esin O su
h that ρΣ is harmoni
 (ρ-harmoni
 surfa
es) are solutions of a 
om-pletely integrable system S. More generally we showed that the ωI -isotropi

ρ-harmoni
 surfa
es are solutions of a 
ompletely integrable system SI . Hen
ewe built a family (SI) indexed by I, of set of surfa
es solutions of a integrablesystem, all in
luded in S = S∅, su
h that I ⊂ J implies SJ ⊂ SI . Ea
h SI is ase
ond ellipti
 integrable system (in the sense of C.L. Terng). This means that1



the equations of this system are equivalent to the free 
urvature equation :
dαλ +

1

2
[αλ ∧ αλ] = 0,for all λ ∈ C, and where αλ = λ−2α′

2 + λ−1α−1 + α0 + λα1 + λ2α′′
2 .By restri
tion to H ⊂ O of our theory we obtain a new 
lass of surfa
es: the

ωI -isotropi
 ρ-harmoni
 surfa
es of H. Then ρ(Gr2(H)) = S2 and |I| = 0, 1 or
2. For |I| = 1 we obtain the Hamiltonian Stationary Lagrangian surfa
es in
R4 and for |I| = 2, the spe
ial Lagrangian surfa
es. By restri
tion to ImH, weobtain the CMC surfa
es of R3.Besides in [18℄, we found a supersymmetri
 interpretation of all the se
ond el-lipti
 integrable system asso
iated to a 4-symmetri
 spa
e in terms of superharmoni
 maps into a symmetri
 spa
e. This leads us to 
onje
ture that thissystem has a geometri
al interpretation in terms of surfa
es with values in asymmetri
 spa
e, su
h that a 
ertain asso
iated map is harmoni
 as this is the
ase for Hamiltonian stationary Lagrangian surfa
es in Hermitian symmetri
spa
es or for ρ -harmoni
 surfa
es of O.In this paper we give the answer to this 
onje
ture. That is to say, we give ageometri
al interpretation � in terms of verti
al harmoni
 twistor lift � of allthe se
ond ellipti
 integrable systems asso
iated to a 4-symmetri
 spa
e. Indeedgiven a 4-symmetri
 spa
e G/G0, and its order four automorphism σ : G→ G,then the involution τ = σ2 gives rise to the symmetri
 spa
e G/H , with H = Gτ .Then we prove that the se
ond ellipti
 integrable system asso
iated to the 4-symmetri
 spa
e G/G0 is the equation of verti
al harmoni
ity for admissibletwistor lift in G/H . More pre
isely, given a 4-symmetri
 spa
e G/G0, andits asso
iated symmetri
 spa
e G/H , then G/G0 is a subbundle of the twistorspa
e Σ(G/H). We prove that the se
ond ellipti
 integrable systems asso
iatedto G/G0, is the system of equations for maps J : C → G/G0 ⊂ Σ(G/H) su
hthat J is 
ompatible with the Gauss map of X : C→ G/H , the proje
tion of Jinto G/H , i.e. X is J-holomorphi
 (admissible twistor lift), and su
h that J isverti
ally harmoni
.We begin the paper by a example: R4. This 
ase was just mentionned qui
ly inthe end of [17℄ as a restri
tion of the di�
ult problem in O. So here we studyit independantly and in details. However, here we give also a formulation ofthis problem in terms of twistor lift whi
h is the right formulation. Besides,in dimension 4 we have uni
ity of the twistor lift (in Σ+(G/H) and Σ−(G/H)respe
tively) so we are in this 
ase in the presen
e of a theory of surfa
e (andnot as in the general 
ase, a theory of twistor lift) and so we 
an speak about
ρ-harmoni
 surfa
es in this dimension (whi
h are exa
tly the solution of these
ond ellipti
 integrable system). In our work we are led to prove some theo-rems on the stru
ture of 4-symmetri
 bundles. Indeed we want to answer thefollowing questions: given a Riemannian symmetri
 spa
es, do there exist 4-symmetri
 bundle over it? In other words in its twistor bundle do there exist4-symmetri
 subbbudle, and if yes how 
an we 
hara
terize these 4-symmetri

omponents? are they isomorphi
? How are they distributed in the twistorspa
e ? Do they form a partition of the twistor spa
e?. et
.. The 4-symmetri
2



spa
e have been 
lassi�ed (at least in the 
ompa
t, see [16, 21℄). However, ourpoint of view is di�erent: we want to have an intrinsi
 point of view as longas possible so we deal with the Riemannian symmetri
 spa
e and its (lo
ally)4-symmetri
 bundle de�ned over it, and we try to forget as mu
h as possiblethe four automorphism of the Lie algebra. Our aim is to give a formulationof our problen as general and intrinsi
 as possible. For example, our de�ntionof verti
al harmoni
ity holds for any Riemannian manifold, moreover we givethe following 
hara
terization: de�ne a (lo
ally) 4-symmetri
 bundle over Mis equivalent to give ourself J0 ∈ Σ(Tp0M) whi
h leaves invariant the 
urva-ture. We obtain the following image: the twistor bundle in the disjoint union ofall the maximal (lo
ally) 4-symmetri
 subbundle, whi
h are orbits (de�ned bysome subgroups of Is(M)). Ea
h isomorphism 
lass of orbits de�ned a di�erentse
ond ellipti
 integrable system.Our paper is organized as follows. In Se
tion 1 we deals with the ρ-harmoni
surfa
es in R4. Se
tion 2 
ontains our main result: the interpretation of these
ond ellipti
 integrable systems asso
iated to a 4-symmetri
 spa
e in terms ofthe verti
al harmoni
ity of an admissible twistor lift. Then Se
tion 3 and 4 aredevoted to the study of the stru
ture of 4-symmetri
 bundles over symmetri
spa
es. The last Se
tion gives some example of 4-symmetri
 bundles.1 ρ-harmoni
 surfa
es in H1.1 Cross produ
t, 
omplex stru
ture and Grassmannianof plan in HWe 
onsider the spa
e R4 = H with its 
anoni
al basis (1, i, j, k) (whi
h wedenote also by (ei)0≤i≤3). Let P = q∧ q′ be a oriented plan of H (itself orientedby its 
anoni
al basis) then there exists an unique positive 
omplex stru
ture
IP ∈ Σ+(P ) on the plan P . It is de�ned by IP (q) = q′, IP (q′) = −q if (q, q′) isorthogonal. Next, we 
an extend it in a unique way to a positive (resp. negative)
omplex stru
ture of H = P ⊕ P⊥, J+

P (resp. J−
P ) given by

J+
P = IP ⊕ IP⊥

J−
P = IP ⊕−IP⊥ (1)(P⊥ is oriented so that = P ⊕ P⊥ is positively oriented). Hen
e we obtain asurje
tive map:

J+ : Gr2(H) → Σ+(H)
q ∧ q′ 7→ J+

q∧q′

(2)and in the same way a surje
tive map J− : Gr2(H)→ Σ−(H).Besides, we have
J+

q∧q′ = Lq×Lq′ =
1

2
(Lq′Lq̄ − LqLq′),where q×Lq′ = −Im (q · q′) = Im (q′ · q̄) is the left 
ross produ
t (it is a bilinearskew map from H×H to ImH). Indeed, if (q, q′) is orthonormal then q×Lq′ =3



−q · q′ ∈ S(ImH) so Lq×Lq′ is a 
omplex stru
ture of H and it is positive(be
ause {Lu, u ∈ S2} is 
onne
ted and Li ∈ Σ+(H) be
ause (1, Li(1), j, Li(j))is positively oriented). Moreover if (q, q′) is orthonormal then Lq×Lq′(q) =
(q′q̄)q = q′. Hen
e Lq×Lq′ = J+

q∧q′ . Thus we obtain a di�eomorphism:
Σ+(H)

∼
−→ S2

J 7−→ J(1)
. (3)Under this identi�
ation, the map (2) be
ome

ρ+ : Gr2(H) → S2

q ∧ q′ 7→ q ×L q′ .We 
an do the same for Σ−(H). We obtain that J−
q∧q′ = Rq×Rq′ = −Rq×Rq′ =

1
2 (Rq′Rq̄ − RqRq′), where q×Rq′ = −Im (q̄ · q′) = Im (q′ · q) is the right 
rossprodu
t (it is a bilinear skew map from H×H to ImH). Then we have the sameidenti�
ation between Σ−(H) and S2, as in (3). Under this identi�
ation J−be
ome

ρ− : Gr2(H) → S2

q ∧ q′ 7→ q ×R q′ .1.2 A
tion of SO(4)Re
all the following 2-sheeted 
overing of SO(4):
χ : S3 × S3 → SO(4)

(a, b) 7→ LaRb̄and set Spin(3)+ = La, a ∈ S3, Spin(3)− = Rb̄, b ∈ S3, then SO(4) = Spin(3)+
Spin(3)− = Spin(3)−Spin(3)+. We have the two following representation of
Spin(3)ε:

χ+ : La 7→ inta = LaRā ∈ SO(ImH), χ− : Rb̄ 7→ intb = LbRb̄ ∈ SO(ImH).Then the map ρε is Spin(3)-equivariant: for all q, q′ ∈ H, g = LaRb̄ ∈ SO(4),
(gq)×L (gq′) = a(q ×L q′)ā = inta(q ×L q′)
(gq)×R (gq′) = b(q ×R q′)b̄ = intb(q ×R q′).Hen
e we have ∀g ∈ SO(4),

ρε(g(q ∧ q′)) = χε
g(ρε(q ∧ q′))(where we have extended χε to SO(4) in an obvious way: χ+(LaRb̄) = χ+(La),

χ−(LaRb̄) = χ−(Rb̄). Besides the map Jε is also Spin(3)-equivariant, in otherwords the identi�
ation (3) is Spin(3)-equivariant:
∀g ∈ SO(4),

gJ+
q∧q′g−1 = LaRb̄ Lq×Lq′ RbLā = La(q×Lq′)a−1 = J+

g(q∧q′) .4



The a
tion of Spin(3)+ = SU(R4, Re) (resp. Spin(3)− = SU(R4, Le)) on
Σ−(H) (resp. Σ+(H)) is trivial. Hen
e SO(4) a
ts on Σε(H) only by its 
ompo-nent Spin(3)ε (in the same way it a
ts on S2

ε only by its 
omponent Spin(3)εvia χε). In fa
t, the equality gJ+
q∧q′g−1 = J+

g(q∧q′) results immediately fromthe de�nition of J+
q∧q′ and the fa
t that g is a positive isometrie. This naturalequality whi
h is equivalent to what we 
alled the fondamental property in [17℄:

(gq)× (gq′) = χg(q × q′), is 
hara
teristi
 of dimension 4: in this 
ase it is pos-sible to asso
iate in a natural way (whi
h depends only on the metri
 and theorientation) to ea
h plan a 
omplex stru
ture, whi
h is not possible in greaterdimension. In dimension 8, we must 
hoose a o
tonioni
 stru
ture in R8 to dothat. (see [17℄).1.3 The Grassmannian Gr2(H) is a produ
t of sphereTheorem 1 The map
ρ+ × ρ− : Gr2(H) → S2 × S2

q ∧ q′ 7→ (q ×L q′, q ×R q′)is a di�eomorphism.Proof. SO(3) × SO(3) a
ts transitively on S2 × S2 so SO(4) a
ts transitivelyon S2 × S2 via χ+ × χ−, thus ρ+ × ρ− is surje
tive.Let ρ ∈ S(ImH), g = LaRb̄, g′ = La′Rb̄′ ∈ SO(4) then we have
ρ+ × ρ−(g(1 ∧ e)) = ρ+ × ρ−(g′(1 ∧ e)) ⇐⇒ (aea−1, beb−1) = (a′ea′−1

, b′eb′
−1

)

⇐⇒ a′−1
a, b′

−1
b ∈ S1(e)

=⇒ (La′Rb̄′)
−1(LaRb̄)(1 ∧ e) = 1 ∧ e

=⇒ g(1 ∧ e) = g′(1 ∧ e).Hen
e, sin
e SO(4) a
ts transitively on Gr2(H), we have proved that ρ+ × ρ−is inje
tive and that
ρ+ × ρ−(g(1 ∧ e)) = ρ+ × ρ−(g′(1 ∧ e))⇐⇒ (a′−1

a, b′
−1

b) ∈ S1(e)× S1(e)(in the previous sequen
e of impli
ations, the last propositions implies the �rstone so all the propositions are equivalent). This 
ompletes the proof. �As it is the 
ase in [17℄, it is useful here to introdu
e a fun
tion ρ̃ε on Spin(3)ε
orresponding to ρε: we de�ne ρ̃εe : Spin(3)ε → S2 by ρ̃εe(g) = χε
g(e) (where

e ∈ S(ImH) = S2), i.e. under the identi�
ation Spin(3)ε = S3 we have ρ̃εe(a) =
inta(e) = aea−1, whi
h is nothing but the Hopf �bration S3 → S3/S1(e). If
ρε(e1 ∧ e2) = e then ρ̃εe(g) = ρε(g(e1 ∧ e2)). In the following, we will forgetthe index e. Hen
e, if we take e1 ∧ e2 su
h that ρε(e1 ∧ e2) = e for ε = ±1 (i.e.
e1 ∧ e2 = (1∧ e)⊥ whi
h means also that (e, e1, e2) is a dire
t orthonormal basis

5



of ImH) then we have the following 
ommutative diagram:
S3 × S3 χ

−−−−→ SO(4)

ρ̃+×ρ̃−





y





y

g

↓
g(e1∧e2)

S2 × S2 ≃
←−−−−−
ρ+×ρ−

Gr2(H)Let us now 
onsider the restri
tion to ImH = R3 of this diagram. First the uni-versal 
overing Spin(3)→ SO(3) is obtained by restri
tion to ∆3 = {(a, a), a ∈
S3} ≃ S3 of χ : S3 × S3 → SO(4), whi
h gives the 
overing (a, a) 7→ inta.Then supposing in addition that e1, e2 ∈ ImH, the restri
tion to SO(3) of
SO(4)→ Gr2(H) is only the surje
tive map g ∈ SO(3) 7→ g(e1∧ e2) ∈ Gr3(R3).And the restri
tion to Gr2(R3) of ρ+ × ρ− gives the di�eomorphism ρ : u ∧ v ∈
Gr2(R3) → u × v ∈ S2. Finally the restri
tion to ∆3 of ρ̃+ × ρ̃− gives theHopf �bration ρ̃ : a ∈ S3 7→ aea−1 ∈ S2. So by restri
tion to R3, we obtain the
lassi
al 
ommutative diagram:

S3 χ3
−−−−→ SO(3)

Hopf





y





y

S2 ≃
←−−−− Gr2(R3)Remark 1 Besides if we use Σε(H) instead of the sphere S2 the Hopf �bration

ρ̃ε be
ome SU(2, J−ε
1∧e) → Σε(H) = SU(2, J−ε

1∧e)/U(1)ε = SO(4)/U(2, Jε
1∧e)where U(1)+ = RS1(e) = exp(R.Re), U(1)− = LS1(e) = exp(R.Le).1.4 The ρ-harmoni
 ωI-isotropi
 surfa
esWe re
all here in the parti
ular 
ase of H = R4 our result obtained in [17℄about ρ-harmoni
 surfa
es. To do that, we need to introdu
e some notationsand de�nitions. We have

ρε(q ∧ q′) = −ε

3
∑

i=1

ωε
i (q, q

′)eiwhere (ei)1≤i≤3 = (i, j, k) and ωε
i = 〈·, Jε

1∧ei
·〉 (i.e. ω+

i = 〈·, Lei
·〉, ω−

i =
〈·, Rei

·〉). Let us set, for I & {1, 2, 3},
Qε

I = {P ∈ Gr2(H)|ωε
i (P ) = 0, i ∈ I},then Q∅ = Gr2(H), Q{k} = {P ∈ Gr2(H), Lagrangian for ωε

k}, and Qε
{k,l} isthe set of spe
ial Lagrangian plan (more pre
isely the ωε

k-Lagrangian plan P su
hthat detC2(P ) = ±i under the identi�
ation: x ∈ R4 7→ (x0 + ixk, xl + iεxk∧l) ∈
C2, with (k, l, k∧l) 
y
li
 permutation of (1, 2, 3); for example, if (k, l) = (1, 2), itis the identi�
ation (z1, z2) ∈ C2 7→ z1+z2j ∈ H for ε = 1 and (z1, z2) 7→ z1+jz26



for ε = −1). We have also ρε(QI) = SI = S(
⊕

i/∈I Rei) = S2, S1, {±ek}for |I| = 0, 1, 2 respe
tively. Besides we have for I = {i} ⊂ {1, 2, 3}, that
J+(QI) = LSI = S1(RLej

⊕ RLek
) is the 
ir
le of positive 
omplex stru
turewhi
h anti
ommute with Lei

; and for I = {i, j} ⊂ {1, 2, 3}, J+(QI) = LSI =
{±Lek

}.We denote by Gε
I the subgroup of Spin(3)ε whi
h 
onserves ωε

i , i ∈ I; this is thesubgroup of Spin(3)ε whi
h 
ommutes with Lei
, i ∈ I. Then Gε

I = S3, S1, {±1}for |I| = 0, 1, 2 respe
tively. We 
an also 
onsider instead of Spin(3)ε the group
SO(4) (whi
h is equivalent to add the 
omponent Spin(3)−ε whi
h is useless),then we have Gε

I = SO(4), U(2, Jε
1∧ei

), SU(2, Jε
1∧ei

) for |I| = 0, 1, 2 respe
tively.Let e ∈ S(
⊕

i/∈I Rei). The inner automorphism , intJε
1∧e

, de�ne on Gε
I aninvolution whi
h gives rise to the symmetri
 spa
e SI = Gε

I/Gε
I∩{k} and in theLie algebra of Gε

I , gε
I , to the eigenspa
e de
omposition of AdJε

1∧e:
gε

I = gε
0(I)⊕ gε

2(I)with gε
0(I) = ker(AdJ+

1∧e − Id), gε
2(I) = ker(AdJε

1∧e + Id).Let us introdu
e Gε
I = Gε

I ⋉R
4 the group of a�ne isometries of whi
h the linearpart is in Gε

I , and its Lie algebra: gε(I) = gε
I ⊕R

4. Consider the automorphismof the group Gε
I : τε

e = int(−εJε
1∧e, 0) with e ∈ S(

⊕

i/∈I Rei). This is an orderfour automorphism whi
h gives us an eigenspa
e de
omposition of gε(I)C:
gε(I)C =

⊕

k∈Z4

g̃ε
k(I)with g̃ε

±1(I) = gε
±1 = ker(Jε

1∧e± iId), g̃ε
0(I) = gε

0(I)C, g̃ε
2(I) = gε

2(I)C. Moreoverwe have [g̃ε
k(I), g̃ε

l (I)] ⊂ g̃ε
k+l(I).We �x a value of ε = ±1. Then let us de�ne as in [17℄:De�nition 1 Let Σ be a immersed surfa
e in H, then a map ρΣ : Σ → S2 isasso
iated to it, de�ned by ρΣ(z) = ρε(TzΣ) i.e. if X : Σ→ H is the immersionthen ρΣ = X∗ρε. We will say that Σ is ρ-harmoni
 if ρΣ is harmoni
. Let

I  {1, 2, 3}, we will say that Σ is ωI-isotropi
 if ∀z ∈ Σ, TzΣ ∈ Qε
I (i.e. Σis ωε

i -isotropi
 for all i ∈ I) whi
h is equivalent to: ρΣ takes values in SI =
S(⊕i/∈IRei) ⊂ S2. Hen
e for |I| = 1, the ρ-harmoni
 ωε

I -isotropi
 surfa
es arethe Hamiltonian stationary Lagrangian surfa
es in C2, and for |I| = 2, these arethe spe
ial Lagrangian surfa
es in C2 (see above for the identi�
ation R4 ≃ C2).If it 
ould be some ambiguity as 
on
erned the value of ε = ±1, we will use thequali�
atifs "left" and "right" respe
tively to design these two values. A lifted
onformal left (resp. right) ωI-isotropi
 immersion - LCωI - (if I = ∅ we willsay a lifted 
onformal immersion or simply a lift) is a map U = (F, X) : Σ→ Gε
Isu
h that X is a 
onformal ωε

I-isotropi
 immersion and ρ̃e ◦ F = ρΣWe have obtained the following result in [17℄:Theorem 2 Let Ω be a simply 
onne
ted open domain, and α a 1-form on Ωwith values in g(I), then 7



• α is the Maurer-Cartan form of a LCωI if and only if
dα + α ∧ α = 0, α′′

−1 = 0 and α′
−1 does not vanish

• furthermore, α 
orresponds to some ρ-harmoni
 ωI-isotropi
 
onformal im-mersion if and only if the extended Maurer-Cartan form αλ = λ−2α′
2 +

λ−1α−1 + α0 + λα1 + λ2α′′
2 satis�es

dαλ + αλ ∧ αλ = 0, ∀λ ∈ C∗.Let us re
all the proof given in [17℄.Proof. To �x ideas, we take ε = 1. α is a Maurer-Cartan form if and onlyif it satis�es the Maurer-Cartan equation. In this 
ase, it 
an be integratedby U = (F, X) : Σ → GI , α = U−1.dU, U(z0) = 1. Hen
e α = U−1.dU =
(F−1.dF, F−1.dX). Moreover, F−1.dX = α−1 + α1 is real and g±1 = {V ±
iLeV, V ∈ H} so α−1 = α1. Hen
e α′′

−1 = 0 ⇐⇒ α′′
−1 = α′

1 = 0 ⇐⇒ α−1 =

(F−1 ∂X
∂z )dz ⇐⇒ F−1 ∂X

∂y = Le(F
−1 ∂X

∂x ) ⇐⇒ F−1dX = h(q0du + q′0dv) with
h ∈ C∞(ω,R), q0, q

′
0 ∈ C∞(Ω, S3), 〈q0, q

′
0〉 = 0 and ρ(q0, q

′
0) = e. Thus we have

α′′
−1 = 0 and α′

−1 6= 0 ⇐⇒ dX = ef(qdu + q′dv) with f ∈ C∞(ω,R), (q, q′)orthonormal and ρ(q, q′) = ρ̃e(F ) i.e. ρX = ρ̃e(F ). This proves the �rst point.Hen
e we have the de
omposition α = α2 + α−1 + α0 + α1 = α′
2 + α′

−1 + α0 +
α′′

1 +α′′
2 . Furthermore, using the 
ommutation relations [g̃k(I), g̃l(I)] ⊂ g̃k+l(I),

[g±1, g±1] = {0}, we obtain
dαλ + αλ ∧ αλ = λ−2(dα′

2 + [α0 ∧ α′
2)])

+λ−1(dα′
−1 + [α′

−1 ∧ α0] + [α′′
1 ∧ α′

2])

+(dα0 +
1

2
[α0 ∧ α0] +

1

2
[α′

2 ∧ α′′
2 ])

+λ(dα′′
1 + [α′′

1 ∧ α0] + [α′
−1 ∧ α′′

2 ])

+λ2(dα′′
2 + [α0 ∧ α′′

2 ]),the 
oe�
ient of λ−1, λ0, λ are respe
tively the proje
tion of dα + α ∧ α on
g−1, g0, g1 respe
tively so they vanish and hen
e

dαλ + αλ ∧ αλ = dβλ2 + βλ2 ∧ βλ2where βλ = λ−1α′
2 + α0 + λα′′

2 is the extended Maurer-Cartan form of β =
F−1.dF , the Maurer-Cartan form of the lift F ∈ GI of ρX ∈ SI . A

ording to[6℄, we know that ρX is harmoni
 if and only if dβλ + βλ ∧ βλ = 0, ∀λ ∈ C∗.This proves the se
ond point and 
ompletes the proof. �Remark 2 We have ρ−(x, y) = −Im (x̄.y) = ρ+(x̄, ȳ). Hen
e X : Ω → H is
ρ−-harmoni
 if and only if X̄ is ρ+-harmoni
, and X is ω−

I -isotropi
 if and onlyif X̄ is ω+
I -isotropi
. Besides if U = (F, X) : Ω → GI ⋉ H is a left LCωI thenwe have F = La and aea−1 = ρX = ρ+(q, q′) with dX = eω(qdu + q′dv), (q, q′)orthonormal. Thus, ρ−(q̄, q̄′) = aea−1 and hen
e U = (Rā, X̄) is a right LCωI .8



Remark 3 The restri
tion to ImH = R3 of the left (or right) 
ross produ
tgives us the usual 
ross produ
t of R3. Hen
e a surfa
e in ImH is left (resp.right) ρ-harmoni
 if and only if it is a 
onstant mean 
urvature surfa
e.In the same way, it is easy to see that a surfa
e in S3 is left (resp. right)
ρ-harmoni
 if and only if it is a 
onstant mean 
urvature surfa
e.Remark 4 We 
an apply now the Dorfmeister-Pedit-Wu method to obtain aWeierstrass representation of ρ-harmoni
 surfa
es (see [6, 12, 13, 14, 17, 18℄).2 Se
ond Ellipti
 Integrable System2.1 4-symmetri
 spa
es and twistor spa
eDe�nition 2 Let M be a Riemannian symmetri
 spa
e. We will say that a Liegroup G a
ts symmetri
ally on M or that M is a G-symmetri
 spa
e if G a
tstransitively and isometri
ally on M and if there exists a involutive automorphismof G, σ, su
h that H the isotropy subgroup at a �xed point p0 ∈ M , satis�es
(Gσ)0 ⊂ H ⊂ Gσ. We will say also that G/H is a symmetri
 realisation of M .We will say that a G-homogeneous spa
e N = G/G0 is a 4-symmetri
 bundleover the G-symmetri
 spa
e M if there exists an order four automorphism τ of
G, su
h that (Gτ )0 ⊂ G0 ⊂ Gτ , and (G, τ) gives rise to the symmetri
 spa
e
M , i.e. σ = τ2 and G0 ⊂ H.A G-homogeneous spa
e N = G/G0 is a lo
ally 4-symmetri
 spa
e if there existsa order four automorphism of the Lie algebra g = Lie G, τ : g → g su
h that
gτ = Lie G0. We will say that G/G0 is a lo
ally 4-symmetri
 bundle over the
G-symmetri
 spa
e M if τ2 = T1σ (and G0 ⊂ H).Let us 
onsider M a G-symmetri
 spa
e with τ : g → g an order four auto-morphism su
h that τ2 = T1σ. The automorphism τ gives us an eigenspa
ede
omposition of gC:

gC =
⊕

k∈Z4

g̃kwhere g̃k is the eikπ/2-eigenspa
e of τ . We have 
learly g̃0 = gC
0 , g̃k = g̃−k and

[g̃k, g̃l] ⊂ g̃k+l. We de�ne g2, m and g
1
by

g̃2 = gC

2 , mC = g̃−1 ⊕ g̃1 and gC

1
=

⊕

k∈Z4r{0}

g̃k,it is possible be
ause g̃2 = g̃2 and g̃−1 = g̃1. Let us set g−1 = g̃−1, g1 = g̃1,
h = g0 ⊕ g2 . Then

g = h⊕mis the eigenspa
e de
omposition of the involutive automorphism σ, h is the Liealgebra of H , the isotropy subgroup of G at a referen
e point p0, and m isidenti�ed to the tangent spa
e Tp0M . Besides we remark that τ|m ∈ Σ(m)(sin
e τ|mC = −iIdg−1 ⊕ iIdg1)1, whi
h gives us the following theorem (proved1We 
hoose a metri
 in m stabilized by τ|m (and of 
ourse by AdH), see se
tion 3.19



in se
tion 3.2).Theorem 3 Let us 
onsider M a Riemannian G-symmetri
 spa
e and τ : g→ gan order four automorphism su
h that τ2 = T1σ. Let us make G a
ting on
Σ(M): g ·J = gJg−1. Let J0 ∈ Σ(Tp0M) be the 
omplex stru
ture 
orrespondingto τ|m ∈ Σ(m) (resp. to −τ|m = τ−1

|m ∈ Σ(m)), under the identi�
ation Tp0M =

m. Then the orbit of J0 under the a
tion of G is an immersed submanifold of
Σ(M). Denoting by G0 the stabilizer of J0, then LieG0 = gτ and thus G/G0 isa lo
ally 4-symmetri
 bundle over M , and the natural map

i : G/G0 −→ Σ(M)
g.G0 7−→ gJ0g

−1 .is an inje
tive immersion and a morphism of bundle. Moreover, if the image of
G in Is(M) (the group of isometry of M) is 
losed, then i is an embedding.2.2 The se
ond ellipti
 integrable system asso
iated to a4-symmetri
 spa
eWe give ourself M a Riemannian G-symmetri
 spa
e with τ : g → g an orderfour automorphism su
h that τ2 = T1σ, and N = G/G0 the asso
iated lo
ally4-symmetri
 spa
e given by theorem 3. We use the same notations as in Se
-tion 2.1. Then let us re
all what is a se
ond ellipti
 system a

ording to C.L.Terng (see [20℄).De�nition 3 The se
ond (g, τ)-system is the equation for (u0, u1, u2) : C →
⊕2

j=0g̃−j ,






∂z̄u2 + [ū0, u2] = 0 (a)
∂z̄u1 + [ū0, u1] + [ū1, u2] = 0 (b)
−∂z̄u0 + ∂z ū0 + [u0, ū0] + [u1, ū1] + [u2, ū2] = 0. (c)

(4)It is equivalent to say that the 1-form
αλ =

2
∑

i=0

λ−iuidz + λiūidz̄ = λ−2α′
2 + λ−1α′

1 + α0 + λα′′
1 + λ2α′′

2 (5)satis�es the zero 
urvature equation:
dαλ +

1

2
[αλ ∧ αλ] = 0, (6)for λ ∈ C∗. We will speak about the (G, τ)-system (τ is an automorphismof LieG = g) when we look at solutions of the (g, τ)-system in G, i.e. maps

U : C→ G su
h that their Maurer-Cartan form is solution of the (g, τ)-system,in other words when we integrate the zero 
urvature equation (6) in G. We will
all (geometri
) solution of the se
ond ellipti
 integrable system asso
iated to thelo
ally 4-symmetri
 spa
e G/G0 a map J : C→ G/G0 whi
h 
an be lifted into asolution U : C→ G of (4). 10



Remark 5 In (4), {Re((a)), (b), (c)} is equivalent to dα + 1
2 [α∧α] = 0. Hen
ethe additionnal 
ondition added to the Maurer-Cartan equation by the zero
urvature equation (6) is Im(∂z̄α

′
2 + [α′′

0 , α′
2]) = 0 or equivalently

d(⋆α2) + [α0 ∧ (⋆α2)] = 0.The �rst example of se
ond ellipti
 system was given by F. Hélein and P. Romon(see [12, 14℄): they showed that the equations for Hamiltonian stationary La-grangian surfa
es in 4-dimension Hermitian symmetri
 spa
es are the se
ondellipti
 system asso
iated to 
ertain 4-symmetri
 spa
es. Then in [17℄, we foundan other example in O: teh ρ-harmoni
 surfa
es in O, whi
h by restri
tion to
H gives us the ρ-harmoni
 surfa
es in H (studied in se
tion 1) whi
h generalizethe Hamiltonian stationary Lagrangian surfa
es in C2.De�nition 4 Let M be a Riemannian manifold and ∇ its Levi-Civita 
onne
-tion whi
h indu
es a 
onne
tion on End(TM). Let us de�ne for ea
h (p, Jp) ∈
Σ(M) the orthogonal proje
tion

pr⊥(p, Jp) : End(TpM)→ TJp
(Σ(TpM))(TpM is an Eu
lidean ve
tor spa
e so Σ(TpM) is a submanifold of the Eu
lideanspa
e End(TpM) and so TJp

Σ(TpM) is a ve
tor subspa
e of End(TpM) and we
an 
onsider the orthogonal proje
tion on this subspa
e). Given J : C → Σ(M)we set
∆J(z) = 4pr⊥(J(z)).∇ ∂

∂z̄
(∇ ∂

∂z
J).(in fa
t we endow the bundle Σ(M) with the 
onne
tion de�ned by the horizontaldistribution (HJ ⊕ (TJΣ(TpM))⊥) ∩ TJΣ(M), where HJ is the 
onne
tion of

End(TM) : TEnd(TM) = H ⊕ End(TM)). We will say that J is verti
allyharmoni
 if ∆J = 0.De�nition 5 Let (L, j) be a Riemann surfa
e, M a oriented manifold and
X : L→M a immersion. Let J : L→ X∗(Σ(M)) be a almost 
omplex stru
tureon the ve
tor bundle X∗(TM). Then we will say that J is an admissible twistorlift of X if one of the following equivalent statements holds:(i) X is J-holomorphi
: ⋆dX := dX ◦ j = J.dX(ii) J is an extension of the 
omplex stru
ture on the oriented tangent plan

P = X∗(TL) indu
ed by j, the 
omplex stru
ture of L, or equivalently Jindu
es the 
omplex stru
ture j in L.(iii) X is a 
onformal immersion and J stabilizes the tangent plan X∗(TL),i.e. for all z ∈ L, Jz stabilizes X∗(TzL) and indu
es on it the sameorientation, whi
h we will denote by J 	 X∗(TL)(iv) X is a 
onformal immersion and J is an extension of the unique positive
omplex stru
ture IP of the tangent plan P = X∗(TL).11



Finally, we will say that a map J : L → Σ(M) is an admissible twistor lift ifits proje
tion X = prM ◦ J : L → M is an immersion and J is an admissibletwistor lift of it.Theorem 4 Let L be a simply 
onne
ted Riemann surfa
e and (G, τ) a lo
ally4-symmetri
 bundle over a symmetri
 spa
e M = G/H. Let J0 ∈ Σ(Tp0M) bethe 
omplex stru
ture 
orresponding to τ−1
|m (see Se
tion 2.1). Let be JX : L →

i(G/G0) ⊂ Σ(G/H). Then the two following statements are equivalent:
• JX is an admissible twistor lift.
• Any lift F : L → G of JX (FJ0F

−1 = JX) gives rise to a Maurer-Cartanform α = F−1.dF whi
h sati�es: α′′
−1 = α′

1 = 0 and α′
−1 does not vanish.Furthermore, under these statements, JX : L→ Σ(G/H) is verti
ally harmoni
if and only if JX : L→ G/G0 is solution of the se
ond ellipti
 integrable systemasso
iated to the lo
ally 4-symmetri
 spa
e (G, τ), i.e.

dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ C∗,where αλ = λ−2α′

2 + λ−1α′
−1 + α0 + λα′′

1 + λ2α′′
2 is the extended Maurer-Cartanform of α.Proof. For the �rst point, let us make F−1 a
ting on the equation dX ◦ j =

JX .dX , we obtain αm ◦ j = τ|m(αm) whi
h is equivalent to α′′
−1 = α′

1 = 0. Thus
α−1(

∂
∂z ) = αm( ∂

∂z ) = F−1.∂X
∂z , and X is an immersion if and only if α′

−1 doesnot vanish.For the se
ond point, let us re
all that End(TpM) = sym(TpM)
⊥
⊕ so(TpM) andgiven J ∈ Σ(TpM), we have TJΣ(TpM) = Ant(J) = {A ∈ so(TpM)|AJ + JA =

0} and (TJΣ(TpM))⊥ ∩ so(TpM) = Com(J) = {A ∈ so(TpM)|[A, J ] = 0}.Now, let us 
ompute the 
onne
tion X∗∇ on X∗(End(TM)), in terms of theLie algebra setting. Let A be a se
tion of X∗(End(TM)) and Y a se
tion of
X∗(TM). Let A0 ∈ C∞(L, End(Tp0M)) be de�ned by AF.p0 = FA0F

−1 and
Am ∈ C∞(L, End(m)) its image under the identi�
ation Tp0M = m. Then
AF.p0 
orresponds to AdF ◦ Am ◦ AdF−1 (under the identi�
ation TM = [m]).In parti
ular (JX)m = τ|m (we suppose F (p0) = 1). We set also Y = AdF (ξ).p0,
ξ ∈ C∞(L, m). From now, we do the identi�
ation TM = [m] without pre
isingit. We have

(∇A)(Y ) = ∇(AY )−A(∇Y )

= AdF ([d(Amξ) + [α, Am.ξ]]m −Am(dξ + [α, ξ]m))

= AdF ((dAmξ + (adαh ◦Am −Am ◦ adαh)ξ) .Hen
e
∇A = AdF (dAm + [admαh, Am]).12



In parti
ular,2
∇ ∂

∂z
JX = 2AdF (admα′

2 ◦ τ|m)(be
ause admg0 
ommutes with τ|m whereas adg2 anti
ommutes with it) andthus
∇ ∂

∂z̄
(∇ ∂

∂z
JX) = 2AdF

(

adm(∂z̄α
′
2) ◦ τ|m + [adm(α′′

h), adm(α′
2) ◦ τ|m]

)

= 2AdF
(

adm(∂z̄α
′
2) ◦ τ|m + adm([α′′

0 , α′
2]) ◦ τ|m

+ [admα′′
2 , adm(α′

2) ◦ τ|m]
)

= 2AdF
(

adm(∂z̄α
′
2 + [α′′

0 , α′
2]) ◦ τ|m + [admα′′

2 , adm(α′
2) ◦ τ|m]

)but AdF
(

[admα′′
2 , adm(α′

2) ◦ τ|m]
) 
ommutes with AdF (τ|m) = JX so it is or-thogonal to TJΣ(TpM) thus

pr⊥(JX).∇ ∂
∂z̄

(∇ ∂
∂z

JX) = 2AdF
(

adm(∂z̄α
′
2 + [α′′

0 , α′
2]) ◦ τ|m

)

.Hen
e, sin
e adm is inje
tive,
∆JX = 0⇐⇒ ∂z̄α

′
2 + [α′′

0 , α′
2] = 0. (7)This 
ompletes the proof. �Remark 6 The equivalen
e (7) holds for any map JX : L→ i(G/G0). Indeed,we have not used the fa
t that JX is an admissible twistor lift to prove thisequivalen
e.Theorem 5 Let JX : L → G/G0 →֒ Σ(G/H) be an admissible twistor lift.Then JX : L → G/G0 is harmoni
3 if and only if X : L → G/H is harmoni
and JX is verti
ally harmoni
.Proof. JX : L → G/G0 is harmoni
 if and only if the Maurer 
artan form

α = F−1.dF of the lift F : L→ G of JX (FJ0F
−1 = JX) satis�es (see [3℄)

∂z̄α
′
1 + [α′′

0 , α′
1] + [α′′

1 , α′
1]g

1
= 0(where g = g0 ⊕ g

1
is the redu
tive de
omposition 
orresponding to the homo-geneous spa
e G/G0, see Se
tion 2.1) whi
h splits into







∂z̄α
′
2 + [α′′

0 , α′
2] + [α′′

1 , α′
1] + [α′′

−1, α
′
−1] = 0

∂z̄α
′
−1 + [α′′

0 , α′
−1] + [α′′

2 , α′
1] + [α′′

1 , α′
2] = 0

∂z̄α
′
1 + [α′′

0 , α′
1] + [α′′

2 , α′
−1] + [α′′

−1, α
′
2] = 0.

(8)then, using α′′
−1 = α′

1 = 0, we obtain






∂z̄α
′
2 + [α′′

0 , α′
2] = 0

∂z̄α
′
−1 + [α′′

0 , α′
−1] = 0

[α′′
2 , α′

−1] = 02In all the proof, we will merge α′
k
(resp. α′′

k
) with α′

k
( ∂

∂z
) (resp. α′′

k
( ∂

∂z̄
)), and in parti
ularwrite `[α′′

k
, α′

l
]' instead of `[α′′

k
( ∂

∂z̄
), α′

l
( ∂

∂z
)]'.3with respe
t to the killing form. 13



(in the se
ond equation, we have used = [α′′
1 , α′

2] = −[α′′
2 , α′

−1] = 0).Besides X : L→ G/H is harmoni
 if and only if we have
∂z̄α

′
m + [α′′

h, α′
m] = 0whi
h splits into

{

∂z̄α
′
−1 + [α′′

0 , α′
−1] + [α′′

2 , α′
1] = 0

∂z̄α
′
1 + [α′′

0 , α′
1] + [α′′

2 , α′
−1] = 0.

(9)and using α′′
−1 = α′

1 = 0, we obtain
{

∂z̄α
′
−1 + [α′′

0 , α′
−1] = 0

[α′′
2 , α′

−1] = 0.This 
ompletes the proof. �3 Stru
ture of 4-symmetri
 bundles over sym-metri
 spa
es3.1 4-symmetri
 spa
esLet G be a Lie group with Lie algebra g, τ : G→ G an order four automorphismwith the �xed point subgroup Gτ , and the 
orresponding Lie algebra g0 = gτ .Let G0 be a subgroup of G su
h that (Gτ )0 ⊂ G0 ⊂ Gτ , then Lie G0 = g0and G/G0 is a 4-symmetri
 spa
e. The automorphism τ gives us an eigenspa
ede
omposition of gC for whi
h we use the notation of se
tion 2.1. Then g = h⊕mis the eigenspa
e de
omposition of the involutive automorphism σ = τ2. Let Hbe a subgroup of G su
h that (Gσ)0 ⊂ H ⊂ Gσ then LieH = h and G/H is asymmetri
 spa
e. We will often suppose that G0 and H are 
hosen su
h that
G0 = Gτ ∩H . With this 
ondition, G0 ⊂ H so that G/G0 is a bundle over G/H .Re
all that the tangent bundle TM is 
anoni
ally isomorphi
 to the subbundle
[m] of the trivial bundle M ×g, with �ber Adg(m) over the point x = g.H ∈M .Under this identi�
ation the 
anoni
al G-invariant 
onne
tion of M is just the�at di�erentiation in M × g followed by the proje
tion on [m] along [h] (whi
his de�ned in the same way as m) (see [2℄ or [4℄). For the homogeneous spa
e
N = G/G0 we have the following redu
tive de
omposition

g = g0 ⊕ g
1

(10)(g
1

an be written g

1
= m⊕ g2) with [g0, g1

] ⊂ g
1
. As for the symmetri
 spa
e

G/H , we 
an identify the tangent bundle TN with the subbundle [g
1
] of thetrivial bundle N × g, with �ber Adg(g

1
) over the point x = g.G0 ∈ N .The symmetri
 spa
e M = G/H (resp. the homogeneous spa
e N = G/G0) isRiemannian if it admits an G-invariant metri
, whi
h is equivalent to say that

m (resp. g1) admit an Ad(H)-invariant (resp. Ad(G0)-invariant) inner produ
tor equivalently, that Adm(H) (resp. Adg1(G0)) be relatively 
ompa
t4. We4In the litterature, it is often supposed that Adm(H) is 
ompa
t. We will see that thesetwo hypothesis are in fa
t equivalent. 14



remark that the Levi-Civita 
onne
tion 
oin
ide with the previous 
anoni
al G-invariant 
onne
tion and in parti
ular is independant of the G-invariant metri

hosen. We will always suppose that the symmetri
 spa
es M whi
h we 
onsiderare Riemannian. We will in addition to that suppose that the Ad(H)-invariantinner produ
t in m is also invariant by τ|m (su
h a inner produ
t always existswhen Adm(H) is 
ompa
t, see the appendix). We will also suppose that M is
onne
ted, then G0 a
ts transitively on M and so we 
an suppose that G is
onne
ted.We want to study the Riemannian symmetri
 spa
es M su
h that there exists a4-symmetri
 spa
e (G, τ) whi
h gives rise to M in the same way as above. Forthis let us re
all the following theorem:Theorem 6 [2, 15℄ Let M be a Riemannian manifold.(a) The group Is(M) of all the isometries of M is a Lie group and a
ts di�er-entiably on M .(b) Let p0 ∈M , then an isometry f of M is determined by the image f(p0) ofthe point p0 and the 
orresponding tangent map Tp0f (i.e. if f(p0) = g(p0)and Tp0f = Tp0g then f = g).(
) The isotropy subgroup Isp0(M) = {f ∈ Is(M); f((p0) = p0} is a 
losed sub-group of Is(M) and the linear isotropy representation ρp0 : f ∈ Isp0(M) 7→
Tp0f ∈ O(Tp0M) is an isomorphism from Isp0(M) onto a 
losed subgroupof O(Tp0M). Hen
e Isp0(M) is a 
ompa
t subgroup of Is(M).(d) If M is a Riemannian homogeneous spa
e, M = G/H with G = Is(M),
H = Isp0(M) and m an AdH-invariant spa
e su
h that g = h ⊕ m, thenthe previous 
losed subgroup, image of H by the pre
eding isomorphism
ρp0 , i.e. the linear isotropy subgroup H∗ 
an be identi�ed to AdmH. Morepre
isely the linear isometry ξ ∈ m 7→ ξ.p0 ∈ Tp0M gives rise to an iso-morphism from O(m) onto O(Tp0M) whi
h sends AdmH onto H∗. Hen
ethe linear adjoint representation of H on m: g ∈ H 7→ Admg ∈ AdmH isan isomorphism (of Lie groups). H ∼= H∗ ∼= AdmH.3.1.1 First 
onvenient hypothesis.There may be more than one Lie group G a
ting symmetri
ally on a Riemanniansymmetri
 spa
e M . Besides, we have a 
onvenient way to work on Riemanniansymmetri
 spa
es: it is to 
onsider that G is a subgroup of the group of isometriesof M , Is(M), whi
h is equivalent to suppose that G a
t e�e
tively on M , i.e. H ,the isotropy subgroup at a �xed point p0 does not 
ontain non-trivial normalsubgroup of G (see [2℄). It is always possible be
ause the kernel K of the naturalmorphism φH : G → Is(M) is the maximal normal subgroup of G 
ontained in

H 5, and G′ = G/K a
ts transitively and e�e
tively on M = G/H with isotropysubgroup H ′ = H/K. Thus M = G′/H ′ and sin
e K ⊂ H ⊂ Gσ, then σ gives5K = ker φH = ker ρp0 = ker Adm 15



rise to an involutive morphism σ′ : G′ → G′ su
h that (G′σ
′

)0 ⊂ H ′ ⊂ G′σ
′ .Now, let us suppose that there exists an order four automorphism τ : G → Gsu
h that σ = τ2. Then it gives rise to an isomorphism τ ′ : G/K → G/τ(K).We would like that τ(K) = K. It is the 
ase if τ(H) = H : K and τ(K) arerespe
tively the maximal normal subgroup of G 
ontained in H and τ(H) andso if τ(H) = H then K = τ(K).Let us suppose that τ(K) = K, then τ gives rise to an order four automorphism

τ ′ : G/K → G/K su
h that σ′ = τ ′2. With our 
onvention we have G′
0 =

G′τ
′

∩H ′, then we obtain a 4-symmetri
 bundle N ′
min = G′/G′

0 over M . Hen
e,when G′
0 des
ribes all the possible 
hoi
e: (G′τ

′

)0 ⊂ G′
0 ⊂ G′τ

′

∩H ′, we obtaina family of 4-symmetri
 bundle N ′ = G′/G′
0 over M whi
h are dis
rete 
overingof N ′

min = G′/(G′τ
′

∩H ′) and of whi
h N ′
max = G′/(G′τ

′

)0 is a di
rete 
overing.For exampe, if we 
hoose G′
0 = πK(G0K), we obtain the 4-symmetri
 bundleover M , N ′ = (G/K)/πK(G0K) = G/G0K = N/K 6.Let us 
ome ba
k to the general 
ase (i.e. we do not suppose that τ(K) = K).Sin
e τ(h) = h, we have τ(H0) = H0 and thus denoting by K0 the maximalnormal subgroup of G 
ontained in H0 (we have K0 ⊂ K0 ⊂ K ∩ H0), then

τ(K0) = K0 for the same reason as above (in parti
ular, if K0 = K i.e. K ⊂ H0,then we are in the prevoius 
ase: τ(K) = K). Hen
e τ gives rise to an order fourautomorphism τ̃ : G/K0 → G/K0 and we are in the 
ase 
onsidered above if we
onsider the symmetri
 spa
e M̃ = G/H0 (instead of M). Let us pre
ise thispoint. Indeed M̃ is a (G/K0)-symmetri
 spa
e and G̃ = G/K0 a
ts e�e
tivelyon it (the isotropy subgroup H̃ = H0/K0 does not 
ontain non trivial normalsubgroup of G/K0): as above σ gives rise to an involutive automorphism σ̃of G̃ = G/K0 su
h that H̃ = (G̃σ̃)0 and τ̃ is an order four automorphism of
G/K0 su
h that τ̃2 = σ̃. Finally, as above we obtain a family of 4-symmetri
bundle Ñ = G̃/G̃0 over M̃ when G̃0 des
ribe the set of all possible 
hoi
e:
(G̃τ̃ )0 ⊂ G̃0 ⊂ G̃τ̃ ∩ H̃ .Moreover, the involution σ̃ of G/K0 gives rise also to the G/K0-symmetri
 spa
e
M (i.e. (G̃σ̃)0 ⊂ H/K0 ⊂ G̃σ̃ or equivalently M belongs to the family of G/K0-symmetri
 spa
es de�ned by σ̃ (of whi
h M̃ is a dis
rete 
overing)).In the same way, we have τ(Gσ) = Gσ and thus we 
an do the same as abovefor the symmetri
 spa
e Mmin = G/Gσ.Nevertheless, in general, it is possible that τ(K) 6= K and then τ doesnot give rise to an order four automorphism of G′ = G/K but only to theisomorphism τ ′ : G/K → G/τ(K). However, the tangent map Teτ

′ = Teτ̃ isan order four automorphism of the Lie algebra Lie(G/K) = Lie(G/τ(K)) =
Lie(G/K0) = g/k, and we have (Teτ

′)2 = Teσ
′, thus N/K = (G/K)/πK(G0K)is a lo
ally 4-symmetri
 bundle over M (Lie πK(G0K) = gTeτ ′).Hen
e we have two good settings to study the Riemannian symmetri
 spa
es6In the writing N ′ = N/K, K does not a
t freely on N in general: it is K ′ = K/K ∩ G0whi
h a
ts freely on N and we have N ′ = N/K = N/K ′. In parti
ular it is possible that

N/K = N for a non trivial K (see se
tion 5.3).16



M over whi
h a 4-symmetri
 bundle 
an be de�ned, if we want to work onlywith subgroup of Is(M).The �rst possibility is to 
onsider that we begin by giving ourself an orderfour automorphism τ : G→ G and that we always 
hoose the Riemannian sym-metri
 spa
e M̃ = G/H with H = (Gτ2

)0 (respe
tively Mmin = G/H with
H = Gτ2). In other words, in the family of G-symmetri
 spa
e 
orrespondingto σ = τ2 (i.e. (Gσ)0 ⊂ H ⊂ Gσ), we 
hoose the "maximal" one M̃ = G/(Gσ)0,whi
h is a dis
rete 
overing of all the other (respe
tively the "minimal" one
Mmin = G/Gσ, of whi
h all the other are dis
rete 
overings). Then a

ordingto what pre
ede, we 
an always suppose that G is a subgroup of Is(M̃) (respe
-tively of Is(Mmin)).The se
ond possibility is to work with lo
ally 4-symmetri
 spa
es. In otherwords we begin by a Riemannian symmetri
 spa
e over whi
h there exists alo
ally 4-symmetri
 bundle. It means that we work with the following setting:a Riemannian symmetri
 spa
es M with G a subgroup of Is(M) a
ting sym-metri
ally on M and a order four automorphism τ : g→ g, su
h that T1σ = τ2.To de�ne the lo
ally 4-symmetri
 spa
e N in this setting, we must tell how wede�ne G0. We will set

G0 = {g ∈ H |Admg ◦ τ|m ◦Admg−1 = τ|m}. (11)First, we have to verify that if τ 
an be integrated by an automorphism of G,also denoted by τ , then we have G0 = Gτ ∩ H . Indeed, if g ∈ Gτ ∩ H , then
Adg ◦ τ ◦ Adg−1 = Ad(g.τ(g)−1) ◦ τ = τ and sin
e AdH stabilises m, we have
Admg ◦ τ|m ◦ Admg−1 = τ|m by taking the restri
tion to m of the pre
edingequation. Conversely, suppose that g ∈ H and Admg ◦ τ|m ◦Admg−1 = τ|m, then
Ad(g.τ(g)−1) ◦ τ|m = τ|m so sin
e τ|m is surje
tive, Ad(g.τ(g)−1)|m = Idm andsin
e the adjoint representation of H on m is inje
tive (be
ause we suppose that
G is a subgroup of Is(M), and thus H is a subgroup of Isp0(M)) it follows that
g.τ(g)−1 = 1. Finally, g ∈ Gτ ∩H . Thus our de�nition (11) is 
oherent withour 
onvention whi
h holds when τ 
an be integrated by an automorphism of
G.Besides, it is easy to see that Lie G0 = {a ∈ h| ada|m ◦ τ|m = τ|m ◦ ada|m} = g0.(Indeed, ∀a ∈ g0, ada ◦ τ = τ ◦ ada, and ∀a ∈ g2, ada ◦ τ = −τ ◦ ada, moreover
τ|m ◦ ada|m = 0 ⇒ ada|m = 0 ⇒ a = 0 be
ause a ∈ h 7→ ada|m is the tangentmap of h ∈ H 7→ Adh|m whi
h is an inje
tive morphism). Hen
e N = G/G0 isa lo
ally 4-symmetri
 bundle over M .Further, let π : G̃ → G be the universal 
overing of G, and D = kerπ. Then
τ 
an be integrated by τ̃ : G̃ → G. Set σ̃ = τ̃2, then σ ◦ π = π ◦ σ̃ and
T1σ = T1σ̃ = (T1τ̃)2. G̃ a
ts almost e�e
tively on M with isotropy subgroup
H̃ = π−1(H) and almost e�e
tively on M̃ = G̃/H̃0 whi
h is the universal
overing of M (see [15℄). Besides, if G̃ does not a
t e�e
tively on M̃ , thenwe take D0 the maximal normal subgroup of G̃ in
luded in H̃0, and then wequotient by it, so that we obtain an e�e
tive a
tion of G̃/D0 on M̃ and τ̃ givesrise to an automorphism of G̃/D0, a

ording to above. Thus we are in the �rstpossibility. Besises it is easy to see that ∀g ∈ G̃, Adg = Adπ(g) (more pre
isely17



T1π ◦ Adg = Adπ(g) ◦ T1π and we identify g̃ and g so that T1π = Id). Thus
G̃0 = G̃τ̃ ∩ H̃0 = {g ∈ H̃0|Adg ◦ τ|m ◦ Adg−1 = τ|m} ⊂ π−1(G0) . Hen
e the4-symmetri
 spa
e G̃/G̃0 is a disrete 
overing of the lo
ally 4-symmetri
 spa
e
G/G0 and we have the following 
ommutative diagram:

G̃/G̃0 −−−−→ G/G0




y





y

M̃ −−−−→ M .

(12)In 
on
lusion, the two possibilities are equivalent, but we will use the se
ondone be
ause it works with any symmetri
 spa
e M , whereas the �rst needs thatwe 
hoose a 
ertain 
overing of M (for example its universal 
overing).Remark 7 We see that in the pre
eding reasoning (this using the universal
overing G̃) we need only the automorphism of Lie algebra τ (and not thesymmetri
 spa
e M). Hen
e, we 
an 
onsider that we work in the Lie algebrasetting and give ourself an order four automorphism τ of g. Then we 
onsiderthe family of asso
iated pairs (G, H) where G is a 
onne
ted Lie group withLie algebra g and H a 
losed Lie subgroup with Lie algebra h = gσ. To ea
hsu
h pair 
orresponds the lo
ally symmetri
 spa
e M = G/H and de�ning G0by (11), the lo
ally 4-symmetri
 bundle N = G/G0 over M . Let G̃ be a simply
onne
ted Lie group with Lie algebra g, then τ and σ integrates in G̃ and thusfor H̃ the 
losed subgroup with Lie algebra h, we 
an take all subgroups su
hthat (G̃σ̃)0 ⊂ H̃ ⊂ G̃σ̃ (whi
h implies that H̃ is 
losed). If we suppose H̃
onne
ted, i.e. H̃ = (G̃σ̃)0, then M̃ = G̃/H̃ is a symmetri
 spa
e and is also theuniversal 
overing of all the lo
ally symmetri
 spa
es M = G/H when (G, H)des
ribes all the asso
iated pairs (see [15℄), and we have the above 
ommutativediagram between the 4-symmetri
 bundle Ñ = G̃/G̃0 over M̃ and the lo
ally4-symmetri
 bundle N = G/G0 over M . Moreover if M̃ is Riemannian thenall the symmetri
 spa
es M = G/H when (G, H) des
ribes all the symmetri
asso
iated pairs are Riemannian (see appendix, 
orollary 3).Remark 8 Let us 
onsider M a G-symmetri
 spa
e, G ⊂ Is(M), τ : g → gan order four automorphism su
h that τ2 = T1σ. Then we have τ|m ∈ Σ(m)(τ|mC = −iIdg−1 ⊕ iIdg1) and it is easy to see that
∀a ∈ h, τ|h(a) = ad−1

m (τ|m ◦ ada|m ◦ τ−1
|m ).In other words, under the identi�
ation h ≃ admh ⊂ so(m), τ|h is the restri
tionto h of Adτ|m : so(m)→ so(m). Hen
e τ is determined by τ|m. Besides τ|h is thetangent map of the isomorphism τH :

τH(g) = Ad−1
m (τ|m ◦Admg ◦ τ−1

|m ),for g ∈ H0 (and more generally for g ∈ Ad−1
m ◦ (Intτ|m)−1 ◦ Adm(H)). Underthe identi�
ation H ≃ AdmH ⊂ O(m) it is the restri
tion to H0 of the invo-lution Intτ|m : O(m) → O(m). A

ording to the de�nition (11) of G0, we have18



G0 = HτH . Besides τH(H0) = H0, thus H0/G0
0 is an H0-symmetri
 spa
e. If

Intτ|m(AdmH) = (AdmH), then τH is de�ned in H and τH(H) = H , then H/G0is an H-symmetri
 spa
e (if τH(H) 6= H it is only a lo
ally symmetri
 spa
e).Obviously, if τ 
an be integrated in G then τH = τ|H .Theorem 7 Let M a G-symmetri
 spa
e, G ⊂ Is(M), τ : g→ g an order fourautomorphism su
h that τ2 = T1σ. Let Aut(m) be the subgroup of O(m) de�nedby:
Aut(m) = {F ∈ O(m) | F (adm[v, v′])F−1 = adm[Fv, Fv′]}it is the subgroup of O(m) whi
h leaves invariant adm([·, ·]|m×m) ∈ (Λ2m∗) ⊗

so(m).Its Lie Algebra
Der(m) = {A ∈ so(m) | [A, adm[v, v′]] = adm[Av, v′] + adm[v, Av′], ∀v, v′ ∈ m}is the Lie subalgebra of so(m) whi
h (a
ting by derivation) leaves invariant

adm([·, ·]|m×m) ∈ (Λ2m∗)⊗ so(m).Then τ|m ∈ Aut(m) and τ 
an be extended in an unique way to the Lie algebra
Der(m)⊕m endowed with the Lie bra
ket

[(A, v), (A′, v′)] = ([A, A′] + adm[v, v′], A.v′ −A′.v)and of whi
h g is a Lie subalgebra, under the in
lusion a + v ∈ h ⊕ m 7→
(adma, v) ∈ Der(m)⊕m, by setting

τ |m = τ|m and τ |Der(m) = Intτ|m . (13)Conversely, given τm ∈ O(m), the linear map τ de�ned by (13) is an automor-phism of the Lie algebra Der(m) ⊕ m if and only if τm ∈ Aut(m). Besides itsatis�es τ2 = IdDer(m) ⊕ −Idm (and in parti
ular is of order four) if and onlyif τm ∈ Σ(m).Hen
e, de�ne a lo
ally 4-symmetri
 bundle over the Riemannian symmetri
spa
e M (whi
h the realisation M = G/H, i.e. τ is an automorphism of gsu
h that τ2 = T1σ) is equivalent to give ourself τm ∈ Σ(m) ∩ Aut(m) su
hthat the order four automorphism τ of Der(m) ⊕ m stabilizes g = h ⊕ m, i.e.su
h that τm(admh)τ−1
m = admh (i.e. admh is a subalgebra of Der(m) sta-ble by Adτm). Then τ = τ |g is an order four automorphism of g su
h that

τ2 = Idh ⊕−Idm = T1σ.Proof. First τ|m ∈ Aut(m): that follows from the fa
t that τ is an automor-phism, so τ ◦ ada ◦ τ−1 = adτ(a) , ∀a ∈ g.Se
ond, Der(m)⊕m is a Lie subalgebra . We have to 
he
k the Ja
obi identity issatis�ed. It is a straightforward 
omputation (see [15℄). Then we have to 
he
kthat τ is an automorphism if and only if τm ∈ Aut(m).If τm ∈ Aut(m) then
• if A, A′ ∈ Der(m), τ ([A, A′]) = [τ (A), τ (A′)] be
ause τDer(m) = Intτm is anautomorphism of Der(m). 19



• if A ∈ Der(m), v ∈ m, τ ([A, v]) = τm(A.v) = τmAτ−1
m (τm.v) = [τ (A), τ (v)]

• if v, v′ ∈ m, τ ([v, v′]) = Intτm(adm[v, v′]) = adm([τmv, τmv′]) = [τ(v), τ (v′)]be
ause τm ∈ Aut(m).Finally τ is an automorphism and the unique extension of τ (be
ause it isdetermined by τ|m, see remark 8).Conversely if τ is an automorphism of Lie algebra then
τmadm([v, v′])τ−1

m = (τadm([v, v′])τ−1)|m = (adτ ([v, v′]))|m = adm([τ (v), τ (v′)]) = adm([τmv, τmv′]).Thus τm ∈ Aut(m).The last assertion of the theorem follows from what pre
edes. This 
ompletesthe proof. �Remark 9 Let τm ∈ Σ(m) then the 
ondition Adτm(admh) = admh impliesthat there exists an automorphism τh of h de�ned by ∀a ∈ h, Adτm(adma) =
admτh(a), i.e. τh = ad−1

m ◦ Adτm ◦ adm. Then the 
ondition τm ∈ Aut(m) isequivalent to
τh([v, v′]) = [τmv, τmv′], ∀v, v′ ∈ m.And obviously, if these two 
onditions are satis�ed then we have τh = τ|h (where

τ = τg is given by the theorem 7).Remark 10 Let us 
onsider the map
s : g ∈ Isp0(M) 7→ Admg ◦ τ|m ◦Admg−1 ∈ Σ(m)and set G0 = {g ∈ Isp0(M)|s(g) = τ|m}. Isp0(M) a
ts on Σ(m) by g.J =

Admg ◦ J ◦ Admg−1 and s(g) = g.τ|m, G0 = StabIsp0 (M)(τ|m). In the sameway, the subgroup H = Isp0(M)∩G a
ts on Σ(M) and G0 = StabH(τ|m). Then
s(Isp0(M)) = Isp0(M)/G0 is a 
ompa
t submanifold of Σ(m), and s(H) = H/G0is a relatively 
ompa
t (immersed) submanifolds of Σ(m).3.1.2 Se
ond 
onvenient hypothesis.An other 
onvenient hypothesis on G is to 
onsider that it is a 
losed subgroupof Is(M) (and not only a immersed subgroup). It is always possible to workwith this hypothesis. Let us make pre
ise this point. Let σp0 be the symmetryof M around p0 (de�ned by σ): σp0 ∈ Is(M), σp0(p0) = p0 and Tp0σp0 = −Id.Then σp0 belongs to the isotropy subgroup Isp0(M) = {f ∈ Is(M); f(p0) = p0},and we 
an de�ne the involution of Is(M):

σIs(M) = Int(σp0 ) : g ∈ Is(M) 7→ σp0 ◦ g ◦ σ−1
p0
∈ Is(M).It is easy to see that we have

(Is(M)σIs(M))0 ⊂ Isp0(M) ⊂ Is(M)σIs(M) (14)20



(see [15, 2℄). The result of this is that σ : G→ G is the restri
tion of σIs(M) to
G ⊂ Is(M) (they indu
e σp0 on M = G/H and the identity on H , thus, sin
e
G is lo
ally isomorphi
 to M ×H , they are identi
al, see also [15℄). Moreoverthere exists an unique subgroup Ḡ of Diff(M) su
h that for any G-invariantRiemannian metri
 b on M , the group Ḡ is the 
losure of G in Is(M, b): Is(M, b)is 
losed in Diff(M) and so the 
losure of G in Is(M, b) is its 
losure in Diff(M)and thus it does not depend on b (see [2, 15℄). Then σ extends in an uniqueway to an involutive morphism σ̄ : Ḡ→ Ḡ, whi
h is the restri
tion of σIs(M) to
Ḡ. Hen
e denoting by Ĥ the isotropy subgroup of Ḡ at p0, Ĥ = Isp0(M) ∩ Ḡ,we have a

ording to (14), (Ḡσ̄)0 ⊂ Ĥ ⊂ Ḡσ̄. Besides σ̄ gives rise to the 
artande
omposition Lie Ḡ = Lie Ĥ ⊕m.In addition to that, we have Ĥ = H̄. Indeed, let Φ: U × Isp0(M) → Is(M) bea lo
al trivialisation of Is(M) → M , su
h that Φ(p0, h) = h, and Φ(U ×H) =
Φ(U × Isp0(M)) ∩ G (take Φ(p, h) = φ(p).h, with φ : U → G a lo
al se
tionsu
h that φ(p0) = 1). Further, if g ∈ Isp0(M) ∩ Ḡ and (gn) is a sequen
e of
G ∩ Φ(U × Isp0(M)) su
h that gn → g, then Φ−1(gn) = (un, hn) ∈ U × H
onverges to Φ−1(g) = (p0, g), thus hn → g so g ∈ H̄ .Moreover, H̄ is a 
losed subgroup of Isp0(M), thus it is 
ompa
t. Hen
e, wehave the symmetri
 realisation M = Ḡ/H̄ and Adm(H̄) is 
ompa
t: we haveshowed that the hypothesis Adm(H) relatively 
ompa
t and Adm(H) 
ompa
tgives the same symmetri
 spa
es. Moreover, by using the pre
eding reasoning(to prove Ĥ = H̄) it is easy to see that if Adm(H) is 
ompa
t then G is 
losedin Is(M) (see also [15℄) so that the hypothesis "Adm(H) is 
ompa
t" and "G is
losed in Is(M)" are in fa
t equivalent.Besides, the 
losure of G is the same in Is(M) and in Is(M̃) with M̃ = G/H0:sin
e M and M̃ are 
omplete (a Riemannian homogeneous spa
e is 
omplete)then Is(M) and Is(M̃) are 
omplete (see [15℄), and thus the 
losure of G in oneof this group is the 
ompleted of G.Now, let us suppose that we have a lo
ally 4-symmetri
 bundle over M .Theorem 8 Let us 
onsider M a G-symmetri
 spa
e with G ⊂ Is(M) and
τ : g→ g an order four automorphism su
h that τ2 = T1σ. Then the extension
τ of τ , given by theorem 7 stabilizes the Lie algebra, Lie Ḡ, of the 
losure of Gin Is(M):

τ (Lie Ḡ) = Lie Ḡ.Then denoting by τ̄ := τ |Lie Ḡ the extension of τ to Lie Ḡ (given by theorem 7),the subgroup �xed by τ̄ (de�ned by (11)) is the 
losure of G0:
Ĝ0 := {g ∈ H̄ | τ|m ◦Admg ◦ τ−1

|m = Admg} = Ḡ0.Finally the new lo
ally 4-symmetri
 bundle over M de�ned by τ̄ is Ḡ/Ḡ0, andusing the notation of remark 10 the �ber of Ḡ/Ḡ0, Ŝ0 := s(H̄) = H̄/Ḡ0 is the
losure of the �ber S0 of G/G0: S0 = s(H) = (H/G0), in the maximal �berover M : S0 := s(Isp0(M)) = Isp0(M)/G0.21



Theorem 9 Let us 
onsider M a Riemannian symmetri
 spa
e and M̃ its uni-versal 
overing.
• We have Rp0(·, ·) = adm([·, ·]|m×m) and thus 7

Der(m) = Isp0(M̃) ⊃ Isp0(M) ⊃ Lie Hol(M)

Aut(m) ⊃ Isp0(M̃) ⊃ Isp0(M) ⊃ Hol(M)
(15)(using the identi�
ation Tp0M = m) and Der(m)⊕m = Is(M̃).

• Moreover the following statements are equivalent:(i) Isp0(M̃) = Isp0(M) (i.e. Is(M̃) = Is(M))(ii) M = M ′ ×M0, with M ′ of the semisimple type (i.e. Is(M ′) is semisimple)and M0 is Eu
lidean.(iii) h0 = so(m0), where h0 and m0 are respe
tively the Eu
lidean part of
Isp0(M) and m respe
tively, in the de
omposition Is(M) = g′ ⊕ g0, with g′semisimple and g0 of the Eu
lidean type.
• Besides the following statements are also equivalent:(i) Isp0(M̃) = Isp0(M)⊕ so(m0)(ii) h0 = 0(iii) Let M̃ = M ′×M0 be the de
omposition of M̃ into the semisimple and Eu-
lidean type, Γ the group of de
k transformations of the 
overing π : M̃ → M .Then the proje
tion on the Eu
lidean fa
tor (of Is(M̃) = Is(M ′)× Is(M0)) of Γsatis�es Γ0

∼= Zr with r = dimM0 so that M0/Γ0 = Tr.Further Aut(m) stabilizes Isp0(M) if and only if one of the 6 previous state-ments holds i.e. if and only if Is(M̃)/Is(M) = {0} or so(m0). Denoting by
Aut(m)∗ the subgroup of Aut(m) whi
h stabilizes Isp0(M), then the maximalsubalgebra of Isp0(M) stable by Aut(m) is Isp0(M) if Aut(m) = Aut(m)∗ and
h′ = Isp0(M

′) if not.Theorem 10 Let us 
onsider M a G-symmetri
 spa
e with G ⊂ Is(M) and
τ : g→ g an order four automorphism su
h that τ2 = T1σ.Then the extension τ of τ , given by theorem 7 de�ne a maximal lo
ally 4-symmeti
 bundle over M . Indeed let g be the maximal subalgebra of Is(M)stabilized by τ and G the subgroup of Is(M) generated by it. Then G is a 
losedsubgroup of Is(M) a
ting symmetri
ally on M , and τ |g, de�ne a maximal lo
ally4-symmetri
 bundle over M , with the realisation M = G/H.We 
an also de�ne a minimal lo
ally 4-symmeti
 bundle over M , by 
onsideringthe subalgebra g′ ⊕ m0 (where g′ is the semisimple part of Is(M) and m0 theEu
lidean part of m).In 
on
lusion, given any (even dimensional) Riemannian symmetri
 spa
e M ,de�ne over it a lo
ally 4-symmetri
 bundle is equivalent to give ourself τm ∈
Σ(m) ∩ Aut(m) ⊃ Σ(Tp0M) ∩ Isp0(M). Then the order four automorphism of
Is(M̃), τ , de�ned by τm, de�ne the maximal lo
ally 4-symmetri
 bundle over M ,
N = G/G0 with G0 = {g ∈ H | τ|m◦Admg◦τ−1

|m = Admg}. Moreover, any lo
ally7Hol(M) is the holonomy group of M 22



4-symmetri
 bundle over M is a subbundle of one su
h maximal bundle and de-�ne su
h a subbundle N is equivalent to give ourself a Lie subgroup G ⊂ Is(M)a
ting symmetri
ally on M su
h that τ (g) = g i.e. Adτm(h) = h. In this 
ase,the 
losure N̄ of N = G/G0 in the (unique) maximal lo
ally 4-symmetri
 bundleover M , 
ontaining N , N , is also a lo
ally 4-symmetri
 bundle over M and wehave N̄ = Ḡ/Ḡ0, M = Ḡ/H̄.Proof of theorem 8 We have to 
he
k that τ (Lie Ḡ) = Lie Ḡ, i.e. a

ordingto the theorem 7, Intτm(Lie H̄) = Lie H̄ . We still have Intτm(H0) = H0, thus
Intτm(H0) = H0. It remains to verify that (H̄)0 = H0. But this is simply theresults of the fa
t that M̃ = Ḡ/H0 is a dis
rete 
overing of M = Ḡ/H̄ . Indeed
(H̄)0 is 
losed thus (H̄)0 ⊃ H0 and then we have

M̃ = Ḡ/H0 �bration
−−−−−→ Ḡ/(H̄)0


overing
−−−−−→ Ḡ/H̄ = Mand M̃


overing
−−−−−→M , hen
e (H̄)0/H0 is dis
ret but the two groups are 
onne
ted((H̄)0 is enough) thus (H̄)0 = H0. We have proved that τ (Lie Ḡ) = Lie Ḡ.Using the notation of remark 10, we have, sin
e H̄ is 
ompa
t, s(H̄) = s(H),hen
e using the same method as for Ĥ , we 
an easily show that Ĝ0 := s−1(τ|m)∩

H̄ = Ḡ0 and thus s(H̄) = H̄/Ḡ0. Finally, the new lo
ally 4-symmetri
 spa
e is
Ḡ/Ḡ0. This 
ompletes the proof. �Proof of theorem 9 For the �rst point see [15℄. For the following points, seese
tion 4.1 and 4.2. �Proof of theorem 10 First G is 
losed : it a immediate 
onsequen
e of themaximality and theorem 8. Then we have to prove that Ḡ/Ḡ0 is the 
losure
N̄ of N = G/G0 in G/G0. Let πJ0 : G → G/G0 be the proje
tion map, thenwe have πJ0(G) = G/G0 ∩ G = G/G0 (a

ording to de�nition (11)) and thus
πJ0(Ḡ) ⊂ πJ0(G) = N̄ but πJ0(Ḡ) = Ḡ/G0∩Ḡ = Ḡ/Ḡ0 (a

ording to de�nition(11) and Ĝ0 = Ḡ0). Hen
e Ḡ/Ḡ0 ⊂ N̄ . These are together subbundle (over
M) of N and using a trivialisation of N = G/Ḡ0 →M (same raisonning as for
Ĥ) it is easy to see that the �ber of N̄ (over p0) is H̄/Ḡ0 whi
h implies that
Ḡ/Ḡ0 = N̄ . This 
ompletes the proof. �Remark 11 In parti
ular, if we suppose that we have an order four automor-phism of G, σ = τ2. Then sin
e τ is uniformly 
ontinuous, it extends into anorder four automorphism τ̄ : Ḡ→ Ḡ (be
ause Is(M) is 
omplete) and obviously
σ̄ = τ̄2.Remark 12 A

ording to the de�nition (11), τ|m and −τ|m gives rise to thesame group G0. Moreover τ|m = (τ−1)|m and in parti
ular if τ integrates in Gthen Gτ = Gτ−1 . Besides (τ−1)2 = (T1σ)−1 = T1σ, hen
e τ−1 de�ne the samelo
ally 4-symmetri
 bundle over M as τ . Moreover, given any τm ∈ Σ(m) ∩
Aut(m), then −τm ∈ Σ(m) ∩Aut(m) and gives rise (a

ording to theorem 7) tothe automorphism τ−1 whi
h gives rise to the same maximal lo
ally 4-symmetri
bundle over M and the same family of 4-symmetri
 subbundle over M .23



From now, we will always suppose that G is a 
losed subgroup of Is(M)0. Theresult of this is that the isotropy subgroup of G at the point p0, H = StabG(p0)is 
ompa
t and 
an be identi�ed (via the adjoint representation on m, resp.via the linear isotropy representation) to a 
losed subgroup of O(m) (resp. of
O(Tp0M)). Then a

ording to theorem 10, to study the 
ase of non 
losedsubgroup of Is(M)0 (or equivalently the non 
losed lo
ally 4-symmetri
 bundleover M), we have just to 
onsider the non 
losed subgroups of our 
losed group
G, a
ting symmetri
ally on M , and whose Lie algebra is stable by τ .3.2 Twistor subbundleWe give ourself a lo
ally 4-symmetri
 bundle N = G/G0 (de�ned by an orderfour automorphism τ and by (11)) over a symmetri
 spa
e M = G/H . Wewill show that G/G0 is a subbundle of the twistor bundle Σ(G/H) . Under theisomorphism between TM and [m] = {(g.p0, Adg(ξ)), ξ ∈ m, g ∈ G}, Tp0M isidenti�ed to m: ξ ∈ m 7→ ξ.p0 ∈ Tp0M is an isomorphism of ve
tor spa
es. Thento τ|m ∈ Σ(m) (resp. to −τ|m = τ−1

|m ∈ Σ(m)) 
orresponds J0 ∈ Σ(Tp0M), andmore generally to Adg ◦ τ|m ◦ Adg−1 ∈ Σ(Adg(m)) (resp. Adg ◦ τ−1
|m ◦ Adg−1)
orresponds gJ0g

−1 ∈ Σ(Tg.p0M). Thus we have de�ned a map
ρJ0 : G −→ Σ(M)

g 7−→ gJ0g
−1whi
h a

ording to the de�nition (11) of G0 gives rise under quotient to theinje
tive map:

i : G/G0 −→ Σ(M)
g.G0 7−→ gJ0g

−1 .Moreover, i is an embedding. Indeed, G a
ts smoothly on the manifolds Σ(M)and so the map g ∈ G 7→ gJ0g
−1 ∈ Σ(M) is a subimmersion of 
onstant rank.Thus i : G/G0 → Σ(M) is an inje
tive subimmersion and so it is an inje
tiveimmersion. We 
an add that i : G/StabG(J0) → G.J0 is an homeomorphism ifthe orbit G.J0 is lo
ally 
losed in Σ(M) (see [5℄). We will show dire
tly that

i(G/G0) = G.J0 is a subbundle of Σ(M).First, let us pre
ise the �bration G/G0 → G/H . We have the isomorphismof bundle: G/G0
∼= G ×H H/G0. In parti
ular, the �ber type of G/G0 is

H/G0. Besides i is a morphism of bundle (over M). Sin
e i is also an inje
tiveimmersion, we 
an identify the �bers of G/G0 and i(G/G0) respe
tively overthe point g.p0 ∈ M . The �ber of i(G/G0) over p = g.p0 is gS0g
−1 where

S0 = Int(H)(J0) ⊂ Σ(Tp0M) is the �ber over p0.8Now let us show that i(G/G0) is a subbundle of Σ(M). Let σ : U ⊂ G/H → Gbe a lo
al se
tion of the �bration πH : G → G/H . Then we have the followingtrivialisation of Σ(U):
Φ: (p, J) ∈ U × Σ(Tp0M) 7−→ (p, σ(p)Jσ(p)−1) ∈ Σ(U)8we remark that H ⊂ O(Tp0M), G0 ⊂ U(Tp0M, J0) and S0 = H/G0 is a 
ompa
t sub-manifold of Σ(Tp0M). 24



and we have Φ(U × S0) =
⊔

p∈U

{p} × (σ(p)S0σ(p)−1) = i(G/G0) ∩ Σ(U). Thus
i(G/G0) is a subbundle of Σ(M), hen
e i is an embedding.Let us re
apitulate what pre
ede:Theorem 11 The map

i : G/G0 −→ Σ(M)
g.G0 7−→ gJ0g

−1 .is an embedding and a morphism of bundle from G/G0 into Σ(M). Besides the�ber of i(G/G0) over the point p = g.p0 is gS0g
−1, with S0 = Int(H)(J0) and

J0 ∈ Σ(Tp0M) 
orresponding to τ|m ∈ Σ(m) (resp. to τ−1
|m ) .Remark 13 If we 
onsider a lo
ally 4-symmetri
 bundle N = G/G0 over M ,with G0 not de�ned by (11), then i is not inje
tive in general: to obtain ainje
tive map i, we must 
onsider the lo
ally 4-symmetri
 spa
e G/π−1

K (G′
0) =

(G/K)/G′
0 where K = kerAdm and G′

0 is the subgroup of H ′ = H/K de�nedby (11). In parti
ular, we see that in general a 4-symmetri
 spa
e G/G0 is nota submanifold of a twistor spa
e (see se
tion 5). Moreover, we 
an see the aimof our de�nition (11) (and in parti
ular of our 
onvention G0 = Gτ ∩H): it isto obtain a inje
tive map i.Remark 14 For any 
overing π : G̃ → G, G̃ a
ting symmetri
ally on M , wehave ρ̃J0(G̃) = ρJ0(G) = iJ0(G/G0) : the lo
ally 4-symmetri
 subbundle of
Σ(M), iJ0(G/G0) does not depend on the 
hoi
e of the group G (we have 
hosenfor G, the subgroup of Is(M) generated by g).Moreover, ρJ0(G) = iJ0(N) is a maximal lo
ally 4-symmetri
 subbundle in
Σ(M). Now, suppose that we work with a non 
losed subgroup G′ ⊂ Is(M),then ρJ0(G

′) = iJ0(G
′/G′

0) is an immersed subbundle in Σ(M): Φ(U × S′
0) =

⊔

p∈U

{p}× (σ(p)S′
0σ(p)−1) = i(G′/G′

0)∩Σ(U) but the �ber S′
p = σ(p)S′

0σ(p)−1 isonly a (non 
losed relatively 
ompa
t) immersed submanifold in Σ(TpM). Andsin
e iJ0 is an embedding (from N into Σ(M)) we have iJ0(Ḡ
′/Ḡ′

0) = iJ0(N̄
′) =

iJ0(N̄
′). In others words, taking the 
losure of G′ in Is(M) is equivalent to takethe 
losure of N ′ in N a

ording to theorem 10 whi
h is equivalent to take the
losure of iJ0(N

′) in iJ0(N).Remark 15 The maximal lo
ally 4-symmetri
 bundles N are disjoint : theseare orbits in Σ(M). More pre
isely these are suborbits of Is(M)0-orbits inthe form G · J0 in Σ(M) ∩ Aut(M) with Aut(M) =
⊔

p∈M p × Aut(TpM) (seese
tion 4.1 and 4.2). In parti
ular, Σ(M) ∩ Aut(M) is the disjoint union of allthe maximal lo
ally 4-symmetri
 bundles over M . Moreover, the set of maximallo
ally 4-symmetri
 bundles over M , N (M), 
ontains the subset N ∗(M) ofelements whi
h are Is(M)0-orbits, i.e. elements ρJ0(Is(M)0) with J0 ∈ Σ(m) ∩
Aut∗(m) : N ∗(M) = Σ(M) ∩Aut∗(M)/Is(M)0 ⊂ Σ(M)/Is(M)0.25



Remark 16 The Riemannian manifold M = G/H is orientable if and onlyif AdmH ⊂ SO(m) (or equivalently H∗ ⊂ SO(Tp0M)). Besides τ|m ∈ Σε(m) ,and to �x ideas, let us suppose that ε = 1. Then, if M is orientable, i is anembedding from G/G0 into Σ+(M). Moreover, if we work with M̃ = G/H0, weare sure that H0 ⊂ SO(Tp0M̃). Hen
e, if we work with what we 
alled the �rstpossibility (see se
tion 3.1.1), i takes values in Σ+(M̃). In other words, given alo
ally 4-symmetri
 bundle over M , the 
orresponding 4-symmetri
 bundle overits universal 
overing M̃ (see remark 7) is embedded in Σ+(M̃).Let us 
onsider more generally any 
overing π : M̃ → M then it indu
es the
overing πΣ : Σ(M̃)→ Σ(M) whi
h is also a morphism of bundle over π : M̃ →
M . It is de�ned by

πΣ : Jx̃ ∈ Σ(Tx̃M̃) 7→ Tx̃π ◦ Jx̃ ◦ (Tx̃π)−1 ∈ Σ(TxM).Now, let us suppose that π 
omes from a 
overing π̃ : G̃ → G and that wehave M = G/H , M̃ = G̃/H̃0 (symmetri
 realisation) with H̃ = π̃−1(H) and
G ⊂ Is(M), G̃ ⊂ Is(M̃) (see above). Then we have

Tx̃π ◦ (g̃Jp̃0 g̃
−1) ◦ (Tx̃π)−1 = gJp0g

−1.with x̃ = g̃.p̃0, g = π̃(g̃). Hen
e the restri
tion9 of πΣ to G̃/G̃0 gives rise to themorphism of bundle (12). Moreover10
S0 = Int(H)(J0) =

⋃

h∈H̃/H̃0

hS̃0h
−1with, sin
e H̃0 ⊂ SO(Tp0M̃), S̃0 ⊂ Σ+(Tp0M̃). Further if H ⊂ O(Tp0M) is notin
luded in SO(Tp0M) (i.e. M is not orientable), then we have

πΣ(Σ+(M̃)) = Σ(M).Remark 17 Let us see what happens when we 
hange M , in theorem 4. Let
G̃ be a 
overing of G, a
ting symmetri
ally on a 
overing M̃ of M , π : M̃ →M ,with G̃ ⊂ Is(M̃). Then a

ording to remark 16, we have πΣ ◦ iJp̃0

= iJp0
◦ π0,with π0 : G̃/G̃0 → G/G0 the morphism of bundle (over π : M̃ → M) given by(12). Then given any solution α of the (g, τ)-system (6), let us integrate it in

G̃ and G respe
tively, Ũ : L → G̃, U : L → G with Ũ(0) = 1, U(0) = 1 (0 is areferen
e point in L), we have π̃◦Ũ = U . Then let us proje
t these lifts in G̃/G̃0and G/G0 respe
tively: we obtain the geometri
 solutions J̃ : L → G̃/G̃0 and
J : L→ G/G0 respe
tively and we have π0 ◦ J̃ = J . Then let us embedd theseinto the twistor spa
es Σ(M̃) and Σ(M) to obtain the admissible twistor lifts
J̃X̃ : L→ iJ̃0

(G̃/G̃0) and JX : L→ iJ0(G/G0) respe
tively whi
h are related by
πΣ ◦ J̃X̃ = JX , and in parti
ular π ◦ X̃ = X .9i.e. πΣ ◦ iJp̃0

= iJp0
◦ π0, π0 : G̃/G̃0 → G/G0 given by (12).10In fa
t, hS̃0h−1 means obviously Th.p0

π ◦ (hS̃0h−1) ◦ Th.p0
π−1. πΣ allows to 
onsiderthe �bers Σ(Tx̃M̃) as in
luded in the �ber Σ(TxM), with x = π(x̃).26



4 Splitting of M into the 3 type of symmetri
spa
eTheorem 12 [15, 2℄ Let M be a simply 
onne
ted Riemannian symmetri
 spa
e.Then M is a produ
t
M = M0 ×M− ×M+where M0 is an Eu
lidean spa
e, M− and M+ are Riemannian symmetri
 spa
eof the 
ompa
t and non
ompa
t type respe
tively. In parti
ular

M = M0 ×M ′where M ′ has a group of isometries G = Is(M ′) semisimple and its isotropysubgroup at p0 ∈ M ′, H, (whi
h is 
onne
ted be
ause M ′ is symply 
onne
ted)is equal to the holonomy group of M ′. Hen
e a Riemannian symmetri
 spa
e
M of whi
h the isometry group is semisimple (whi
h is equivalent to say that itsuniversal 
overing have not Eu
lidean fa
tor, or equivalently the Lie algebra of
G does not 
ontain no trivial abelian ideal, i.e. its Killing form is no degenerate)has a unique symmetri
 writing G/H, with G a
ting e�e
tively. In this uniquerealisation, we have ne
essarely G = Is(M)0 11 and H = Is0p0

(M) = Isp0(M) ∩
Is(M)0(⊃ Isp0(M)0). Further the Lie algebra Isp0(M) = Der(m) = Hol(M) isspanned by [m, m] = {Rp0(X, Y ), X, Y ∈ Tp0(M)}.Moreover the 
overing of su
h a Riemannian symmetri
 spa
e M , has a de-
omposition into a produ
t of irredu
ible Riemannian symmetri
 spa
es (i.e thelinear isotropy representation is irredu
ible)

M̃ = M1 × · · · ×Mr.Theorem 13 Let us 
onsider the de
omposition of (g, T1σ) into the sum of or-thogonal (for the Killing form) ideals of the 
ompa
t, non
ompa
t and Eu
lideantype respe
tively:
g = l0 ⊕ l− ⊕ l+and let lα = hα ⊕mα be the eigenspa
e de
omposition of the involution T1σ|lα .Suppose now that we have an order four automorphism τ : g → g with τ2 =

T1σ. Then τ(lα) = lα, τ(hα) = hα, τ(mα) = mα for α = 0,−, +. Hen
e
τm = ⊕ατmα

, with τmα
∈ Σ(mα), and τ|lα is the automorphism of lα de�nedby τmα

a

ording to theorem 7 and we have τ2
|lα

= T1σ|lα . Moreover, we have
Aut(m) =

∏

α Aut(mα).Corollary 1 Let M be a G-symmetri
 spa
e, G ⊂ Is(M) and τ : g → g anorder four automorphism with τ2 = T1σ. Let M̃ be its universal 
overing, whi
hhas a symmetri
 realisation M̃ = G̃/H̃0, with π : G̃ → G a 
overing of G,
H̃ = π−1(H) and G̃ ⊂ Is(M̃), su
h that τ integrates into τ̃ : G̃ → G̃. Then11as usual, we suppose that G is 
onne
ted27



the de
omposition of g into 3 ideals of di�erent type gives rise to the followingde
omposition of G̃:
G̃ = L0 × L− × L+whi
h indu
es the following de
omposition of H̃0 and G̃0 = H̃0 ∩ G̃τ̃ , 
orre-sponding also to the de
omposition h = ⊕αhα and g0 = ⊕α(g0)α:

H̃0 = H0 ×H− ×H+ (16)
G̃0 = (G0)0 × (G0)− × (G0)+ . (17)Hen
e M̃ = M0 ×M− × M+ and Ñ = N0 × N− × N+ with Mα = Lα/Hα,

Nα = Lα/(G0)α. Besides σ̃ and τ̃ have the de
ompositions σ̃ =
∏

α σ̃α and
τ̃ =

∏

α τ̃α, and Hα = (G̃σ̃α)0, (G0)α = Hα ∩ Lτα
α = (Gα)0. Nα is a 4-symmetri
 bundle over Mα.Theorem 14 Let us 
onsider the de
omposition of (g, T1σ) into the sum oforthogonal (for the Killing form) ideals:

g = ⊕r
i=0gi (18)with g0 abelian and (gi, T1σ|gi

) irredu
ible, and let gi = hi⊕mi be the eigenspa
ede
omposition of T1σ|gi
. Suppose now that we have an order four automorphism

τ : g→ g su
h that τ2 = T1σ.There exists a unique de
omposition of g:
g = g0 ⊕ (⊕r′

i=1g
′
i) (19)where g′i = gi or g′i = gi ⊕ gj with (gi, T1σ|gi

) and (gj , T1σ|gj
) isomorphi
,su
h that τ(g′i) = g′i, τ(h′i) = h′i, τ(m′

i) = m′
i. Moreover if g′i = gi ⊕ gj then

τ(gi) = gj, τ(hi) = hj , τ(mi) = mj . Hen
e τm = ⊕r′

i=0τm′

i
with τm′

i
∈ Σ(τm′

i
),and τ|g′

i
is the automorphism of g′i de�ned by τm′

i
a

ording to theorem 7 andwe have τ2

|g′

i
= T1σ|g′

i
.Corollary 2 Let M be a G-symmetri
 spa
e, G ⊂ Is(M) and τ : g → g anorder four automorphism with τ2 = T1σ. Let M be its universal 
overing, whi
hhas a symmetri
 realisation M̃ = G̃/H̃0, with π : G̃ → G a 
overing of G,

H̃ = π−1(H) and G̃ ⊂ Is(M̃), su
h that τ integrates into τ̃ : G̃→ G̃. Then thede
omposition of g,(18), gives rise to the following de
omposition of G̃:
G̃ = L0 × L1 × · · · × Lrwhi
h indu
es the following de
omposition of H̃0, 
orresponding also to the de-
omposition h = ⊕r

i=0hi:
H̃0 = H0 ×H1 × · · · ×Hr

σ̃ have the de
omposition of σ̃ =
∏r

i=0 σ̃i with σ̃i involution of Li and Hi =

(G̃σ̃i)0. Moreover there exists an unique de
omposition of G̃:
G̃ = L′

0 × L1 × · · · × L′
r′ (20)28



where L′
i = Li or L′

i = Li × Lj with (Li, σ̃i) and (Lj, σ̃j) isomorphi
. Then
τ have the de
omposition τ̃ =

∏r′

i=0 τ̃ ′
i with τ̃ ′

i order four automorphism of L′
i.Further, by identifying (Li, σ̃i) and (Lj , σ̃j) (when L′

i = Li × Lj), then in 20,we have either L′
i = Li and then τ̃ ′

i = τ̃i is an order four automorphism of Liso that (L′
i)

τ̃ ′

i = (Li)
τ̃i , or L′

i = Li × Li and then
τ̃ ′
i : (a, b) ∈ Li × Li 7→ (σi(b), a) ∈ Li × Liso that (L′

i)
τ̃ ′

i = ∆(Hi) ⊂ Hi × Hi. Hen
e M̃ = M0 × M1 × · · · × Mr with
Mi = Li/Hi and Ñ = N ′

0 × N ′
1 × · · · × N ′

r′ where either N ′
i = Ni = Li/(Gi)0is a 4-symmetri
 bundle over Mi, or N ′

i = Gi × Gi/∆(Hi) is a 4-symmetri
bundle over Mi×Mi = Gi×Gi/Hi×Hi (and the �ber Hi×Hi/∆(Hi) ≃ Hi isa group).Proof of theorems 13,14 and 
orollaries 1,2 Use the fa
ts that τm leavesinvariant the metri
 in m and the restri
tion to m of the killing form. �4.1 The semisimple 
aseDe�nition 6 We will say that the Riemannian symmetri
 spa
e M is of semisim-ple type if Is(M) is semisimple.Theorem 15 If M is of semisimple type then ea
h (
onne
ted) lo
ally 4-symmetri
bundle over M is maximal and in the form N0 = Is(M)0/G0, i.e. is an Is(M)0-orbit in Σ(M)∩Aut(M). In other words the set of lo
ally 4-symmetri
 bundlesover M is N (M) = Σ(M) ∩Aut(M)/Is(M)0 ⊂ Σ(M)/Is(M)0.Remark 18 The "size" of a maximal (lo
ally) 4-symmetri
 bundle over M inthe twistor bundle Σ(M) depends on the "size" of the isotropy subgroup Isp0(M)and on J0 ∈ Σ(Tp0M). In other words, if we want a �ber S0 ⊂ Σ(Tp0M) ofmaximal dimension, we must �nd J0 ∈ Σ(Tp0M) ∩ Aut(Tp0M) ⊃ Σ(Tp0M) ∩
Isp0(M) 12 su
h that TJ0S0 = g2(J0) := {A ∈ Isp0(M) | AJ0 + J0A = 0}is of maximal dimension, or equivalently su
h that g0(J0) = {A ∈ Isp0(M) |
AJ0 − J0A = 0} is of minimal dimension.Remark 19 It is possible that there exists di�erent non isomorphi
 lo
ally4-symmetri
 bundles over M (see se
tion 5.3). And it is also possible that theredoes not exist lo
ally 4-symmetri
 bundle over M . For example: M = S1× S3,then Is(M) = SO(2) × SO(4) and Isp0(M) = SO(3), and there does not exist
J0 ∈ Σ(R4) su
h that J0SO(3)J−1

0 = SO(3).Moreover we have the following obvious theorem (see also [16℄):12Aut(Tp0M)(= Aut(m) under the usual identi�
ation) is the group of automorphism of
Tp0M whi
h stabilizes the metri
 gp0 and the 
urvature Rp0 .
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Theorem 16 Let (g, σ) be an orthogonal symmetri
 Lie algebra. Then set g∗ =
h ⊕ im and σ∗ = Idh ⊕ Idim. Then (g∗, σ∗) is an orthogonal symmetri
 Liealgebra. If (g, σ) is of the 
ompa
t type then (g∗, σ∗) is of the non 
ompa
t typeand 
onversely. Now, for τm ∈ End(m), set τ∗

m : iv ∈ im 7→ iτm(v). Then
τm ∈ Aut(m)⇐⇒ τ∗

m ∈ Aut(im)and τm ∈ Σ(m) if and only if τ∗
m ∈ Σ(im). In this 
ase (τm ∈ Aut(m) ∩ Σ(M))let τ (resp. τ∗) be the automorphism of g (resp. g∗) de�ned by τm (resp. τ∗

m)and denoting by AC ∈ End(V C) the extension to V C of A ∈ End(V ) (V realve
tor spa
e) then we have
τC = τ∗C i.e. τ∗ = τC

|g∗Theorem 17 Let M be an irredu
ible symmetri
 spa
es of type II (
ompa
ttype) or type IV (non 
ompa
t type) then there does not exist any (non trivial)lo
ally 4-symmetri
 bundle over M . Equivalently Aut(M)∩Σ(M) = ∅, in otherwords, there does not exist any automorphism τ of Is(M) su
h that τ2 = T1σ.Proof. By duality, it is enough to prove the assertion for the 
ompa
t type.In this 
ase let M̃ be the universal 
overing of M , we have M̃ = H ×H/∆(H)and σ̃ : (a, b) ∈ G × G 7→ (b, a). Then an automorphism τ : g → g must send
g1 = h⊕ {0} either on g1 or on g2 = {0} ⊕ h and idem for g2, and thus for anyautomorphism we have τ2(gi) = gi and hen
e we 
an not have τ2 = T1σ. This
ompletes the proof. �4.2 The Eu
lidean 
aseTheorem 18 Let M = R2n with its 
anoni
al inner produ
t. Then Is(M) =
O(2n)⋉R2n the group of a�ne isometries in R2n. Then for any p0 ∈ R2n, wehave Isp0(M) = {(F, Id−F )p0), F ∈ O(2n)} ≃ O(2n). In parti
ular for p0 = 0,
Isp0(M) = O(2n). We have ∀p0 ∈ R2n, Is(M) = Isp0(M) ⋉ R2n. Further
M = G/H is a symmetri
 realisation with G a
ting e�e
tively if and only if
G = H ⋉ R2n with H ⊂ Isp0(R

2n) for some p0 ∈ R2n. Then we G = H0 ⋉ R2nwith H0 = prO(2n)(H) ⊂ O(2n). The 
artan involution for this realisation is
σ = Int(−Id, 2p0) : (h, x) ∈ G 7→ (h, 2(Id− h)p0 − x)giving rise to the symmetry around p0: σ0 : x ∈ R2n 7→ −(x − p0) + p0 ∈ R2n.Let us �x p0 = 0, so that for any symmetri
 realisation H ⊂ Isp0(M) = O(2n)and σ = Int(−Id, 0).All (
onne
ted) lo
ally 4-symmetri
 bundles over M are globally 4-symmetri
bundle over M . The twistor bundle, Σ(R2n) × R2n, is a globally 4-symmetri
bundle over M . All the (
onne
ted) 4-symmetri
 bundles over R2n are inthe form: S0 × R2n where S0 is a 
ompa
t Riemannian symmetri
 spa
e em-bedded13, in Σε(R2n). Besides Aut(Tp0M) = Isp0(M) = O(2n) so that any13only immersed if H is not 
losed in O(2n)30



J0 ∈ Σ(R2n) de�ne the maximal 4-symmetri
 bundle Σ(R2n)× R2n = O(2n)⋉
R2n/U(R2n, J0).Theorem 19 Let M be an Eu
lidean Riemannian symmetri
 spa
e (i.e. itsuniversal 
overing is an Eu
lidean spa
e R2n). Then M = R2n⊕T2q, Is(M) =
O(2p) × (S2q ⊗ {±1}) ⋉ M (S2q is the group of permutation) and denot-ing by π : R2n → M the universal 
overing, and p0 = π(0), then Isp0(M) =
O(2p) × (S2q ⊗ {±1}). Moreover Aut(R2n) = O(2n), and J0 ∈ Σ(R2n) de�nethe (
onne
ted) maximal 4-symmetri
 bundle over M : (Σ(E2l)×{J0|E2l⊥})×M ,where E2l is the (unique) maximal subspa
e in R2p stable by J0. In parti
ular,
Aut∗(M) ∩ Σ(M) = Σ(R2p)× Σ(R2q)×M .Proof. Let π̃ : G̃ → G be a 
overing of G = Is(M)0 a
ting symmetri
allyand e�e
tively on M̃ = R2n and σ̃ : G̃→ G̃ the 
orresponding involution. Thensetting H̃ = (G̃σ̃)0, we have a

ording to the previous theorem G̃ = H̃⋉R2n and
H̃ ⊂ SO(2n). Then setting D = kerπ, D is a dis
rete 
entral subgroup of G̃.Besides it is easy to see that Cent(G̃) = Cent(H̃ ×R2n) = R2p where R2p is themaximal subspa
e of R2n �xed by H̃ , i.e. H̃ ⊂ SO(2p)×{Id2q} (2p +2q = 2n).Hen
e D = ⊕r

i=1Zei with (ei)1≤i≤r R-free so that G = Is(M)0 = G̃/D = H̃⋉M ′with M ′ = R2p⊕R2q−r⊕Rr/Zr. Moreover we have σ : (h, x) inH̃×M ′ → (h,−x)be
ause σ̃ = Int(−Id, 0) (see the previous theorem) and thus Gσ = H̃ but theisotropy subgroup of G at p0 satis�es H ⊃ π̃(H̃) (be
ause H̃ is 
onne
ted), but
π̃(H̃) = H̃ (D ∩ H̃ = {1}) and thus H = H̃ . Thus M = G/H = M ′. Now,we have to 
ompute Is(M), we know that Is(M)0 = H ⋉M ⊂ SO(2p) ⋉M ′.In the other hand, we know that Is(M) ⊂ O(2n) (an isometry is determined byits tangent map at p0) and thus g ∈ O(2n) is in Is(M) if and only if g(D) =
D whi
h is equivalent to g ∈ [O(2p + 2q − r) × (GLr(Z) ∩ O(Rr))] ⋉ M =
[O(2p + 2q − r) × (Sr ⋉ {±Id})] ⋉M . Hen
e Is(M)0 = SO(2p + 2q − r) andthus r = 2q. Finally M = R2p ⊕ T2q, Is(M) = O(2p) × (Sr ⋉ {±Id}) ⋉M ,
Isp0(M) = O(2p)× (Sr ⋉ {±Id}), and Isp0(M)0 = H = O(2p). We 
on
lude byremarking that J0 ∈ Σ(R2n) satis�es J0HJ−1

0 = H for H ⊂ SO(2p) 
onne
tedand maximal if and only if H = SO(E2l) and J0 ∈ Σ(E2l) × Σ(E2l⊥). This
ompletes the proof. �Remark 20 We 
an use the se
ond ellipti
 integrable system in the Eu
lidean
ase to "modelize" this system in the general 
ase. Indeed, let us 
onsider
M a Riemannian symmetri
 spa
e of the semisimple type (then its isotropysubgroup H = Isp0(M) is essentially its holonomy group, i.e. they have thesame identity 
omponent) with τ : g→ g an order four automorphism su
h that
τ2 = T1σ. Then we 
an asso
iate to the 
orresponding lo
ally 4-symmetri
bundle N over M , the 4-symmetri
 bundle over M0 = m = H ⋉ m/H : N0 =
H ⋉ m/G0 = S0 × m ⊂ Σ(m)× m, and to the se
ond ellipti
 integrable systemin N , its "linearized" in N0. We 
onje
ture that the "
on
rete" geometri
alinterpretation (i.e. in terms of the se
ond fondamental form of the surfa
e Xet
...) is the same for the linearized and the initial system. This is what happensin dimension 4. 31



Remark 21 The se
ond ellipti
 integrable system 
an be viewed as "a 
ou-plage" between the harmoni
 map equaton in S0 = H/G0 and a kind of Dira
equation in g−1: ∂z̄u1 + [ū0, u1] + [ū1, u2] = 0. In the Eu
lidean 
ase, the pro-je
tion on the "group part", g = h ⋉ m → h, of the se
ond ellipti
 system isonly the harmoni
 map equation in H/G0. In other words, the se
ond ellipti
integrable system is only the harmoni
 map equation in H/G0 and a kind ofDira
 equation in Cn (∼= (g−1, J0)). In parti
ular, if we apply any method ofintegrable systems theory using loop groups (DPW, Dressing a
tion et
..) orsomething else (spe
tral 
urves) to the se
ond ellipti
 system in G/G0 and thenproje
t in the group part (pr : H⋉m→ H), we obtain the same method appliedto the �rst ellipti
 integrable system in H/G0 i.e. the harmoni
 map equationin H/G0. For example, if we apply the DPW method: given µ = (µh, µm) a ho-morphi
 potential, we have pr(WG/G0
(µ)) =WH/G0

(µh) where WG/G0
,WH/G0are the weierstrass representations for ea
h ellipti
 system. So to solve the se
-ond ellipti
 system, we 
an �rst solve the harmoni
 map equation in H/G0, byusing any method of integrable systems theory whi
h gives us a lift h in H ofa harmoni
 map in H/G0, and then we have to solve the Dira
 equation withparameters u0, u2 given by the lift : h−1∂zh = u0 + u2 following h = g0 ⊕ g2(see [17℄). However, the Dira
 equation is not intrinse
 sin
e it depends on thelift h of the harmoni
 map (see [17℄).In the parti
ular 
ase where S0 is a group and H = G0 ⋊ S0, (for example

S0 = G0 × G0/G0), then we have a 
anoni
al lift and then the Dira
 equationbe
ome intrinse
 (see [17℄). It is in parti
ular what happens for Hamiltonianstationnary Lagrangian surfa
es : in C2 we have a intrinse
 Dira
 equationwhereas in the others Hermitian symmetri
 spa
es this equation does not exist(see [12℄-[14℄). It is also what happens in [17℄ when we take for S0 the subsphere
S3 ⊂ S6 (S6 embedds in Σ+(R8) by the left multipi
ation in O).5 Example of 4-symmetri
 bundlesWe use the notations of se
tion 3.1.5.1 The sphereLet us 
onsider M = S2n = SO(2n + 1)/SO(2n) with G = SO(2n + 1), H =
SO(2n) and the involution σ = Intdiag(Id2n,−1). Then Gσ = SO(2n)

⊔

O−(2n)×
{−1}. Hen
e H = (Hσ)0, Mmin = RP2n and Mmax = S2n.14 We have also

h = so(2n), m =

{(

0 v
−vt 0

)

, v ∈ R2n

}

= {im(v), v ∈ R2n}where im : R2n → m is de�ned in an obvious way. Now, let us 
onsider thea
tion of H on m: for h ∈ SO(2n), ξ = im(v) ∈ m, we have
Admh(ξ) = im(h.v)14Mmax is simply 
onne
ted and Mmin is the adjoint spa
e.32



hen
e K = kerAdm = {Id} and the a
tion of G is e�e
tive (in fa
t SO(2n + 1)is simple be
ause 2n + 1 is odd). Identifying m with R2n via im we have: ∀h ∈
SO(2n), Admh = h i.e. Adm = Id. Moreover SO(2n + 1) is the 
onne
ted isom-etry group of S2n. Now, a

ording to theorem 7, de�ne a lo
ally 4-symmetri
bundle over M = S2n is equivalent to give ourself τm ∈ Σ(m)∩Aut(m) = Σ(m).Further, given J0 ∈ Σε(R2n), let us de�ne the order four automorphism of G:
τ = Int(diag(−J0, 1)). Then τ2 = σ and sin
e τH = IntJ0 and τ|m = J0,we obtain all the lo
ally 4-symmetri
 bundle over M whi
h are all globally 4-symmetri
 bundle over M .Moreover, we have Gτ = com(J0)∩SO(2n) = U(R2n, J0). Hen
e Gτ = (Gτ )0 =
G0 thus S0 = H/G0 = Int(SO(2n))(J0) = Σε(R2n) and thus N = G/G0 =
Σε(S2n).5.2 Real grassmannianMore generally, let p, q ∈ N∗ su
h that pq is even and let us 
onsider M =
SO(p + q)/SO(p) × SO(q) = Grp(Rp+q) (oriented p-plans in Rp+q). Sin
e pand q play symmetri
 roles, we will suppose that p is even and that it has thebiggest divisor in the form 2r. We have dim M = pq and the following setting

G = SO(p + q), H = SO(p)× SO(q); σ = Int(diag(Idp,−Idq)) and
Gσ = SO(p)× SO(q)

⊔

O−(p)×O−(q).Then H = (Gσ)0 so that Mmin = Gr∗p(Rp+q) (non oriented p-plan in Rp+q) and
Mmax = Grp(Rp+q) = M . Besides h = so(p)⊕so(q), andm =

{(

0 B
−Bt 0

)

, B ∈ glp,q(R)

}

=

im(glp,q(R)) (im de�ned in an obvious way).Now let us 
ompute Adm. For h = diag(A, C) and ξ = im(B), we have:
Admh(ξ) = im(ABC−1).Under the identi�
ation im we have Adm(A, C) = LARC−1 = χ(A, C), by in-trodu
ing the morphism χ : (A, C) ∈ GLp(R) × GLq(R) 7→ L(A)R(C−1) ∈

GL(glp,q(R)). Hen
e K = kerAdm = {±Id} if q is even and K = {Id} if not.Thus the 
onne
ted isometry group of M , Is(M)0, is G′ = G/K = PSO(p + q)if q is even and G′ = G = SO(p + q) if not. Let us 
ompute Aut(m): wealready know that Aut(m) ⊂ H ⊂ Aut(m)0. But, it is known that the auto-morphisms of so(n + 1) are all inner automorphisms by O(n + 1) so we have
Aut(m) = {LARC−1 , (A, C) ∈ O(p)×O(q)}. Thus J0 = L(J1)R(J−1

2 ) ∈ Aut(m)is in Σ(m) if and only if :
{

(J2
1 , J2

2 ) = ±(−Idp, Idq) if q is even,
(J2

1 , J2
2 ) = (−Idp, Idq) if q is odd.Then the asso
iated order four automorphism is τ = Int(diag(J1, J2)). In parti
-ular, τ(H) = H and τH = IntJ1×IntJ2. Besides, Aut(m)∩Σ(m) has respe
tively

2(p+q+2) or 2(q+1) 
onne
ted 
omponents if q is even or q is odd respe
tively.33



Ea
h 
onne
ted 
omponent is an AdmH-orbit and 
orresponds to the �ber of adi�erent maximal 4-symmetri
 bundle over M .Moreover to �x idea let us suppose that we have J1 ∈ Σ(Rp), J2 ∈ OS(Rq), theset of orthogonal symmetry in Rq, then Gτ = U(Rp, J1) × S(O(E1) × O(E2))with E1 = ker(J2 − Id), E2 = ker(J2 + Id). We have Gτ ⊂ H . Let OSr(Rq) =
Int(SO(q))(Idr,−Idq−r) be the set of orthogonal symmetry in Rq with dimE1 =
r. Then H/Gτ = Int(H)(J1, J2) = Σε(Rp) × OSr(Rq) (ε being determined by
J1) and

G/Gτ = {(x, J), x ∈M, J ∈ Σε(x)×OSr(x
⊥)}. (21)Now let us 
ompute G0 a

ording to (11): h = (A, C) ∈ H si in G0 if and onlyif Admτ(h) = Admh i.e.: if q is odd, τ(h) = h, and G0 = Gτ ∩ H = Gτ ; if

q is even, τ(h) = ±h (and G0 = π−1
K (G′

0) with G′
0 = G′τ

′

∩ H ′), i.e. h ∈ Gτor τ(h) = −h. The existen
e of solutions of this last equation depends on p, qand r (we remark that if h1 is a solution then the set of solution is h1G
τ ). One�nd that the equation τ(h) = −h (q is even) has a solution in Gσ if and onlyif dimE1 = dimE2 = q/2 and that this solution is in H if p/2 is even andin O−(p) × O−(q) (the other 
omponent of Gσ) if p/2 is odd. Hen
e, if p isdivisible by 4, q is even and r = q/2 (i.e. J0 ∈ χ(Σ(Rp)×OSq/2(R

q))), we have
G0 = Gτ

⊔

h1G
τ . In all the other 
ases we have G0 = Gτ .In 
on
lusion, let us denote by NL(r, ε) := N(J0) (resp. NR(r, ε)) the maximal4-symmetri
 bundle over M 
orresponding to J0 ∈ χ(Σε(Rp)×OSr(Rq)) (resp.

chi(OSr(Rp)× Σε(Rq)). Then:if p is not divisible by 4 or q is odd, Nα(r, ε) is given by (21), for all (α, r, ε),if p is divisible by 4, q not divisible by 4 then for (α, r) 6= (L, q/2), Nα(r, ε) isgiven by (21) and for (α, r) = (L, q/2) it is given by (22), below,if p and q are divisible by 4, then for (α, r) ∈ {(L, q/2), (R, p/2)}, Nα(r, ε) isgiven by (22), and for the other 
hoi
es it is given by (21),
Nα(r, ε) = {(x, J), x ∈M, J ∈ P (Σε(x) ×OSr(x

⊥))} (22)where P (Σε(x)×OSr(x
⊥)) = Σε(x) ×OSr(x

⊥)/{±Id}. In the 
ases des
ribedby (22), G/Gτ is not a submanifold of Σ(M).5.3 Complex GrassmannianLet us 
onsider M = SU(p + q)/S(U(p) × U(q)) = Grp,C(Cp+q). We have
dimM = 2pq and the following setting

G = SU(p + q), H = S(U(p)× U(q)); σ = Int(diag(Idp,−Idq)) and
Gσ = H = (Gσ)0.Besides h = s(u(p)⊕u(q)) andm =

{(

0 B
−B∗ 0

)

, B ∈ glp,q(C)

}

= im(glp,q(C)).Let us 
ompute Adm. For h = diag(A, C) and ξ = im(B), we have:
Admh(ξ) = im(ABC−1).34



Under the identi�
ation im we have Adm(A, C) = LARC−1 = χ(A, C), by in-trodu
ing the morphism χ : (A, C) ∈ GLp(C) × GLq(C) 7→ L(A)R(C−1) ∈
GL(glp,q(C))15. Hen
e K = kerAdm = {(λIdp, λIdq), λ ∈ C, λp+q = 1} =

Ûp+qId ≃ Zp+q (with Ûp+q = exp( 2iπ
p+qZ)). Thus G′ = G/K = PSU(p + q) and

H ′ = S(U(p) × U(q))/Ûp+q ≃ S(U(p) × U(q)). The 
onne
ted isometry groupis the unitary group of M : Is(M)0 = U(M) = G′ = PSU(p + q).It is well known that the group of automorphism of SU(p+ q) have two 
ompo-nents (the C-linear one and the anti C-linear one) and is generated by the innerautomorphisms and the 
omplex 
onjugaison: g ∈ SU(p + q) 7→ ḡ ∈ SU(p + q).In parti
ular, Aut(m) = AdmH⋊{Id, c} = χ(S(U(p)×U(q)) ·{(Id, Id), (bp, bq)})with c = L(bp)R(b−1
q ) : B ∈ glp,q(C) 7→ B̄ ∈ glp,q(C), bn : v ∈ Cn 7→ v̄ ∈ Cn.The 
omplex stru
ture in m = glp,q(C) is de�ned by L(Ip) = R(Iq) where

In = iIdn the 
anoni
al 
omplex stru
ture in Cn, and the two 
onne
ted 
om-ponents of Aut(m) are respe
tively the elements in Aut(m) whi
h 
ommute andthose whi
h anti
omute with this 
omplex stru
ture.Moreover, J0 = L(J1)R(J−1
2 ) ∈ Aut(m)0 = AdmH is in Σ(m) if and only if

(J2
1 , J2

2 ) ∈ (−Idp, Idq)U(1). Then let us set Σλ = {(J1, J2) ∈ U(p) × U(q) |
(J2

1 , J2
2 ) = λ(−Idp, Idq)}. Then we have χ(Σλ) = χ(Σ0) for all λ ∈ U(1) sin
e

Σλ = λ
1
2 Σ0 with λ

1
2 a root of λ. Thus a

ording to the following lemma,

Aut(m)0 ∩ Σ(m) has (p + 1)(q + 1) 
onne
ted 
omponents (whi
h are AdmH-orbits and 
orresponds to the �bers of di�erents maximal 4-symmetri
 bundlesover M).Lemma 1 Let J ∈ U(n), then J2 = −Id (resp. J2 = Id) if and only if thereexists h ∈ U(n) su
h that hJh−1 = diag(iIdl,−iIdn−l) for some l ∈ {0, . . . , n}(resp. hJh−1 = diag(Idr,−Idn−r) for some r ∈ {0, . . . , n}).Then the order four automorphism 
orresponding to J0 is τ = Int(diag(J1, J2),with16 J1 ∈ AdU(p)(iIl,p−l) ∼= iGrl,C(Cp), J2 ∈ AdU(q)(Ir,q−r) ∼= Grr,C(Cq).Hen
e Gτ = S(U(l)×U(p− l)×U(r)×U(q− r)), the �ber of the 4-symmetri
spa
e G/Gτ is H/Gτ = Grl,C(Cp)×Grr,C(Cq), and
G/Gτ = {(x, J), x ∈ Grp,C(Cp+q), J ∈ Grl,C(x)×Grr,C(x⊥)}. (23)Further, G0 is de�ned: Admτ(h) = h, h ∈ H , i.e. (J1AJ−1

1 , J2CJ−1
2 ) = λ(A, C)for some λ ∈ K. But it is easy to see that we must have λ = 1 and thus G0 = Gτ .Finally, in the C-linear 
ase, the maximal 4-symmetri
 bundle N = G/G0 isgiven by (23).In the antilinear 
ase, J0 = L(J1)R(J−1

2 ) ∈ Aut(m)0.c, with (J1, J2) = (J ′
1bp, J

′
2bq),is in Σ(m) if and only if (J2

1 , J2
2 ) = (J ′

1J
′
1, J

′
2J

′
2) ∈ (−Idp, Idq).U(1). It is easyto see that we 
an only have

(J2
1 , J2

2 ) = ±(−Idp, Idq). (24)15For the following it useful to keep in mind that we have AdmH = χ(S(U(p) × U(q))) =
χ(U(p) × U(q)) and ker χ = C∗Id.16Il,p−l = diag(Idl,−Idp−l) 35



Hen
e a

ording to the following lemma:� if p, q are odd then Σ(m) ∩Aut(m)0.c = ∅,� if p, q are even then the two signs ± are realized in (24) and thus Σ(m) ∩
Aut(m)0.c has 2 
onne
ted 
omponents,� if p, q have opposite parities, then only one sign is realized in (24) and Σ(m)∩
Aut(m)0.c has one 
omponent.Lemma 2 Let E ⊂ Cn be a Lagrangian n-plan, i.e. E

⊥
⊕ iE = Cn and let bEbe the assso
iated 
onjugaison: v + iw 7→ v − iw for v, w ∈ E. then U(N).bE =

bE.U(n) does not depend on E and is the of anti C-linear isometries in Cn (theelements in O(R2n) whi
h anti
ommute with the 
omplex stru
ture I = iId).Moreover for any J in thsi set there exists a lagrangian n-plan E su
h that
J = JE .bE = bE .JE with JE ∈ O(E). Besides J ∈ Σ(R2n (resp: OS(R2n)) ifand only if JE ∈ Σ(E) (resp. OS(E)) and in parti
ular Σ(R2n) ∩ U(n).bE 6= ∅only if n is even, and Σ(R2n)∩U(n).bE ⊂ Σ+(R2n). Further given any J1Σ(Rn)(resp. OS(Rn)) there exists h ∈ U(n) su
h that h.E = Rn, hJEh−1 = J1 andthsu hJh−1 = J1.bRn.Then the order four automorphism 
orresponding to J0 is τ = Int(diag(J1, J2))with J1 ∈ AdU(p)(J p

2
.bp), J2 ∈ AdU(q)(bq) and J p

2
=

(

0 Id p
2

−Id p
2

0

). In otherwords J1 is any 
omplex stru
ture in R2p anti
ommuting with Ip and J2 is anyorthogonal 
onjugaison in Cq. Hen
e, we have Gτ = Sp(p/2)× SO(q). Hen
e
U(p) × U(q)/Gτ = Σ+(Cp)− × Lag(Cq) where Σ+(Cp)− = Σ(R2p) ∩ Ant(Ip)are the 
omplex stru
tures in R2p anti
ommuting with Ip and Lag(Cq) are theoriented Lagangian plan in Cq. Thus we have:
H/Gτ = S(Σ+(Cp)−×Lag(Cq)) := {(J, P ) ∈ Σ+(Cp)−×Lag(Cq) | detC(J)detC(P ) = 1}.It is easy to de�ne detC on Lag(Cq), and for Σ+(Cp)−, we set detC(J) = detC(E)for E any Lagrangian n-plan stable by J (de�nition independant on the 
hoi
eof E). Then

G/Gτ = {(x, J, P ), x ∈ Grp,C(Cp+q), (J, P ) ∈ Σ+(x)− × Lag(x⊥)}.Let us 
omputeG/G0. We have to solve for (A, C) ∈ U(p)×U(q): (J p
2
ĀJ−1

p
2

, C̄) =

λ(A, C) for λ ∈ U(1) whose the solutions are ±λ
1
2 (Sp(p/2)× O(q)). Hen
e wehave G′

0 = G0/K = χ(U(1)(Sp(p/2)×O(q))) = χ(Sp(p/2)×O(q)) =

{

χ(Sp(p/2)× SO(q)) if q is odd
χ(Gτ )

⊔

h1χ(Gτ ) if q is even.ThenG′/G′
0 = G/G0 = U(p+q)/(U(1)(Sp(p/2)×O(q))) = PSU(p+q)/P (Sp(p/2)×

O(q)) hen
eN = G/G0 is equal to (G/Gτ )/Zp+q if q is odd and to (G/Gτ )/Z2(p+q)if q is even. 36



6 AppendixTheorem 20 Let G be a 
onne
ted Lie group with an involution σ. If Adm(Gσ)0is 
ompa
t (resp. relatively 
ompa
t) then AdmH is 
ompa
t (resp. relatively
ompa
t) for any H su
h that (Gσ)0 ⊂ H ⊂ Gσ.Proof. A

ording to [1℄, (Gσ)/(Gσ)0 is �nite hen
e H/(Gσ)0 is �nite and thetheorem follows. �Corollary 3 We give ourself the same setting and notations as in remark 7.If H̃ = (G̃σ̃)0 satis�es AdmH̃ is 
ompa
t (resp. relatively 
ompa
t) then for anysymmetri
 pair (G, H), AdmH is 
ompa
t (resp. relatively 
ompa
t). In otherwords if one symmetri
 pair (asso
iated to (g, σ)) is Riemannian then all theothers are also.Proof. Sin
e G̃ is simply 
onne
ted, it is the universal 
overing of G andwe have a 
overing π : G̃ → G. Then AdmH̃ = AdmH0 (there are 
onne
tedwith the same Lie algebra) hen
e AdmH0 is 
ompa
t and then a

ording to theprevious theorem, AdmH is 
ompa
t. �Corollary 4 Let (G, H) be a symmetri
 pair with involution σ and τ : G →
G an order four automorphism su
h that τ2 = σ. Then if AdmH is 
om-pa
t (resp. relatively 
ompa
t) then the subgroup generated by AdmH and τ|m,
Gr(AdmH, τ|m) is 
ompa
t (resp. relatively 
ompa
t).Proof. We have τ|m(AdmGσ)τ−1

|m = Admτ(Gσ) = AdmGσ. Hen
eGr(AdmGσ, τ|m) =

(AdmGσ)Gr(τ|m) whi
h is (relatively) 
ompa
t be
ause so is AdmGσ, a

ord-ing to theorem 20 and then Gr(AdmGσ, τ|m) is (relatively) 
ompa
t be
ausesin
e Gr(AdmH, τ|m) ⊂ (AdmH)Gr(τ|m) then AdmGσ/AdmH is a 
overing of
Gr(AdmGσ, τ|m)/Gr(AdmH, τ|m) whi
h is 
onsequently �nite. �Theorem 21 Let (G, H) be a symmetri
 pair with involution σ and τ : g → gan order four automorphism su
h that τ2 = T1σ. Then if AdmH is relatively
ompa
t then the subgroup generated by AdmH and τ|m, Gr(AdmH, τ|m) is rel-atively 
ompa
t.Proof. Let G′ = AdG, then C := kerAd = 
enter of G and we 
an identify Adto the 
overing π : G→ G/C and G′ to G/C. The automorphism σ gives rise to
σ′ : G′ → G′ su
h that σ′◦π = π◦σ. Besides the automorphism τ integrates in G′into τ ′ de�ned by τ ′ = Intτ : Adg ∈ G′ 7→ τ ◦Adg◦τ−1 and we have τ ′◦π = π◦τand τ ′2 = σ′. Then a

ording to 
orollary 4, Gr(AdmG′σ

′

, τ|m) is relatively
ompa
t sin
e a

ording to 
orollary 3, AdmG′σ
′ is relatively 
ompa
t be
ause

AdmH is. Moreover we have G′σ
′

⊂ π(Gσ) then (sin
e Adπ(g) = Adg ∀g ∈ G)
AdmG′σ

′

⊂ AdmGσ ⊂ AdmH thus Gr(AdmH, τ|m) is relatively 
ompa
t. �37



Theorem 22 Let (g, σ) be an orthogonal symmetri
 Lie algebra17 su
h that
h = gσ 
ontains no ideal 6= 0 in g. Then for any symmetri
 pair (G, H) asso-
iated with (g, h), the asso
iated symmetri
 spa
es M = G/H is Riemannian.Moreover let G̃ be the simply 
onne
ted Lie group with Lie algebra g, σ̃ integrat-ing σ, H̃ = (G̃σ̃)0 and C̃ the 
enter of G̃. Then we have H̃ = G̃σ̃. Further, forany subgroup S of C̃ put

HS = {g ∈ G̃ | σ̃(g) ∈ g.S}.The symmetri
 spa
es M asso
iated with (g, σ) (i.e. (G, H) is asso
iated with
(g, h)) are exa
tly the spa
es M = G/H with

G = G̃/S and H = H∗/S (25)where S varies through all σ̃-invariant subgroups of C̃ and H∗ varies throughall σ̃-invariant subgroups of G̃ su
h that H̃S ⊂ H∗ ⊂ HS. Hen
e, all thesymmetri
 spa
es M = G/H = G̃/H∗ asso
iated with (g, σ) 
over the adjointspa
e of (g, σ): M ′ = G′/G′σ
′

= G̃/HC̃
18 and are 
overed by M̃ = G̃/H̃ (theuniveral 
overing):

M̃ →M →M ′. (26)Besides if 〈·, ·〉 is an AdmG′σ
′ -invariant inner produ
t then it is invariant by

admH = AdmH∗ for any H des
ribed above, and the 
overings (26) are Rie-mannian, when M, M̃, M ′ are endowed with the 
orresponding metri
s.Proof. We have only to prove H̃ = G̃σ̃, sin
e all the rest is an adaptation of[15℄ (Ch. VII, thm 9.1) using what pre
edes. A

ording to [1℄, G̃σ̃ is 
onne
tedif π1(G̃) is �nite with odd order, in parti
ular if G̃ is simply 
onne
ted. This
ompletes the proof. �Referen
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