
HAL Id: hal-00266449
https://hal.science/hal-00266449

Submitted on 22 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On semiparametric estimation of ruin probabilities in
the classical risk model

Esterina Masiello

To cite this version:
Esterina Masiello. On semiparametric estimation of ruin probabilities in the classical risk model.
Scandinavian Actuarial Journal, 2012, 2014 (4), pp.283-308. �10.1080/03461238.2012.690247�. �hal-
00266449�

https://hal.science/hal-00266449
https://hal.archives-ouvertes.fr


Nonparametric Statistical Analysis of Ruin
Probability
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e-mail: esterina.masiello@uniroma1.it

Abstract The ruin probability of an insurance company is a central topic in
risk theory. In this paper, the classical Poisson risk model is considered and a
nonparametric estimator of the ruin probability is provided. Strong consistency and
asymptotic normality of the estimator are estabilished. Bootstrap confidence bands
are also studied. Further, a simulation example is presented in order to investigate
the finite sample properties of the proposed estimator.
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1. Introduction and preliminaries

We consider the classical Poisson risk model, where the inter-arrival times
T1, T2, . . . form a sequence of independent random variables (r.v.’s) with common
exponential distribution function (d.f.) A(t) = P (T ≤ t) = 1 − e−λt and
finite mean µT = 1/λ. The claim sizes X1, X2, . . . are positive independent and
identically distributed (i.i.d.) r.v.’s, with common d.f. F (x) = P (X ≤ x), finite
mean µ and finite variance σ2. Moreover, the two sequences {Ti} and {Xi} are
supposed to be independent. We further assume that the insurance company has an
initial surplus x > 0 and that premiums arrive at a known steady rate, say, c > 0
per unit time.

Let Ψ(x) denote the probability of ruin starting with initial reserve x. Exact
calculation and approximation of ruin probabilities have been a great source of
inspiration and technique development in actuarial mathematics since the seminal
paper by Lundberg (1903). The problem is that, apart from some special cases,
a general expression for Ψ does not exist. We will construct a nonparametric
estimator Ψn(x) of Ψ(x) based on a sample T1, . . . , Tn of inter-arrival times
and a sample X1, . . . , Xn of corresponding claims. The d.f. of inter-arrival times
and claims are both supposed unknown. More specifically, the inter-arrival time
distribution is assumed to be exponential with unknown parameter λ. As far as the
claim distribution is concerned, no specific parametric model is assumed.

Such a statistical problem has been considered by different authors. As
remarked by Embrechts et al (1997), literature has mostly been concerned with
asymptotic expansions; few results focus on statistical estimation of Ψ . Clearly,
one could work out a parametric estimation procedure or use nonparametric



methods. As remarked in Pitts (1994), the latter approach is particularly interesting
in view of its applicability. Also Frees (1986a) and Croux and Veraverbeke
(1990) have proposed a nonparametric estimator for Ψ . The estimator by Croux
and Veraverbeke (1990) is a linear combination of U -statistics; they generalize
techniques in Frees (1986b) whose estimator is based on the sample reuse concept.
For a nonparametric approach to the estimation of Ψ see also Hipp (1989a, 1989b).

Our approach is closely connected to that developed in Pitts (1994), but the
technique used to prove asymptotic results for the estimator is different from ours
since that author takes a functional view of the stochastic model, following the
tradition of Gill (1989), Grübel (1989) and Grübel and Pitts (1993).

Also the ideas in Frees (1986a), as well as the ideas in Harel et al. (1995), on
nonparametric estimation of the renewal function are basic for our approach.

2. The nonparametric estimator

In practical applications, the parameter λ of the inter-arrival times distribution and
the claim size d.f. F will not be given but have to be estimated with available data.

Let us consider a random sample of n inter-arrival times T1, . . . , Tn with the
corresponding claims X1, . . . , Xn. Suppose that the assumptions of the Cramer-
Lundberg model are satisfied. If the model under consideration is stable, that is
λµ/c < 1, it is possible to express the ruin probability Ψ as a compound geometric
tail probability by mean of the so-called Pollaczeck-Khinchine formula (see, e.g.
Feller (1971), Grandell (1990) or Embrechts and Veraverbeke (1982)):

Ψ(x) =
∞∑

k=1

(1− ρ)ρk(1− F ∗k
I (x)) x ≥ 0 (1)

where ρ = λµ/c, FI(x) = 1
µ

∫ x

0
y dF (y) is the integrated tail distribution and

F ∗k
I denotes the k-fold convolution of the d.f. FI . For k = 1, 2, . . ., F ∗k

I (x) =
P (Y1 + . . . + Yk ≤ x), where Y1, . . . , Yk are independent r.v.’s with common
density function fI(x) = (1/λ)(1− F (x)), x ≥ 0.

Remark 1. FI(x) is also called equilibrium distribution of the d.f. F (x). In
insurance, it can be interpreted as the d.f. of the amount of the drop in the surplus,
or equivalently the difference between the initial surplus and the surplus at the time
it first falls below the initial surplus. In other words, defined S(y) as a random
sum of claim amounts, FI is the d.f. of S(y) − cy, given that S(y) − cy > 0 and
S(t)− ct ≤ 0, 0 ≤ t < y.

The Pollaczeck-Khinchine formula is not entirely satisfying as a tool for
computing Ψ(x) because of the infinite sum of convolution powers but it will
be our key tool for estimating the ruin probability. From now on, for the sake
of simplicity and without loss of generality, the rate of premium income per unit
time will be taken to be equal to 1 (c = 1); otherwise , it is enough to refer to the
transformed claims X̃i = Xi/c.



Our approach is the following: we first estimate E(T ) = µT by its maximum
likelihood estimator Tn = 1

n

∑n
i=1 Ti, and E(X) = µ by Xn = 1

n

∑n
i=1 Xi. The

next step consists in estimating ρ by the ratio ρ̂ = Xn/Tn. Finally, we replace the
k-fold convolution of FI in Eq. (1) by the following estimator (Frees, 1986b):

F ∗k
n (x) =

(
n

k

)−1∑
c

I(Yi1+...+Yik
≤x) (2)

where {i1, i2, . . . , ik} is a subset of size k of {1, 2, . . . , n} and
∑

c is the sum over
all
(
n
k

)
different combinations of {i1, i2, . . . , ik}.

We have easily estimated the quantities at the right hand side of Eq. (1) by the
corresponding sampling counterparts. It seems therefore natural to estimate Ψ(x)
by

Ψn(x) =
∞∑

k=1

(1− ρ̂) ρ̂k F
∗k
n (x)

where F
∗k
n (x) = 1− F ∗k

n (x).
Some of the properties of this estimator are shortly outlined in Conti and

Masiello (2006a) and Conti and Masiello (2006b). In this paper, we obtain
the asymptotic distribution of the estimator (Section 2.1) and study bootstrap
confidence bands (Section 4). Moreover, in Section 5, a short simulation exemple
is provided in order to illustrate the finite sample behavior of the estimator. An
estimator for the p-th quantile of the ruin probability function is also proposed in
Section 3, together with its main asymptotic properties.

Remark 2. The estimator Ψn(x) is a functional of Fn(x) and ρ̂, i.e. Ψn = Φ(Fn, ρ̂).
As a possible approach to the study of statistical properties of the proposed
estimator, we could try to extend methods in Pitts (1994), who has studied the
problem in the special case of a known value of ρ. In order to derive strong
consistency and asymptotic normality results for the “output” estimator Ψn, it
would suffice to establish analytical properties of continuity and differentiability
for the functional Φ and combine them with the statistical properties of the “input”
estimators Fn and ρ̂. We will take a slightly different approach following ideas in
Harel et al. (1995) in order to prove weak convergence of the stochastic process in
the Skorokhod topology, but this will be discussed in the sequel.

Remark 3. Based on the estimator in (2), Frees (1986b) introduces a nonparametric
estimator of the renewal function H(t) =

∑∞
k=1 F ∗k(t) given by

Hn(t) =
m∑

k=1

F ∗k
n (t)

where m = m(n) is a positive integer depending on n, such that m ≤ n and
m ↑ ∞ as n ↑ ∞. We left in the definition of our estimator Ψn(x) an infinite
sum. On this subject, observe that the results which we are going to obtain are
essentially asymptotic results applied when the sample size n tends to infinity.



2.1. Basic asymptotic results

In the above section, we have provided a point estimate for Ψ(x). In order to study
its behavior, we now need to obtain the asymptotic distribution of the estimator
Ψn(x).

The key results of the present section are Theorem 2 and Theorem 3, where the
strong consistency and the asymptotic normality of the estimator are estabilished.

To formulate our main theorems, we need some preliminary results. The
asymptotic distribution of ρ̂ is obtained first, since it will play a central role in
all subsequent developments.

Theorem 1 Under the assumptions of the Cramér-Lundberg model and if ρ < 1,
as n goes to infinity, the following results hold:

– ρ̂
a.s.→ ρ

–
√

n(ρ̂− ρ) tends in law to a normal distribution with mean zero and variance
σ2

ρ = 1
µ2

T
σ2 + µ2

µ4
T

σ2
T .

Proof We may first write:

ρ̂ = f(Xn, Tn) =
Xn

Tn

Take a first order Taylor expansion of f(Xn, Tn) at the point (µ, µT ) to obtain:

f(Xn, Tn) = f(µ, µT )+
∂f

∂Xn

∣∣∣∣
(µ,µT )

(Xn−µ)+
∂f

∂Tn

∣∣∣∣
(µ,µT )

(Tn−µT )+Rem

where Rem denotes the remainder term. It is easy to get the following relationship:

√
n(ρ̂− ρ) =

(
1

µT

)√
n(Xn − µ)− µ

µ2
T

√
n(Tn − µT ) +

√
n Rem (3)

The asymptotic behavior of the estimators Xn and Tn is well-known. In fact,
they converge almost surely to the corresponding “true values” as the sample size
n tends to infinity. Furthermore,

√
n(Xn − µ) and

√
n(Tn − µT ) have normal

asymptotic distributions with mean zero and variances σ2 and σ2
T , respectively. As

a simple application of the delta method, we obtain

√
n(ρ̂− ρ) d→ N(0, σ2

ρ)

where σ2
ρ = 1

µ2
T

σ2 + µ2

µ4
T

σ2
T . 2

Remark 4. The mean and the variance of ρ̂ can be obtained by direct calculations.
Taking into account that ρ̂ = Xn/Tn and that Xn and Tn are independent, we
can easily obtain:

E

[
Xn

Tn

]
= nE(Xn)E

(
1∑n

i=1 Ti

)
(4)



Since Ti is exponential with density:

fT (t) =
{

0 if t < 0
λe−λt if t ≥ 0

then V =
∑n

i=1 Ti is Erlang distributed with density:

fV (t) =

{
0 if t < 0
λntn−1

(n−1)! e
−λt if t ≥ 0

Hence, we obtain

E

[
1∑n

i=1 Ti

]
= E

[
1
V

]
=
∫ ∞

0

1
t

λntn−1

(n− 1)!
e−λtdt

=
λ

(n− 1)!
Γ (n− 1)

=
λ

n− 1

With obvious replacements, equation (4) becomes:

E

[
Xn

Tn

]
=

n

n− 1
µ

µT

When the sample size n goes to infinity, we obtain:

E

[
Xn

Tn

]
→ µ

µT

so that the estimator ρ̂ is asymptotically unbiased. Let us consider the variance:

V ar

(
Xn

Tn

)
= E

[
X

2

n

T
2

n

]
−
[
E

(
Xn

Tn

)]2

= E[X
2

n]E

[
1

T
2

n

]
−
[
E

(
Xn

Tn

)]2
(5)

where E[X
2

n] = V ar(Xn) + [E(Xn)]2 = σ2/n + µ2 and

E

(
1

T
2

n

)
= E

[
1(

1
n

∑n
i=1 Ti

)2
]

= n2E

(
1

V 2

)
= n2

∫ ∞

0

1
t2

λntn−1

(n− 1)!
e−λtdt

= n2 λ2

(n− 1)!
Γ (n− 2)

=
n2

(n− 2)(n− 1)
1

µ2
T



Once more, with obvious replacements in equation (5), we obtain the following
exact result:

V ar

(
Xn

Tn

)
=

n

(n− 2)(n− 1)
σ2

µ2
T

+
n2

(n− 2)(n− 1)2
µ2

µ2
T

and, asymptotically,

lim
n→∞

nV ar(ρ̂) =
σ2

µ2
T

+
µ2

µ2
T

We still need some auxiliary results. Let us define

Ψ̃n(x) =
∞∑

k=1

(1− ρ̂) ρ̂k F
∗k

(x)

We can rewrite our “empirical” process as

√
n(Ψn(x)− Ψ(x)) =

√
n(Ψn(x)− Ψ̃n(x)) +

√
n(Ψ̃n(x)− Ψ(x))

= Un(x) + Vn(x)

where we have defined Un(x) =
√

n(Ψn(x)− Ψ̃n(x)) and Vn(x) =
√

n(Ψ̃n(x)−
Ψ(x)) and we study each of the two components separately. We begin by a couple
of lemmas describing the behavior of Un(x) and Vn(x), respectively.

Lemma 1 Let us define Un(x) =
√

n(Ψn(x) − Ψ̃n(x)). With the above
assumptions, for each x > 0, as n →∞, we obtain the following result:

lim
n→∞

E[Un(x)Un(y)] = (1−ρ)2
∞∑

k=1

∞∑
j=1

ρk+j k j Cov(F
∗k−1

(x−Y1), F
∗j−1

(y−Y1))

Proof First of all, we may express Un(x) in the form:

Un(x) =
√

n(Ψn(x)− Ψ̃n(x))

=
√

n
∞∑

k=1

(1− ρ̂)ρ̂k(F
∗k
n (x)− F

∗k
(x))

=
√

n
∞∑

k=1

(1− ρ)ρk(F
∗k
n (x)− F

∗k
(x))

+
∞∑

k=1

n1/4[(1− ρ̂)ρ̂k − (1− ρ)ρk]n1/4(F
∗k
n (x)− F

∗k
(x))

Since the quantities n1/4[(1 − ρ̂)ρ̂k − (1 − ρ)ρk]

and n1/4

[
sup

x

∣∣∣F ∗k
n (x)− F

∗k
(x)
∣∣∣] both converge in probability to zero when



n goes to infinity, the asymptotic distribution of Un(x) coincides with that of
√

n
∑∞

k=1(1− ρ)ρk(F
∗k
n (x)− F

∗k
(x)). The following relations hold:

E[Un(x)Un(y)] = (1− ρ)2
∞∑

k=1

∞∑
j=1

ρk+jE[
√

n(F
∗k
n (x)− F

∗k
(x))

√
n(F

∗j
n (y)− F

∗j
(y))]

Let us consider the expected value on the right hand side of this last expression, to
obtain

E[
√

n( F
∗k
n (x)− F

∗k
(x))

√
n(F

∗j
n (y)− F

∗j
(y))] = n{E[F

∗k
n (x)F

∗j
n (y)]

−F
∗j

(y)F
∗k

(x)− F
∗k

(x)F
∗j

(y) + F
∗k

(x)F
∗j

(y)}

= nE[F
∗k
n (x)F

∗j
n (y)]− nF

∗j
(y)F

∗k
(x)

since F
∗k
n (x) is an unbiased estimator of F

∗k
(x). As pointed out by Frees (1986b),

this estimator is a U -statistic and thus it is easy to establish that for each k ≥ 1 and
for each x ≥ 0, F ∗k

n (x) a.s.→ F ∗k(x) as n → ∞. Moreover, it is uniformly almost
surely consistent, that is, for every k ≥ 1, as n goes to infinity

sup
x
|F ∗k

n (x)− F ∗k(x)| a.s.→ 0

We thus obtain:

E[F
∗k
n (x)F

∗j
n (y)] = E

[(
n

k

)−1∑
c

I(Yi1+...+Yik
>x)

(
n

j

)−1∑
c

I(Yi1+...+Yij
>y)

]

= E

(n

k

)−1(
n

j

)−1 ∑
ck∈Cn,k

∑
cj∈Cn,j

I(Yi1+...+Yik
>x)

I(Yi1+...+Yij
>y)

]
where Cn,k is the set of the combinations of n elements of class k and Cn,j is
the set of the combinations of n elements of class j; ck and cj are two subsets of
{1, . . . , n} that have l ≤ min(k, j) elements in common. Suppose k > j, then it is
possible to write cj = (cj,k, cj,k), where cj,k is the set of the elements of cj which
are in ck. In general, cj,k is composed by l elements (l = 0, 1, . . . , j). Hence, we
have

E[F
∗k
n (x) F

∗j
n (y)] =

(
n

k

)−1(
n

j

)−1 ∑
ck∈Cn,k

j∑
l=0

∑
cj,k∈Ck,l

∑
cj,k∈Cn−k,j−l

E [I(Yi1+...+Yil
+Yil+1+...+Yik

>x)I(Yi1+...+Yil
+Yhl+1+...+Yhj

>y)] (6)

where cj,k is a combination without replacement of l elements of cj and cj,k is a
combination without replacement of j − l elements of {1, . . . , n}\ cj ; moreover,



n− k is not smaller than j− l. Using the independence of Yi’s, we easily have the
following relationship:

E[I(Yi1+...+Yil
+Yil+1+...+Yik

>x)I(Yi1+...+Yil
+Yhl+1+...+Yhj

>y)]

= E[E[I(Yi1+...+Yil
+Yil+1+...+Yik

>x)I(Yi1+...+Yil
+Yhl+1+...+Yhj

>y)|Yi1 , . . . , Yil
]]

= E[F
∗k−l

(x− Yi1 − . . .− Yil
)F

∗j−l
(y − Yi1 − . . .− Yil

)]

from which it follows that (6) takes the form(
n

k

)−1(
n

j

)−1 ∑
ck∈Cn,k

j∑
l=0

∑
cj,k∈Ck,l

∑
cj,k∈Cn−k,j−l

E[F
∗k−l

(x− Yi1 − . . .− Yil
)

F
∗j−l

(y − Yi1 − . . .− Yil
)]

Finally, with obvious replacements, we obtain the following expression:

E[Un(x)Un(y)] = (1− ρ)2
∞∑

k=1

∞∑
j=1

ρk+j

{
n

(
n

k

)−1(
n

j

)−1 ∑
ck∈Cn,k

j∑
l=0

∑
cj,k∈Ck,l

∑
cj,k∈Cn−k,j−l

E[F
∗k−l

(x− Yi1 − . . .− Yil
)

F
∗j−l

(y − Yi1 − . . .− Yil
)]− nF

∗j
(y)F

∗k
(x)
}

Now, let n go to infinity to obtain

lim
n→∞

E[Un(x)Un(y)] = (1− ρ)2
∞∑

k=1

∞∑
j=1

ρk+j k j

Cov(F
∗k−1

(x− Y1), F
∗j−1

(y − Y1)) (7)

2

Lemma 2 Let us define Vn(x) =
√

n(Ψ̃n(x)−Ψ(x)). Under the same assumptions
as in Lemma 1, for each x > 0, as n →∞, we obtain

lim
n→∞

E[Vn(x)Vn(y)] =
(

σ2

µ2
T

+
µ2

µ4
T

σ2
T

) ∞∑
k=1

∞∑
j=1

f
′

k(ρ)f
′

j(ρ)F
∗k

(x)F
∗j

(y)

where f
′

l (ρ) denotes the first derivative of the function fl(ρ) = (1− ρ)ρl.

Proof We have first

Vn(x) =
√

n(Ψ̃n(x)− Ψ(x))

=
√

n
∞∑

k=1

[(1− ρ̂)ρ̂k − (1− ρ)ρk]F
∗k

(x)

=
√

n
∞∑

k=1

[fk(ρ̂)− fk(ρ)]F
∗k

(x)



where fk(t) = (1 − t)tk. Taking a first order Taylor expansion of fk(ρ̂) at the
point ρ, we obtain the following relationship:

Vn(x) =
∞∑

k=1

[
√

n(ρ̂− ρ)f
′

k(ρ) +
√

nRemk]F
∗k

(x)

with supx

√
n|
∑∞

k=1 RemkF
∗k

(x)| p→ 0 when n →∞. Hence, Vn(x) possesses

the same asymptotic distribution as
√

n(ρ̂− ρ)
∑∞

k=1 f
′

k(ρ)F
∗k

(x).
Let us identify the covariance:

E[Vn(x)Vn(y)] = E

[(√
n(ρ̂−ρ)

∞∑
k=1

f
′

k(ρ)F
∗k

(x)
)(√

n(ρ̂−ρ)
∞∑

j=1

f
′

j(ρ)F
∗j

(y)
)]

Taking into account relation (3), we have:

E[Vn(x)Vn(y)] = E

[(√
n

1
µT

(Xn − µ)−
√

n
µ

µ2
T

(Tn − µT )
)2

( ∞∑
k=1

f
′

k(ρ)F
∗k

(x)
)( ∞∑

j=1

f
′

j(ρ)F
∗j

(y)
)]

=
∞∑

k=1

∞∑
j=1

f
′

k(ρ)f
′

j(ρ)F
∗k

(x)F
∗j

(y)
{

1
µ2

T

E[
√

n(Xn − µ)]2 − 2µ

µ3
T

E[
√

n(Xn − µ)]E[
√

n(Tn − µT )] +
µ2

µ4
T

E[
√

n(Tn − µT )]2
}

Letting n go to infinity and taking into account that E(
√

n(Xn − µ)) = 0 and
E(
√

n(Tn − µT )) = 0, we obtain:

lim
n→∞

E[Vn(x)Vn(y)] =
(

σ2

µ2
T

+
µ2

µ4
T

σ2
T

) ∞∑
k=1

∞∑
j=1

f
′

k(ρ)f
′

j(ρ)F
∗k

(x)F
∗j

(y) (8)

2

We are now in a position to establish the main results of the present paper in the
following two theorems.

Theorem 2 Under the same assumptions as in the previous lemmas,

sup
x
|Ψn(x)− Ψ(x)| a.s.→ 0

as n tends to infinity.



Proof First observe that

sup
x
|Ψn(x)− Ψ(x)| = sup

x

∣∣∣∣∣
∞∑

k=1

(1− ρ)ρk(F
∗k
n (x)− F

∗k
(x))

+(ρ̂− ρ)
∞∑

k=1

f
′

k(ρ)F
∗k

(x)

∣∣∣∣∣
≤ sup

x

∣∣∣∣∣
∞∑

k=1

(1− ρ)ρk(F
∗k
n (x)− F

∗k
(x))

∣∣∣∣∣
+sup

x

∣∣∣∣∣(ρ̂− ρ)
∞∑

k=1

f
′

k(ρ)F
∗k

(x)

∣∣∣∣∣
Consider that

∞∑
k=1

(1− ρ)ρk(F
∗k
n (x)− F

∗k
(x)) =

L∑
k=1

(1− ρ)ρk(F
∗k
n (x)− F

∗k
(x))

+
∞∑

k=L+1

(1− ρ)ρk(F
∗k
n (x)− F

∗k
(x))

Now, take into account that for every ε > 0, there exists L = Lε such that∑∞
k=L+1(1− ρ)ρk < ε and write

sup
x

∣∣∣∣∣
∞∑

k=L+1

(1− ρ)ρk(F
∗k
n (x)− F

∗k
(x))

∣∣∣∣∣ ≤
∞∑

k=L+1

(1− ρ)ρk

sup
x

∣∣∣(F ∗k
n (x)− F

∗k
(x))

∣∣∣
≤

∞∑
k=L+1

(1− ρ)ρk

≤ ε

On the basis of this last relationships, also taking into account that |ρ̂−ρ| a.s.→ 0 and
that supx

∣∣∣F ∗k
n (x)− F

∗k
(x)
∣∣∣ a.s.→ 0, the statement of the theorem easily follows.

2

Theorem 3 Let D denote the set of right-continuous functions with left-hand
limits, endowed with the Skorokhod topology. For each x > 0,as n → ∞, the
sequence of stochastic processes Zn(x) =

√
n(Ψn(x) − Ψ(x)) converges weakly

in the space D to a Gaussian process Z with mean function zero and covariance
kernel given by (17).

Proof For the sake of clarity, the proof is split into three steps. In the first step
we show that the finite-dimensional distributions of Zn(·) converge in law to a
multivariate normal distribution while, in the second step, using arguments in



Harel et al. (1995), we state the weak convergence of the process. In the last
step, calculations for the identification of the covariance kernel of the process are
showed.

Step 1 (Convergence of the finite-dimensional distributions). We just consider
one-dimensional distributions, since the same reasoning applies also to the
multidimensional case. We need to show that, if t is a continuity point of the
distribution of Z,

lim
n→∞

P (Zn ≤ t) = P (Z ≤ t)

Just recall that

Zn (x) = Un(x) + Vn(x)

= (1− ρ)
√

n
∞∑

k=1

ρk(F
∗k
n (x)− F

∗k
(x)) +

√
n(ρ̂− ρ)

∞∑
k=1

f
′

k(ρ)F
∗k

(x) (9)

From Lemma 2 and Theorem 1, Vn(x) =
√

n(ρ̂ − ρ)
∑∞

k=1 f
′

k(ρ)F
∗k

(x)
converges in law to a normal distribution with mean zero and variance σ2

V obtained
by (8) simply taking x = y. Then, we can write

P (Vn(x) ≤ t) = P (N(0, σ2
V ) ≤ t) = Φ(t/σV )

where, with obvious notation, Φ(x) = P (N(0, 1) ≤ x).
Let us now study the term Un(x). To simplify the notation, we will consider

from now on, throughout this step, F ∗k(x) instead of the tail F
∗k

(x), since the
same arguments apply. For every L ≥ 1, we have that

Ũn(x) = (1− ρ)
L∑

k=1

ρk
√

n(F ∗k
n (x)− F ∗k(x))

+(1− ρ)
∞∑

k=L+1

ρk
√

n(F ∗k
n (x)− F ∗k(x))

Once more to simplify the notation, let us take ak = (1 − ρ)ρk
√

n(F ∗k
n (x) −

F ∗k(x)). For fixed x, the event (Ũn(x) ≤ t) can be written as

(Ũn(x) ≤ t) =
( L∑

k=1

ak ≤ t−
∞∑

k=L+1

ak

)
For every ε > 0 and L ≥ 1, we will have

(Ũn(x) ≤ t) =

{( L∑
k=1

ak ≤ t−
∞∑

k=L+1

ak

)⋂ (∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ ≤ ε

)}
⋃{( L∑

k=1

ak ≤ t−
∞∑

k=L+1

ak

)⋂ (∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)}



The following chain of inequalities holds true:

P (Ũn(x) ≤ t) = P

( ∞∑
k=1

ak ≤ t

)

≤ P

( L∑
k=1

ak ≤ t−
∞∑

k=L+1

ak,

∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ ≤ ε

)

+P

( L∑
k=1

ak ≤ t−
∞∑

k=L+1

ak,

∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)

≤ P

( L∑
k=1

ak ≤ t−
∞∑

k=L+1

ak,−ε ≤
∞∑

k=L+1

ak ≤ ε

)

+P

( ∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)

≤ P

( L∑
k=1

ak ≤ t + ε,−ε ≤
∞∑

k=L+1

ak ≤ ε

)

+P

( ∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)

≤ P

( L∑
k=1

ak ≤ t + ε

)
+ P

( ∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)
(10)

Let us consider the first term in the summation in the expression (10); we have a1

. . .
aL

 =

 (1− ρ)ρ
√

n(F ∗1
n (x)− F ∗1(x))
. . .

(1− ρ)ρL
√

n(F ∗L
n (x)− F ∗L(x))


that is L linear combinations of U-statistics. The joint distribution is multinormal
as an application of Hoeffding theorem (Serfling (1980)). For every L ≥ 1,√

n
∑L

k=1 ak converges in law, as n goes to infinity, to a normal distribution with
mean zero and variance

σ2
L = (1− ρ)2

L∑
k=1

L∑
j=1

ρk+jk jCov(F ∗k−1(x− Y1), F ∗j−1(x− Y1)) (11)

obtained from (7) by letting y = x. We can finally state

lim
n→∞

P

( L∑
k=1

ak ≤ t + ε

)
= P (N(0, σ2

L) ≤ t + ε) = Φ((t + ε)/σL)



As far as the second term in expression (10) is concerned, by applying
Chebyshev inequality we obtain

P

( ∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)
= P

( ∣∣∣∣∣
∞∑

k=L+1

(1− ρ)ρk
√

n(F ∗k
n (x)− F ∗k(x))

∣∣∣∣∣ > ε

)

≤ 1
ε2

E

[( ∞∑
k=L+1

(1− ρ)ρk
√

n(F ∗k
n (x)− F ∗k(x))

)2
]

Letting T k
n (x) =

√
n(F ∗k

n (x)− F ∗k(x)), the last expression becomes

P

( ∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)
≤ 1

ε2
(1− ρ)2

∞∑
k=L+1

∞∑
j=L+1

ρk+jE[T k
n (x)T j

n(x)]

=
1
ε2

(1− ρ)2
∞∑

k=L+1

∞∑
j=L+1

ρk+jσkj
n

where, following the same lines as in the proof of Lemma 1, we easily obtain:

σkj
n = n

(
n

k

)−1(
n

j

)−1 ∑
ck∈Cn,k

j∑
l=0

∑
cj,k∈Ck,l

∑
cj,k∈Cn−k,j−l

E[F ∗k−l(x− Yi1 − . . .− Yil
)F ∗j−l(x− Yi1 − . . .− Yil

)]
−nF ∗j(x)F ∗k(x)

Let n go to infinity to obtain:

lim
n→∞

P

( ∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)
≤ 1

ε2
(1− ρ)2

∞∑
k=L+1

∞∑
j=L+1

ρk+jσkj

Hence

lim
n→∞

P

( ∞∑
k=1

ak ≤ t

)
≤ Φ((t + ε)/σL) +

1
ε2

(1− ρ)2
∞∑

k=L+1

∞∑
j=L+1

ρk+jσkj

Letting now L tend to infinity and ε tend to zero in such a way that the quantity
1
ε2 (1− ρ)2

∑∞
k=L+1

∑∞
j=L+1 ρk+jσkj tends to zero, we finally obtain

lim
n→∞

P

( ∞∑
k=1

ak ≤ t

)
≤ Φ(t/σ∞) (12)

where σ∞ is obtained from (11) by letting L tend to infinity.



To prove the reverse inequality, let us consider the following relationships

P

( ∞∑
k=1

ak ≤ t

)
= P

( L∑
k=1

ak ≤ t−
∞∑

k=L+1

ak

)

≥ P

( L∑
k=1

ak ≤ t−
∞∑

k=L+1

ak,

∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ ≤ ε

)

≥ P

( L∑
k=1

ak ≤ t− ε,

∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ ≤ ε

)

≥ P

( L∑
k=1

ak ≤ t− ε

)
+ P

( ∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ ≤ ε

)
− 1

= P

( L∑
k=1

ak ≤ t− ε

)
− P

( ∣∣∣∣∣
∞∑

k=L+1

ak

∣∣∣∣∣ > ε

)
Note that the last two relationships are easily obtained on the basis of the following
simple consideration. Let A and B be two sets; it is well known that P (A ∪B) =
P (A) + P (B)− P (A ∩B), from which we obtain

P (A ∩B) = P (A) + P (B)− P (A ∪B)
≥ P (A) + P (B)− 1

and P (A) + P (B)− 1 ≤ P (A ∩B) ≤ min(P (A), P (B)).
As before, it is now easy to prove that

lim
n→∞

P

( ∞∑
k=1

ak ≤ t

)
≥ Φ(t/σ∞) (13)

and from (12) and (13) the relationship

lim
n→∞

P

( ∞∑
k=1

ak ≤ t

)
= Φ(t/σ∞)

The same technique applies, with small changes, to prove the convergence of all
finite-dimensional distributions of Zn(·), and this concludes Step 1.

Step 2 (Weak convergence of the process). We want to state weak convergence
of the process in the space D of right-continuous functions with left-hand limits,
endowed with the Skorokhod topology. To this purpose, we follow ideas in Harel
et al (1995); the same reasoning applied by these authors to the empirical renewal
process may in fact be applied in this specific context.

The starting point is the well known fact that the empirical process
√

n(Fn−F )
converges in distribution to B◦ ◦F in the space D. Here, B◦ denotes the Brownian
bridge and “◦′′ denotes composition of functions. We want to deduce from this the
corresponding result for

√
n(Ψn − Ψ).



The main problem is that Zn is a nonlinear function of the empirical process.
The solution to such a problem is found in the following lines, which provide
calculations for a linearization of the stochastic process Zn(x) =

√
n(Ψn(x) −

Ψ(x)). Once more, let us consider the following decomposition of the process
Zn(x):

Zn(x) = Un(x) + Vn(x)

=
√

n(1− ρ̂)
∞∑

k=1

ρ̂k(F
∗k
n (x)− F

∗k
(x))

+
√

n
∞∑

k=1

[(1− ρ̂)ρ̂k − (1− ρ)ρk]F
∗k

(x)

We just take in consideration the first term in the summation, since the proof of
weak convergence of the second term is trivial. Moreover, to simplify the notation,
let us consider F ∗k instead of F

∗k
and, therefore,

Ũn =
√

n
∞∑

k=1

(1− ρ̂)ρ̂k(F ∗k
n − F ∗k)

=
√

n(Fn − F ) ∗
∞∑

k=1

(1− ρ̂)ρ̂k(F ∗k−1
n + F ∗k−2

n ∗ F

+ · · ·+ Fn ∗ F ∗k−2 + F ∗k−1)

=
√

n(Fn − F ) ∗
∞∑

k=1

(1− ρ̂)ρ̂kF ∗k
n ∗

∞∑
k=1

(1− ρ̂)ρ̂kF ∗k

=
√

n(Fn − F ) ∗ Ψn ∗ Ψ̃n (14)

=
√

n(Fn − F ) ∗ Ψ̃n ∗ Ψ̃n +
√

n(Fn − F ) ∗ (Ψn − Ψ̃n) ∗ Ψ̃n

Observe that, by (14),

√
n(Ψn − Ψ̃n) = Ũn =

√
n(Fn − F ) ∗ Ψn ∗ Ψ̃n

We easily obtain:

Ũn =
√

n(Fn − F ) ∗ Ψ̃n ∗ Ψ̃n +
√

n(Fn − F ) ∗ Ψn ∗ Ψ̃n ∗ (Fn − F ) ∗ Ψ̃n

=
√

n(Fn − F ) ∗ Ψ̃n ∗ Ψ̃n +
√

n(Fn − F ) ∗ (Fn − F ) ∗ Ψn ∗ Ψ̃n ∗ Ψ̃n

Let G = Ψ̃n ∗ Ψ̃n. We finally obtain:

Ũn =
√

n(Fn − F ) ∗G +
√

n(Fn − F )∗2 ∗ Ψn ∗G

We have decomposed the process into two terms: a first term which is linear in
the empirical process and a second term which can be shown to be negligible as
n → ∞, simply following the same lines as in Harel et al. (1995). By Theorem
3.2 in Harel et al (1995), we can definitely state weak convergence of the process.



We do not provide here a detailed proof since it proceeds in the same way as the
proofs of Theorem 3.2 and Theorem 4.1 in Harel et al (1995).

Step 3 (Identification of the covariance kernel). To complete the proof of the
theorem, we just need to evaluate the covariance kernel of the stochastic process.
It is awkward and we need some other preliminary notations to make it readable.
Observe that

E[Zn(x)Zn(y)] = E[(Un(x) + Vn(x))(Un(y) + Vn(y))]
= E[Un(x)Un(y)] + E[Un(x)Vn(y)]

+E[Vn(x)Un(y)] + E[Vn(x)Vn(y)] (15)

and consider each of the four components separately. We have already computed
the first and the last term on the right hand side of (15) (see Lemma 1 and Lemma
2); let us compute E[Un(x)Vn(y)]

E[Un(x)Vn(y)] = E

[(
(1− ρ)

∞∑
k=1

ρk
√

n(F
∗k
n (x)− F

∗k
(x))

)
(√

n

(
1

µT
(Xn − µ)− µ

µ2
T

(Tn − µT )
) ∞∑

j=1

f
′

j(ρ)F
∗j

(y)
)]

=
1

µT
(1− ρ)

∞∑
k=1

ρk
∞∑

j=1

f
′

j(ρ)F
∗j

(y)E[
√

n(F
∗k
n (x)− F

∗k
(x))

√
n(Xn − µ)]− µ

µ2
T

(1− ρ)
∞∑

k=1

ρk
∞∑

j=1

f
′

j(ρ)F
∗j

(y)

×E[
√

n(F
∗k
n (x)− F

∗k
(x))

√
n(Tn − µT )] (16)

Taking into account that E[
√

n(F
∗k
n (x) − F

∗k
(x))

√
n(Tn − µT )] = 0, we

obtain that (16) is equal to

(1− ρ)
µT

∞∑
k=1

∞∑
j=1

ρkf
′

j(ρ)F
∗j

(y)E[
√

n(F
∗k
n (x)− F

∗k
(x))

√
n(Xn − µ)]

The computation of this last expression is not difficult. First of all, we have

E[
√

n(F
∗k
n (x)− F

∗k
(x))

√
n(Xn − µ)] = nE[F

∗k
n (x)Xn − F

∗k
n (x)µ

−F
∗k

(x)Xn + F
∗k

(x)µ]

= nE[F
∗k
n (x)Xn]− nµF

∗k
(x)

Furthermore

E[F
∗k
n (x)Xn] = E

(n

k

)−1 ∑
ck∈Cn,k

I(Yi1+...+Yik
>x)

1
n

n∑
j=1

Xj


=

1
n

1(
n
k

)E
 n∑

j=1

Xj

∑
ck∈Cn,k

I(Yi1+...+Yik
>x)





Since Cn,k = Cj
n,k

⋃
Cj

n,k, where Cj
n,k is the set of all

(
n−1
k−1

)
combinations of

n elements of class k containing j and Cj
n,k is the set of all

(
n−1

k

)
combinations

of n elements of class k that does not contain j, we obtain:

E[F
∗k

(x)Xn] =
1
n

1(
n
k

)E
 n∑

j=1

Xj

 ∑
ck∈Cj

n,k

I(Yi1+...+Yik−1+Yj>x)

+
∑

ck∈Cj
n,k

I(Yi1+...+Yik−1+Yik
>x)




=
1
n

1(
n
k

) n∑
j=1


∑

ck∈Cj
n,k

E[XjI(Yi1+...+Yik−1+Yj>x)]

+
∑

ck∈Cj
n,k

E[XjI(Yi1+...+Yik−1+Yik
>x)]


=

1
n

1(
n
k

) n∑
j=1

{(
n− 1
k − 1

)
E[XjF

∗k−1
(x− Yj)] +

(
n− 1

k

)
µF

∗k
(x)
}

We can definitely state that

E[Un(x)Vn(y)] =
(1− ρ)

µT

∞∑
k=1

∞∑
j=1

ρkf
′

j(ρ)F
∗j

(y){
1(
n
k

) n∑
h=1

[(
n− 1
k − 1

)
E[XhF

∗k−1
(x− Yh)]

+
(

n− 1
k

)
µF

∗k
(x)
]
− nµF

∗k
(x)
}



By adding all components together in (15), we obtain the following expression:

E[Zn(x)Zn(y)] = (1− ρ)2
∞∑

k=1

∞∑
j=1

ρk+j

{
n

(
n

k

)−1(
n

j

)−1 ∑
ck∈Cn,k

j∑
l=0

∑
cj,k∈Ck,l∑

cj,k∈Cn−k,j−l

E[F
∗k−l

(x− Yi1 − . . .− Yil
)

F
∗j−l

(y − Yi1 − . . .− Yil
)]− nF

∗j
(y)F

∗k
(x)
}

+
∞∑

k=1

∞∑
j=1

f
′

k(ρ)f
′

j(ρ)F
∗k

(x)F
∗j

(y)

×
{

1
µ2

T

E[
√

n(Xn − µ)]2 +
µ2

µ4
T

E[
√

n(Tn − µT )]2
}

+2
∞∑

k=1

∞∑
j=1

(1− ρ)ρk 1
µT

f
′

j(ρ)F
∗j

(y)

{
1(
n
k

) n∑
h=1

[(
n− 1
k − 1

)

E[XhF
∗k−1

(x− Yh)] +
(

n− 1
k

)
µF

∗k
(x)
]
− nµF

∗k
(x)
}

Now, let n go to infinity to finally obtain the following asymptotic expression:

E[Z(x)Z(y)] = (1− ρ)2
∞∑

k=1

∞∑
j=1

ρk+j k j Cov(F
∗k−1

(x− Y1), F
∗j−1

(y − Y1))

+
(

σ2

µ2
T

+
µ2

µ4
T

σ2
T

) ∞∑
k=1

∞∑
j=1

f
′

k(ρ)f
′

j(ρ)F
∗k

(x)F
∗j

(y)

+2
1

µT
(1− ρ)

∞∑
k=1

∞∑
j=1

ρkf
′

j(ρ)F
∗j

(y)

×Cov(X1, F
∗k−1

(x− Y1)) (17)

2

Remark 5. The estimator for the probability of ruin described in Section 2 has been
constructed by replacing the true k-fold convolution of the claim size d.f. F by the
estimator introduced by Frees (1986b). Instead of doing this, one could estimate
F by the empirical d.f. F̃ ∗1

n (x) = F ∗1
n (x) and then define recursively estimates of

F ∗k(x) by the relationship

F̃ ∗k
n (x) =

∫
F̃ ∗k−1

n (x− u)dF̃ ∗1
n (u)

that is considering the k-fold convolution of the empirical d.f.. As observed
by Frees, although F̃ ∗k

n (x) is a biased estimate of F ∗k(x), it has the
possible advantage of being the nonparametric maximum likelihood estimator.



Furthermore, it is a V -statistic and thus it is closely related to the U -statistic
F ∗k

n (x). Remind that U -statistics and V -statistics have the same asymptotic
properties.

3. Quantile estimation

In this section, we propose an estimator for the p-th quantile of the ruin probability
function. For 0 ≤ p < 1, define the p-th quantile ξp of Ψ(·) as

ξp = Ψ−1(p) = inf{x ≥ 0 : Ψ(x) ≥ p}

A natural estimate ξ̂p of ξp can be defined as

ξ̂p = Ψ̂−1
n (p) = inf{x ≥ 0 : Ψn(x) ≥ p}

The main asymptotic properties of the proposed estimator are presented in the
following two theorems.

Theorem 4 Assume that ξp, 0 ≤ p < 1, is uniquely defined, i.e. for every ε > 0,
Ψ(ξp + ε) < Ψ(ξp) = p < Ψ(ξp − ε). Then, as n →∞

ξ̂p
a.s.→ ξp

Proof Ψ(x) is a decreasing function and the equation Ψ(x) = p possesses a single
root, namely ξp. From the uniqueness of ξp, for every ε > 0

δε = min{p− Ψ(ξp + ε), Ψ(ξp − ε)− p} > 0

We note that

Pr{Ψn(ξp − ε)− p > 0} = Pr{Ψ(ξp − ε)− Ψn(ξp − ε) < Ψ(ξp − ε)− p}
≥ Pr{Ψ(ξp − ε)− Ψn(ξp − ε) < δε}
≥ Pr{|Ψn(ξp − ε)− Ψ(ξp − ε)| < δε} (18)

Taking into account that Ψn is a consistent estimator of Ψ , for every δε > 0, (18)
converges to 1 as n →∞. Therefore

Pr{Ψn(ξp − ε)− p > 0} → 1 (n →∞)

In the same way we can show that

Pr{p− Ψn(ξp + ε) < 0} → 0 (n →∞)

Then, as n →∞

Pr{Ψn(ξp + ε) < p < Ψn(ξp − ε)} → 1 ∀ε > 0

which implies that
Pr{ξp + ε > ξ̂p > ξp − ε} → 1

as n →∞, ∀ε > 0. 2



Theorem 5 Let us denote by G
′

the first derivative of the function G. Assume that
G

′
exists and that G

′
(ξp) 6= 0. Under this hypothesis

√
n(ξ̂p − ξp)

d→ N(0, σ2
ξ ) (19)

where σ2
ξ is given by (21).

Proof Ψ−1(p) = ξp is root of the equation G(x) = Ψ(x) − p = 0 and
Ψ̂−1

n (p) = ξ̂p is root of the equation Gn(x) = Ψn(x) − p = 0. By a first order
Taylor expansion of Gn(ξ̂p) at the point ξp, we obtain

G(ξp) = 0 = Gn(ξ̂p) = Gn(ξp) + G
′

n(ξ∗p)(ξ̂p − ξp)

where ξ∗p lies in the interval having extremes ξp and ξ̂p. Hence

√
n(ξ̂p − ξp) = −G

′

n(ξ∗p)−1
√

n(Gn(ξp)−G(ξp))

Let us first prove that

G
′

n(ξ∗p) = Ψ
′

n(ξ∗p) a.s.→ G
′
(ξp) = Ψ

′
(ξp) (20)

Because of ξ̂p
a.s→ ξp, if ξ̂p ∈ (ξp − ε, ξp + ε) we have

G
′

n(ξp − ε) < G
′

n(ξ∗p) < G
′

n(ξp + ε)

By the law of large number

G
′

n(ξ) = Ψ
′

n(ξ) =
∞∑

k=1

(1−ρ̂)ρ̂k[F
∗k
n (ξ)]

′ a.s.→ G
′
(ξ) = Ψ

′
(ξ) =

∞∑
k=1

(1−ρ)ρk[F
∗k

(ξ)]
′

then G
′

n(ξ) a.s.→ G
′
(ξ) for all ξ and, for all sufficiently large n we have:

G
′
(ξp − ε) < G

′

n(ξ∗p) < G
′
(ξp + ε)

which implies G
′

n(ξ∗p) a.s→ G
′
(ξp) as n goes to infinity. Since

√
n(Gn(ξp)−G(ξp)) =

√
n(Ψn(ξp)− p− Ψ(ξp) + p)

=
√

n(Ψn(ξp)− Ψ(ξp))

and because of (20), we obtain the relationship

√
n(ξ̂p − ξp) = −G

′
(ξp)−1

√
n(Ψn(ξp)− Ψ(ξp))



Taking into account the fundamental result in Theorem 3 and by a simple
application of the delta method, (19) easily follows. In particular, we obtain the
following expression for the variance:

σ2
ξ = G

′
(ξp)−2

{
(1− ρ)2

∞∑
k=1

∞∑
j=1

ρk+j k j Cov(F
∗k−1

(ξp − Y1), F
∗j−1

(ξp − Y1))

+
(

σ2

µ2
T

+
µ2

µ4
T

σ2
T

) ∞∑
k=1

∞∑
j=1

f
′

k(ρ)f
′

j(ρ)F
∗k

(ξp)F
∗j

(ξp)

+2
1

µT
(1− ρ)

∞∑
k=1

∞∑
j=1

ρkf
′

j(ρ)F
∗j

(ξp)Cov(X1, F
∗k−1

(ξp − Y1))

}
(21)

2

4. Bootstrap confidence region

It is possible to construct a confidence region for the unknown probability of ruin
Ψ . The development of such a confidence region follows that in Grübel and Pitts
(1993) and Pitts (1994).

The interest in studying bootstrap confidence regions comes from the
complicated structure of the limiting Gaussian process Z in Theorem 3, that does
not allow to construct confidence regions for Ψ(x) in any easy way.

Let z ∈ IR and define Rn(z) = P (
√

n||Ψn − Ψ || ≤ z), where ||f || =
supt|f(t)| is the supremum norm. If known, it could be used to form a confidence
region for Ψ . Recall that

√
n(Ψn − Ψ) d→ Z (Theorem 3) and define, for z ∈ IR,

RZ(z) = P (||Z|| ≤ z). By the continuous mapping theorem (see, for example,
Pollard (1984)), Rn(z) → RZ(z) as n →∞, for all continuity points z of RZ .

Using the α-quantile q(α) of RZ we could obtain asymptotic confidence
regions for Ψ . The problem is that the structure of Z is complicated and it is not
easy to see how the α-quantile q(α) of RZ can be obtained. This is the reason for
which we construct Bootstrap confidence regions as a good alternative to classical
asymptotic confidence regions.

We adopt a bootstrap scheme which consists in generating mn bootstrap inter-
arrival time samples (T ∗1,j , . . . , T

∗
n,j), (j = 1, . . . ,mn), and mn independent

bootstrap claim samples (X∗
1,j , . . . , X

∗
n,j), (j = 1, . . . ,mn). We then define the

mn quantities V ∗
n,j =

√
n||Ψ∗n,j − Ψn||, (j = 1, . . . ,mn), where Ψ∗ runs through

the empirical d.f.s obtained by taking samples of size n from F̂n.
The bootstrap estimator R̂n of the d.f. of

√
n||Ψn − Ψ || is defined as the

empirical d.f. for the mn values of
√

n||Ψ∗n,j − Ψn||. In symbols:

R̂n(x) = m−1
n

mn∑
j=1

I(−∞,x](
√

n||Ψ∗n,j − Ψn||)



Let q̂n(α) be the α-quantile of R̂n

q̂n(α) = R̂−1
n (α) = inf{x : R̂n(x) ≥ α}

It is possible to show that confidence regions constructed from q̂n(α) give
asymptotically correct coverage probabilities. In practice, R̂n and hence q̂n(α)
are approximated by Monte Carlo methods.

Remark 1. The bootstrap confidence band obtained here is of constant width since
we have considered the supremum norm. It would be more appropriate to have
non-constant width simultaneous confidence bands for d.f. estimators and this is
an area for further investigation. One way to achieve this aim would be to use
weighted spaces of functions, as in Pitts (1994), as one setting in which non-
constant width bootstrap confidence bands can be obtained.

5. Simulation example

We illustrate the finite sample behavior of the proposed estimator Ψn(x) for sample
size n = 100 by the following example.

Example Both claim amount and inter-arrival times distributions are exponential
with mean value equal to 1 and 10, respectively, so that ρ = 0.1. The premium rate
c equals 1 and an interval of values for the initial surplus x is considered. A sample
of size n = 100 has been generated from F and this has been used to construct
our estimate of the ruin probability function Ψn.

Figure 1 shows the resulting ruin function estimate Ψn together with the “true”
Ψ and an approximate 95% bootstrap confidence region obtained for the unknown
Ψ . The band is calculated from mn = 200 bootstrap repetitions. The “true” Ψ is
computed using the closed form expression available for Ψ when dealing with the
Erlang model.

In the example, the distribution of Ψn(x) is quite well concentrated around the
“true” value Ψ(x).

Some more considerations are in order. We used a “truncated” version of the
estimator:

Ψn(x) =
m∑

k=1

(1− ρ̂)ρ̂kF
∗k
n (x)

where the parameter m, as in Frees (1986b), is a positive integer depending on n,
such that m ≤ n and m ↑ ∞ as n ↑ ∞. A choice for the parameter m has to be
done.

In many situations, this choice is dictated by practical considerations and often
simply m = n. However, the quantity (1− ρ)ρk dies out quickly as k approaches
infinity as well as the convolution F ∗k(x) (see Frees (1986b)). This implies that
typically m can be small compared to the sample size.

This is important since the amount of computations increases quickly as m
increases and the numerical computation of our estimator is cumbersome even
for small values of m. This is the reason for which the number of Monte Carlo
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Figure 1: Estimate Ψn (long dashes), “true” Ψ (full line) and bootstrap confidence band
(dotted line)

simulations in the example is small. A larger scale Monte Carlo study with 500 or
more trials may improve the results but is a computer time consuming task.
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15. Grübel R, Pitts SM (1993) Nonparametric estimation in renewal theory I: The empirical

renewal function. Ann. Statist. 21(3):1431–1451
16. Harel M, O’ Cinneide CA, Schneider H (1995) Asymptotics of the sample renewal

function. Journal of mathematical analysis and applications 189:240–255
17. Hipp C (1989a) Efficient estimators for ruin probabilities. Proc. Fourth Prague Symp.

on Asymptotic Statistics. Ed. P. Mandl and M. Huskova. Charles University, Prague,
259–268

18. Hipp C (1989b) Estimators and bootstrap confidence intervals for ruin probabilities.
Astin Bulletin 19:57–70

19. Lundberg F (1903) Approximerad Framställning av Sannolikhetsfunktionen.
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