Virial theorems for trapped cold atoms

Felix Werner

To cite this version:

Felix Werner. Virial theorems for trapped cold atoms. Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2008, 78, pp.025601. hal-00266437v3

HAL Id: hal-00266437 https://hal.science/hal-00266437v3

Submitted on 3 Aug 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Virial theorems for trapped cold atoms

Félix Werner
Laboratoire Kastler Brossel, École Normale Supérieure, Université Pierre et Marie Curie-Paris 6, CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France

(Dated: August 3, 2008)

Abstract

We present a general virial theorem for quantum particles with arbitrary zero-range or finite-range interactions in an arbitrary external potential. We deduce virial theorems for several situations relevant to trapped cold atoms: zero-range interactions with and without Efimov effect, hard spheres, narrow Feshbach resonances, and finite-range interactions. If the scattering length a is varied adiabatically in the BEC-BCS crossover, we find that the trapping potential energy as a function of $1 / a$ has an inflexion point at unitarity.

PACS numbers: 03.75.Ss, 05.30.Jp

In quantum mechanics, zero-range interactions can be expressed as boundary conditions on the many-body wavefunction in the limit of vanishing interparticle distance [1]. These boundary conditions define the domain of the Hamiltonian, i. e. the set of wavefunctions on which the Hamiltonian is allowed to act. The Hamiltonian of a zero-range model differs from the noninteracting Hamiltonian only by its domain. In $3 D$, the zero-range model has a long history in nuclear physics going back to the work of Wigner, Bethe and Peierls on the 2-nucleon problem [2].

Zero-range interactions provide an accurate description of cold atom experiments [3, 4, 5]. In particular, two-component fermionic atoms in $3 D$ at a broad Feshbach resonance are well described by zero-range interactions of scattering length $a=\infty$. This so-called unitary limit is completely universal, e. g. the superfluid transition temperature is a universal number times the Fermi energy [6, 7, 8].
A new ingredient in cold atomic systems with respect to nuclear physics is the external trapping potential. For the unitary Fermi gas in a harmonic trap, the virial theorem

$$
\begin{equation*}
E=2 E_{\mathrm{tr}} \tag{1}
\end{equation*}
$$

was recently shown theoretically and experimentally 9 , 10, 11, 12]. Here E is the total energy and $E_{\text {tr }}$ is the trapping potential energy.

On the other hand, the traditional virial theorem does not concern zero-range interactions, but more usual interactions described by a potential energy $U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)$, where the domain is simply a set of smooth functions. It states that the kinetic energy T is one half of the virial:

$$
\begin{equation*}
\langle T\rangle=\frac{1}{2}\left\langle\sum_{i=1}^{N} \mathbf{r}_{\mathbf{i}} \cdot \nabla_{\mathbf{r}_{\mathbf{i}}} U\right\rangle \tag{2}
\end{equation*}
$$

for any eigenstate; implying $\langle T\rangle=n / 2\langle U\rangle$ if U is a homogeneous function of degree n. This theorem is as old as many-particle quantum mechanics [13, and is used e. g. to understand the properties of many-electron atoms 14 .

In this paper, we present a general virial theorem for a Hamiltonian with an arbitrary domain. In the particular case where the domain does not depend on any length scale, we recover the virial theorem for the unitary gas Eq. (1) and the traditional virial theorem Eq. (2). By considering the case of a more general domain, we find new virial theorems for several interactions relevant to cold atoms: zero-range interactions of arbitrary scattering length with or without Efimov effect, hard spheres, narrow Feshbach resonances, and finite-range interactions. Our theorems hold for any trapping potential, in any space dimension. They are valid not only for each eigenstate, but also at thermal equilibrium provided the entropy S is kept constant. For zero-range interactions without Efimov effect, the virial theorem implies that for any S, the function $E_{\mathrm{tr}}(1 / a, S)$ has an inflexion point at the unitary limit $1 / a=0$.
General Virial Theorem. Let us consider a quantum problem of N particles, with arbitrary statistics and dispersion relations. The position $\mathbf{r}_{\mathbf{i}}$ of particle i is a vector of arbitrary dimension, with continuous or discrete coordinates. We consider a general Hamiltonian

$$
\begin{equation*}
H=H^{\prime}+U\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right) \tag{3}
\end{equation*}
$$

where

- H^{\prime} and its domain depend on p parameters l_{1}, \ldots, l_{p} which have the dimension of a length, on \hbar, and on some arbitrary fixed mass m
- $U\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right)$ is an arbitrary function, which is sufficiently regular so that the domains of H and H^{\prime} coincide. Then, as shown below:

$$
\begin{equation*}
E=\left\langle U+\frac{1}{2} \sum_{i=1}^{N} \mathbf{r}_{\mathbf{i}} \cdot \nabla_{\mathbf{r}_{\mathbf{i}}} U\right\rangle-\frac{1}{2} \sum_{q=1}^{p} l_{q} \frac{\partial E}{\partial l_{q}} \tag{4}
\end{equation*}
$$

for any stationary state of energy E, the partial derivatives $\partial E / \partial l_{q}$ being taken for a fixed function U.

To derive the above theorem, we use dimensional analysis to rewrite U as

$$
\begin{equation*}
U\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right)=\frac{\hbar^{2} \lambda^{2}}{m} f\left(\lambda \mathbf{r}_{1}, \ldots, \lambda \mathbf{r}_{\mathbf{N}}\right) \tag{5}
\end{equation*}
$$

where λ has the dimension of the inverse of a length, and f is dimensionless function. The theorem then follows from the following two relations:

$$
\begin{align*}
& \lambda \frac{\partial E}{\partial \lambda}=\left\langle 2 U+\sum_{i=1}^{N} \mathbf{r}_{\mathbf{i}} \cdot \nabla_{\mathbf{r}_{\mathbf{i}}} U\right\rangle \tag{6}\\
& \lambda \frac{\partial E}{\partial \lambda}=2 E+\sum_{q=1}^{p} l_{q} \frac{\partial E}{\partial l_{q}} \tag{7}
\end{align*}
$$

Here the partial derivatives with respect to λ are taken for a fixed function f and for fixed l_{1}, \ldots, l_{p}.
Eq. (6) follows from the Hellmann-Feynman theorem (15] and from Eq. (5). The Hellmann-Feynman theorem holds if the derivative $\partial|\psi\rangle / \partial \lambda$ of the considered eigenstate belongs to the domain of H. We expect this to be true in all situations considered in this paper.
Eq. (7) follows from the fact that, by dimensional analysis, the energy writes

$$
\begin{equation*}
E\left(l_{1}, \ldots, l_{p},[U]\right)=\frac{\hbar^{2} \lambda^{2}}{m} F\left(\lambda l_{1}, \ldots, \lambda l_{p},[f]\right) \tag{8}
\end{equation*}
$$

where F is a dimensionless functional.
The traditional virial theorem Eq. (2) is recovered by applying the general virial theorem to the case where:

- The operator H^{\prime} in Eq. (3) reduces to the kinetic energy

$$
\begin{equation*}
T=-\sum_{i=1}^{N} \frac{\hbar^{2}}{2 m_{i}} \Delta_{\mathbf{r}_{\mathbf{i}}}, \tag{9}
\end{equation*}
$$

m_{i} being the mass of particle i;

- The domain is simply a set a wavefunctions which are smooth when particles approach each other.
Since this domain does not depend on any length scale, the second term on the right-hand-side of Eq. (4) vanishes, and the result Eq. (2) follows.
Virial theorems for trapped cold atoms. In what follows we restrict to the experimentally relevant case where U is a sum of trapping potentials:

$$
\begin{equation*}
U\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right)=\sum_{i=1}^{N} U_{i}\left(\mathbf{r}_{\mathbf{i}}\right) \tag{10}
\end{equation*}
$$

and we rewrite the general virial theorem Eq. (4) as:

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}-\frac{1}{2} \sum_{i=1}^{p} l_{i} \frac{\partial E}{\partial l_{i}}, \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{E}_{\mathrm{tr}} \equiv \frac{1}{2} \sum_{i=1}^{N}\left\langle U_{i}\left(\mathbf{r}_{\mathbf{i}}\right)+\frac{1}{2} \mathbf{r}_{\mathbf{i}} \cdot \nabla U_{i}\left(\mathbf{r}_{\mathbf{i}}\right)\right\rangle . \tag{12}
\end{equation*}
$$

If each U_{i} is a harmonic trap, then $\tilde{E}_{\text {tr }}$ reduces to the trapping potential energy: $\tilde{E}_{\mathrm{tr}}=\sum_{i=1}^{N}\left\langle U_{i}\left(\mathbf{r}_{\mathbf{i}}\right)\right\rangle=E_{\mathrm{tr}}$.
A. Zero-range interactions. We now assume that each pair of particles either interacts via a zero-range interaction of scattering length a, or does not interact. Zero-range interactions are well-known in $1 D$ 16, 17, $2 D 18$ and $3 D$ [2, 12, 19, 20, 21, 22, 23].
A. 1 Universal states. We call universal state a stationary state of the zero-range model which depends only on the scattering length. All eigenstates are believed to be universal in $1 D$ and $2 D$ (16, 17, 24 and references therein) and in $3 D$ for fermions with two components of equal masses $3,7,7,5,7,8,9,10,11,12,19,20,21,23$, $25,26,27,28,29,30,31,32,33,34,35,36$ or unequal masses with a mass ratio not too far from one [5, 36]. For 3 bosons in $3 D$ there are both non-universal efimovian states and universal states 22, 23].
In the Hilbert space generated by universal states, the domain of the Hamiltonian depends only on the scattering length. Thus Eq. (11) gives for any universal state:

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}-\frac{1}{2} a \frac{\partial E}{\partial a}, \tag{13}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}+\frac{1}{2 a} \frac{\partial E}{\partial(1 / a)} \tag{14}
\end{equation*}
$$

This result generalizes the virial theorem Eq. (11) to an arbitrary scattering length, trapping potential and space dimension. Thus it also applies to quantum gases in low dimensions (37, 38, 39, 40 and refs. therein). For the case of 2 -component fermions in 3 dimensions and powerlaw traps, this result is also contained in two recently submitted works: it was found independently by S. Tan in 41] and rederived using a method similar to ours in (42.

For $a=\infty$ (which is the unitary limit in $3 D$ and the non-interacting limit in $1 D$ and $2 D$), Eq. (14) becomes:

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}} \tag{15}
\end{equation*}
$$

This generalisation of Eq. (1) to an arbitrary trap was obtained by Y. Castin (unpublished), and is also contained in the recent independent work of J. Thomas [43]. Of course it also holds for $a=0$ (which is the TonksGirardeau limit in $1 D$ and the non-interacting limit $2 D$ and $3 D$) in accordance with Eq. (13).

Taking the second derivative of Eq. (14) we obtain:

$$
\begin{equation*}
\left.\frac{\partial^{2} \tilde{E}_{\mathrm{tr}}}{\partial(1 / a)^{2}}\right|_{a=\infty}=0 \tag{16}
\end{equation*}
$$

which means that generically the curve $\tilde{E}_{\mathrm{tr}}(1 / a)$ has an inflexion point exactly at the unitary limit $1 / a=0$.

We can also rewrite Eq. (14) in an integral form:

$$
\begin{equation*}
a_{2}^{2} E\left(a_{2}\right)-a_{1}^{2} E\left(a_{1}\right)=-4 \int_{1 / a_{1}}^{1 / a_{2}} a^{3} \tilde{E}_{\mathrm{tr}}(a) d(1 / a), \tag{17}
\end{equation*}
$$

which is likely to have a better signal-to-noise ratio than Eq. (14) when applied to experiments or numerics.
A. 2 Efimovian states. The boundary condition in the limit where two particles approach each other is called Bethe-Peierls boundary condition (BPbc). For 3 bosonic or distinguishable particles, there exists Efimov bound states 19], and the domain of the zero-range model is defined not only by the BPbc in the limit where two particles approach each other, but also by an additional boundary condition in the limit where all three particles approach each other. While the BPbc depends on the scattering length a, this additional boundary condition depends on a 3-body parameter which we call R_{t} and has the dimensions of a length [23, 44]. The resulting 2-parameter model is known to be self-adjoint and physically meaningful for $N=3$ particles $19,20,22,23,44$. The case $N \geq 4$ is still controversial 45.

For this model, the general virial theorem Eq. (11) gives:

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}+\frac{1}{2}\left[\frac{1}{a} \frac{\partial E}{\partial(1 / a)}-R_{t} \frac{\partial E}{\partial R_{t}}\right] . \tag{18}
\end{equation*}
$$

For $a=\infty$ this reduces to

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}-\frac{R_{t}}{2} \frac{\partial E}{\partial R_{t}} \tag{19}
\end{equation*}
$$

We now apply this to the unitary 3 -boson problem in an isotropic harmonic trap, which is exactly solvable 22, 23]. The spectrum is $E=E_{\mathrm{CM}}+\mathcal{E} \hbar \omega$ where E_{CM} is the energy of the center-of-mass and \mathcal{E} solves:

$$
\begin{equation*}
\arg \Gamma\left(\frac{1+s-\mathcal{E}}{2}\right)=-|s| \ln R_{t}+\arg \Gamma(1+s) \bmod \pi \tag{20}
\end{equation*}
$$

$s \simeq i \cdot 1.00624$ being the only solution $s \in i \cdot(0 ;+\infty)$ of the equation: $s \cos (s \pi / 2)-8 / \sqrt{3} \sin (s \pi / 6)=0$. This allows to calculate $\partial \mathcal{E} / \partial R_{t}$, and Eq. (19) then gives 46:

$$
\begin{equation*}
E_{\operatorname{tr}}=\frac{1}{2}\left(E+\frac{|s|}{\operatorname{Im} \psi\left(\frac{1+s-\mathcal{E}}{2}\right)}\right) \tag{21}
\end{equation*}
$$

where ψ is the digamma function. But we can also express $E_{\text {tr }}$ using the wavefunction, which has a simple expression in terms of the Whittaker W function [23]; the result agrees with Eq. (21) provided that (46]:

$$
\begin{align*}
\int_{0}^{\infty} d x\left[W_{\frac{\mathcal{E}}{2}, \frac{s}{2}}(x)\right]^{2}= & \left(\mathcal{E} \cdot \operatorname{Im} \psi\left(\frac{1+s-\mathcal{E}}{2}\right)+|s|\right) \\
& \cdot \frac{2 \pi}{\sinh (|s| \pi)\left|\Gamma\left(\frac{1+s-\mathcal{E}}{2}\right)\right|^{2}} \tag{22}
\end{align*}
$$

Numerical checks confirm this relation.
B. Hard sphere interactions. Here the domain is defined by the condition that the wavefunction vanishes if any interparticle distance is smaller than a. Applying
the general virial theorem with a single length scale gives:

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}-\frac{1}{2} a \frac{\partial E}{\partial a} . \tag{23}
\end{equation*}
$$

Again, it can be useful to rewrite Eq. (23) in an integral form:

$$
\begin{equation*}
E(a)=\frac{4}{a^{2}} \int_{0}^{a} a^{\prime} \tilde{E}_{\mathrm{tr}}\left(a^{\prime}\right) d a^{\prime} \tag{24}
\end{equation*}
$$

Within the $3 D$ Gross-Pitaevskii theory, $a \partial E / \partial a$ is the interaction energy, so that Eq. (23) agrees with the virial theorem of 47.
C. Finite-range interactions. We now consider models with two parameters, the scattering length a and a range l. Popular examples are the square-well interaction potential [28], separable potentials 23], and Hubbard-like lattice models where the lattice spacing l plays the role of the interaction range [7, 26, 29]. For such 2-parameter models the general virial theorem gives:

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}+\frac{1}{2}\left[\frac{1}{a} \frac{\partial E}{\partial(1 / a)}-l \frac{\partial E}{\partial l}\right] \tag{25}
\end{equation*}
$$

and for $a=\infty$:

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}-\frac{l}{2} \frac{\partial E}{\partial l} \tag{26}
\end{equation*}
$$

Setting $E_{0}=\lim _{l \rightarrow 0} E(l)$, Eq. (26) implies

$$
\begin{equation*}
E_{0}=3 E-4 \tilde{E}_{\mathrm{tr}}+O\left(l^{2}\right) \tag{27}
\end{equation*}
$$

which can be used to compute numerically E_{0}. This method is simpler than the usual one, where one computes E for several values of l and extrapolates linearly to $l=0$ [23, 26, 36].
D. Effective range model and narrow resonances. The effective range model has two parameters, the scattering length a and the effective range r_{e}. For $r_{e}<0$, the model describes a narrow Feshbach resonance 4, 48, 49, 50, 51. For $r_{e} \rightarrow 0^{-}$, the model has a limit cycle described by the zero-range model of Sec. A.2, with $R_{t}=C r_{e}$, where the constant C was obtained numerically 48] and analytically 50. The model is expected to be hermitian for a modified scalar product, for 2 particles 52] and 3 particles 49. Thus the HellmannFeynman theorem can be used and the general virial theorem holds, implying:

$$
\begin{equation*}
E=2 \tilde{E}_{\mathrm{tr}}+\frac{1}{2}\left[\frac{1}{a} \frac{\partial E}{\partial(1 / a)}-r_{e} \frac{\partial E}{\partial r_{e}}\right] . \tag{28}
\end{equation*}
$$

For $r_{e}>0$, the effective range model is well-defined if r_{e} is treated perturbatively 44, and Eq. (28) holds, in agreement with Eq. (25).
At finite temperature. We will show that the above results remain true at finite temperature, provided one
considers adiabatic transformations. For concreteness we restrict to zero-range interactions in the universal case. We consider that each eigenstate n has an occupation probability p_{n}. We set $\bar{E}=\sum_{n} E_{n} p_{n}$ and $\overline{\tilde{E}_{\mathrm{tr}}}=\sum_{n}\left(\tilde{E}_{\mathrm{tr}}\right)_{n} p_{n}$.

Let us first recall the reasoning of Tan 41, 53]: for a finite system, in the limit where a is varied infinitely slowly, the adiabatic theorem implies that the p_{n} 's remain constant, so that

$$
\begin{equation*}
\sum_{n} \frac{\partial E_{n}}{\partial(1 / a)} p_{n}=\frac{\partial}{\partial(1 / a)} \sum_{n} E_{n} p_{n} \tag{29}
\end{equation*}
$$

Tan concludes that E and $\tilde{E}_{\text {tr }}$ can be replaced by their average values \bar{E} and $\overline{\tilde{E}_{\mathrm{tr}}}$ in the virial theorem Eq. (14).

Alternatively, let us assume that the p_{n} 's are given by the canonical distribution $p_{n} \propto e^{-E_{n}(a) /\left(k_{B} T\right)}$, where the temperature T varies with a in such a way that the entropy $S=-k_{B} \sum_{n} p_{n} \ln p_{n}$ remains constant. According to the principles of thermodynamics, this assumption is a good effective description of adiabatic sweep experiments where a is changed at a rate much smaller than thermalisation rates and much larger than heating and evaporation rates $[8,30,35,54,55]$. Under this assumption Eq. (29) also holds 56. Thus:

$$
\begin{equation*}
\bar{E}=2 \overline{\tilde{E}_{\mathrm{tr}}}+\frac{1}{2 a}\left(\frac{\partial \bar{E}}{\partial(1 / a)}\right)_{S} \tag{30}
\end{equation*}
$$

This result is physically consistent with Tan's conclusion. Moreover it implies:

$$
\begin{equation*}
\frac{\partial^{2} \overline{\tilde{E}_{\mathrm{tr}}}}{\partial(1 / a)^{2}}\left(\frac{1}{a}=0, S\right)=0 \tag{31}
\end{equation*}
$$

$a_{2}{ }^{2} \bar{E}\left(a_{2}, S\right)-a_{1}{ }^{2} \bar{E}\left(a_{1}, S\right)=-4 \int_{1 / a_{1}}^{1 / a_{2}} a^{3} \overline{\tilde{E}_{\mathrm{tr}}}(a, S) d(1 / a)$.
$\underline{\text { Experimental considerations. Both } E \text { and } \tilde{E}_{\text {tr }} \text { are }}$ measurable. Indeed, \tilde{E}_{tr} and the trapping potential energy E_{tr} can be deduced from an in-situ image of the density profile 32, 34, 35, 57, and the released energy $E-E_{\text {tr }}$ from a time of flight image [33, 38, 58, 59]. By measuring \bar{E} and \bar{E}_{tr}, and using the virial theorem Eq. (30), one could deduce the quantity $(\partial \bar{E} / \partial(1 / a))_{S}$ [61]. This quantity is also related to the large-momentum tail of the momentum distribution 53] and to the total energy 62.

Moreover, Eqs. (30,31,32) can be directly checked by measuring $E(a)$ and $E_{\text {tr }}(a)$ in an adiabatic sweep experiment.

I am grateful to S. Tan and J. Thomas for drawing my attention to 41, 42, 43, and to M. Antezza, S. Biermann, E. Braaten, Y. Castin, M. Cheneau, F. Chevy, J. Dalibard, B. Derrida, W. Krauth, F. Laloë, S. Nascimbène, M. Olshanii, A. Ridinger, B. Roulet, C. Salomon,
R. Sheshko, S. Tan, L. Tarruell, and J. Thomas for discussions and comments. LKB is a Unité Mixte de Recherche of ENS, Université Paris 6 and CNRS. Our research group is a member of IFRAF.
[1] Zero-range interactions can only be represented by an interaction potential proportional to the Dirac distribution in $1 D$, or in perturbative approaches in $2 D$ and $3 D$.
[2] E. Wigner, Zeits. f. Physik 83, 253 (1933); H. Bethe and R. Peierls, Proc. R. Soc. London, Ser. A, 148, 146 (1935).
[3] M. Inguscio, W. Ketterle and C. Salomon (Eds.), Proc. the Enrico Fermi School on Fermi gases, SIF, 2007.
[4] Y. Castin in (3].
[5] D. S. Petrov, C. Salomon and G. V. Shlyapnikov in [3].
[6] J. Kinast et al., Science 307, 1296 (2005).
[7] E. Burovski et al., Phys. Rev. Lett. 96, 160402 (2006); New J. Phys. 8, 153 (2006).
[8] L. Luo et al., Phys. Rev. Lett. 98, 080402 (2007).
[9] F. Chevy, unpublished, reported in 10, 12].
[10] Y. Castin, talk at KITP (UCSB), 2004, http://online.itp.ucsb.edu/online/gases04/castin
[11] J. E. Thomas et al., Phys. Rev. Lett. 95, 120402 (2005).
[12] F. Werner, Y. Castin, Phys. Rev. A 74, 053604 (2006).
[13] M. Born, W. Heisenberg and P. Jordan, "Zur Quantenmechanik. II.", Zeits. f. Physik 35, 557 (1926).
[14] K. Hongo et al., J. Chem. Phys., 121, 7144 (2004).
[15] See also: D. T. Son, arXiv:0707.1851v1.
[16] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[17] M. Gaudin, La Fonction d'onde de Bethe, Masson, 1983.
[18] D. S. Petrov, G. V. Shlyapnikov, Phys. Rev. A 64, 012706 (2001); L. Pricoupenko, M. Olshanii, J. Phys. B 40, 2065 (2007).
[19] V. N. Efimov, Yad. Fiz. 12, 1080 (1970) [Sov. J. Nucl. Phys. 12, 589 (1971)].
[20] S. Albeverio et al., Phys. Lett. A 83, 105 (1981).
[21] D. S. Petrov et al. Phys. Rev. Lett. 93, 090404 (2004).
[22] S. Jonsell et al., Phys. Rev. Lett. 89, 250401 (2002).
[23] F. Werner, Y. Castin, Phys. Rev. Lett. 97, 150401 (2006).
[24] I. V. Brodsky et al., Phys. Rev. A 73, 032724 (2006).
[25] D. Blume et al. Phys. Rev. Lett. 99, 233201 (2007).
[26] L. Pricoupenko, Y. Castin, J. Phys. A 40, 12863 (2007).
[27] J. Carlson et al., Phys. Rev. Lett. 91, 050401 (2003).
[28] G. E. Astrakharchik et al., Phys. Rev. Lett. 93, 200404 (2004).
[29] O. Juillet, New J. Phys. 9, 163 (2007).
[30] R. Grimm in (3].
[31] L. Tarruell et al. in (3].
[32] M. Bartenstein et al., Phys. Rev. Lett. 92, 120401 (2004).
[33] T. Bourdel et al., Phys. Rev. Lett. 93, 050401 (2004).
[34] G. B. Partridge et al., Science 311, 503 (2006).
[35] J. T. Stewart, et al., Phys. Rev. Lett. 97, 220406 (2006).
[36] J. von Stecher et al., arXiv:0801.2747v1.
[37] I. Bloch et al., arXiv:0704.3011v2.
[38] T. Kinoshita et al., Science 305, 1125 (2004).
[39] Z. Hadzibabic et al., New J. Phys. 10, 045006 (2008).
[40] M. Holzmann et al., Europhys. Lett. 82, 30001 (2008).
[41] S. Tan, arXiv:0803.0841v1.
[42] E. Braaten and L. Platter, arXiv:0803.1125v1.
[43] J. E. Thomas, arXiv:0803.1647v1.
[44] F. Werner, PhD Thesis, Unitersity Paris 6, 2008, Chap. 3, and references therein (http://tel.archives-ouvertes.fr/tel00285587).
[45] L. Platter et al., Phys. Rev. A 70, 052101 (2004); M. T.

Yamashita et al., Europhys. Lett. 75, 555 (2006).
[46] For details, see F. Werner, arXiv:0803.3277v1, App. A.
[47] F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999).
[48] D. S. Petrov, Phys. Rev. Lett. 93, 143201 (2004).
[49] M. Jona-Lasinio, L. Pricoupenko, in preparation.
[50] A. O. Gogolin et al., Phys. Rev. Lett. 100, 140404 (2008).
[51] E. Braaten, M. Kusunoki, D. Zhang, arXiv:0709.0499v2.
[52] L. Pricoupenko, Phys. Rev. A 73, 012701 (2006).
[53] S. Tan, arXiv:cond-mat/0508320.
[54] L. D. Carr et al., Phys. Rev. Lett. 92, 150404 (2004).
[55] In low dimensions there is a caveat: the thermalization time may diverge with the system size, see A. Polkovnikov, V. Gritsev, Nature Physics 4, 477 (2008).
[56] N. N. Bogoliubov, Lectures on quantum statistics, Vol. 1, Gordon \& Breach, New York, 1967.
[57] Y. Shin et al., Phys. Rev. Lett. 97, 030401 (2006).
[58] K. M. O'Hara et al., Science 298, 2179 (2002).
[59] If the expansion dynamics is known theoretically, then other experimental methods become available: energy can be precisely added to the gas $\left[6,41\right.$, and E_{tr} and $\tilde{E}_{\text {tr }}$ can be deduced from a time-of-flight image [8, 11] . The expansion dynamics is known if hydrodynamics [6, 11] or exact scaling solutions 60 are applicable.
[60] Y. Castin, C. R. Physique 5, 407 (2004); C. Lobo, S. D. Gensemer, arXiv:cond-mat/0702313v1.
[61] However this method breaks down at unitarity, where $E-2 \tilde{E}_{\mathrm{tr}} \rightarrow 0$.
[62] S. Tan, arXiv:cond-mat/0505200.

