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We present a general virial theorem for quantum particles with arbitrary zero-range or finite-range
interactions in an arbitrary external potential. We deduce virial theorems for several situations rel-
evant to trapped cold atoms: zero-range interactions with and without Efimov effect, hard spheres,
narrow Feshbach resonances, and finite-range interactions. If the scattering length a is varied adia-
batically in the BEC-BCS crossover, we find that the trapping potential energy as a function of 1/a
has an inflexion point at unitarity.

PACS numbers: 03.75.Ss, 05.30.Jp

In quantum mechanics, zero-range interactions can
be expressed as boundary conditions on the many-body
wavefunction in the limit of vanishing interparticle dis-
tance [1]. These boundary conditions define the do-

main of the Hamiltonian, i. e. the set of wavefunc-
tions on which the Hamiltonian is allowed to act. The
Hamiltonian of a zero-range model differs from the non-
interacting Hamiltonian only by its domain. In 3D, the
zero-range model has a long history in nuclear physics
going back to the work of Wigner, Bethe and Peierls on
the 2-nucleon problem [2].

Zero-range interactions provide an accurate descrip-
tion of cold atom experiments [3, 4, 5]. In particular,
two-component fermionic atoms in 3D at a broad Fesh-
bach resonance are well described by zero-range interac-
tions of scattering length a = ∞. This so-called unitary
limit is completely universal, e. g. the superfluid transi-
tion temperature is a universal number times the Fermi
energy [6, 7, 8].

A new ingredient in cold atomic systems with respect
to nuclear physics is the external trapping potential. For
the unitary Fermi gas in a harmonic trap, the virial the-
orem

E = 2Etr (1)

was recently shown theoretically and experimentally [9,
10, 11, 12]. Here E is the total energy and Etr is the
trapping potential energy.

On the other hand, the traditional virial theorem does
not concern zero-range interactions, but more usual in-
teractions described by a potential energy U(~r1, . . . , ~rN ),
where the domain is simply a set of smooth functions. It
states that the kinetic energy T is one half of the virial:

〈T 〉 =
1

2

〈

N
∑

i=1

ri · ∇ri
U

〉

(2)

for any eigenstate; implying 〈T 〉 = n/2 〈U〉 if U is a ho-
mogeneous function of degree n. This theorem is as old as
many-particle quantum mechanics [13], and is used e. g.
to understand the properties of many-electron atoms [14].

In this paper, we present a general virial theorem for a
Hamiltonian with an arbitrary domain. In the particular
case where the domain does not depend on any length
scale, we recover the virial theorem for the unitary gas
Eq. (1) and the traditional virial theorem Eq. (2). By
considering the case of a more general domain, we find
new virial theorems for several interactions relevant to
cold atoms: zero-range interactions of arbitrary scatter-
ing length with or without Efimov effect, hard spheres,
narrow Feshbach resonances, and finite-range interac-
tions. Our theorems hold for any trapping potential, in
any space dimension. They are valid not only for each
eigenstate, but also at thermal equilibrium provided the
entropy S is kept constant. For zero-range interactions
without Efimov effect, the virial theorem implies that for
any S, the function Etr(1/a, S) has an inflexion point at
the unitary limit 1/a = 0.
General Virial Theorem. Let us consider a quantum
problem of N particles, with arbitrary statistics and dis-
persion relations. The position ri of particle i is a vector
of arbitrary dimension, with continuous or discrete coor-
dinates. We consider a general Hamiltonian

H = H ′ + U(r1, . . . , rN) (3)

where
• H ′ and its domain depend on p parameters l1, . . . , lp
which have the dimension of a length, on ~, and on some
arbitrary fixed mass m
• U(r1, . . . , rN) is an arbitrary function, which is suffi-
ciently regular so that the domains of H and H ′ coincide.
Then, as shown below:

E =

〈

U +
1

2

N
∑

i=1

ri · ∇ri
U

〉

− 1

2

p
∑

q=1

lq
∂E

∂lq
(4)

for any stationary state of energy E, the partial deriva-
tives ∂E/∂lq being taken for a fixed function U .

To derive the above theorem, we use dimensional anal-
ysis to rewrite U as

U(r1, . . . , rN) =
~

2λ2

m
f(λr1, . . . , λrN) (5)
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where λ has the dimension of the inverse of a length, and
f is dimensionless function. The theorem then follows
from the following two relations:

λ
∂E

∂λ
= 〈ψ| 2U +

N
∑

i=1

ri · ∇ri
U |ψ〉 (6)

λ
∂E

∂λ
= 2E +

p
∑

q=1

lq
∂E

∂lq
. (7)

Here the partial derivatives with respect to λ are taken
for a fixed function f and for fixed l1, . . . , lp.
Eq. (6) follows from the Hellmann-Feynman theorem [15]
and from Eq. (5). The Hellmann-Feynman theorem holds
if ∂ |ψ〉 /∂λ belongs to the domain of H . We expect this
to be true in all situations considered in this paper.
Eq. (7) follows from the fact that, by dimensional analy-
sis, the energy writes

E(l1, . . . , lp, [U ]) =
~

2λ2

m
F (λl1, . . . , λlp, [f ]) (8)

where F is a dimensionless functional.
The traditional virial theorem Eq. (2) is recovered by

applying the general virial theorem to the case where:
• The operatorH ′ in Eq. (3) reduces to the kinetic energy

T = −
N
∑

i=1

~
2

2mi
∆ri

, (9)

mi being the mass of particle i;
• The domain is simply a set a wavefunctions which are
smooth when particles approach each other.
Since this domain does not depend on any length scale,
the second term on the right-hand-side of Eq. (4) van-
ishes, and the result Eq. (2) follows.
Virial theorems for trapped cold atoms. In what
follows we restrict to the experimentally relevant case
where U is a sum of trapping potentials:

U(r1, . . . , rN) =

N
∑

i=1

Ui(ri), (10)

and we rewrite the general virial theorem Eq. (4) as:

E = 2Ẽtr −
1

2

p
∑

i=1

li
∂E

∂li
, (11)

where

Ẽtr ≡
1

2

N
∑

i=1

〈

Ui(ri) +
1

2
ri · ∇Ui(ri)

〉

. (12)

If each Ui is a harmonic trap, then Ẽtr reduces to the
trapping potential energy: Ẽtr =

∑N
i=1 〈Ui(ri)〉 = Etr.

A. Zero-range interactions. We now assume that
each pair of particles either interacts via a zero-range
interaction of scattering length a, or does not interact.
Zero-range interactions are well-known in 1D [16, 17],
2D [18] and 3D [2, 12, 19, 20, 21, 22, 23].
A.1 Universal states. We call universal state a sta-
tionary state of the zero-range model which depends only
on the scattering length. All eigenstates are believed to
be universal in 1D and 2D ([16, 17, 24] and references
therein) and in 3D for spin-1/2 fermions [3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 19, 20, 21, 23, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36]. For 3 bosons in 3D there are both non-
universal efimovian states and universal states [22, 23].

In the Hilbert space generated by universal states, the
domain of the Hamiltonian depends only on the scatter-
ing length. Thus Eq. (11) gives for any universal state:

E = 2Ẽtr −
1

2
a
∂E

∂a
, (13)

or equivalently

E = 2Ẽtr +
1

2a

∂E

∂(1/a)
. (14)

This result generalizes the virial theorem Eq. (1) to an
arbitrary scattering length, trapping potential and space
dimension. Thus it also applies to quantum gases in low
dimensions ([37, 38, 39, 40] and refs. therein). For the
case of 2-component fermions in 3 dimensions and power-
law traps, this result is also contained in two recently
submitted works: it was found independently by S. Tan
in [41] and rederived using a method similar to ours in
[42].

For a = ∞ (which is the unitary limit in 3D and the
non-interacting limit in 1D and 2D), Eq. (14) becomes:

E = 2Ẽtr. (15)

This generalisation of Eq. (1) to an arbitrary trap was
obtained by Y. Castin (unpublished), and is also con-
tained in the recent independent work of J. Thomas [43].
Of course it also holds for a = 0 (which is the Tonks-
Girardeau limit in 1D and the non-interacting limit 2D
and 3D) in accordance with Eq. (13).

Taking the second derivative of Eq. (14) we obtain:

∂2Ẽtr

∂(1/a)2

∣

∣

∣

∣

∣

a=∞

= 0, (16)

which means that generically the curve Ẽtr(1/a) has an
inflexion point exactly at the unitary limit 1/a = 0.

We can also rewrite Eq. (14) in an integral form:

a 2
2 E(a2) − a 2

1 E(a1) = −4

∫ 1/a2

1/a1

a3Ẽtr(a) d(1/a), (17)
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which is likely to have a better signal-to-noise ratio than
Eq. (14) when applied to experiments or numerics.
A.2 Efimovian states. The boundary condition in the
limit where two particles approach each other is called
Bethe-Peierls boundary condition (BPbc). For 3 bosonic
or distinguishable particles, there exists Efimov bound
states [19], and the domain of the zero-range model is
defined not only by the BPbc in the limit where two
particles approach each other, but also by an additional
boundary condition in the limit where all three particles
approach each other. While the BPbc depends on the
scattering length a, this additional boundary condition
depends on a 3-body parameter which we call Rt and
has the dimensions of a length [23, 44]. The resulting
2-parameter model is known to be self-adjoint and phys-
ically meaningful for N = 3 particles [19, 20, 22, 23, 44].
The case N ≥ 4 is still controversial [45].

For this model, the general virial theorem Eq. (11)
gives:

E = 2Ẽtr +
1

2

[

1

a

∂E

∂(1/a)
−Rt

∂E

∂Rt

]

. (18)

For a = ∞ this reduces to

E = 2Ẽtr −
Rt

2

∂E

∂Rt
. (19)

We now apply this to the unitary 3-boson problem in
an isotropic harmonic trap, which is exactly solvable [22,
23]. The spectrum is E = ECM + E ~ω where ECM is the
energy of the center-of-mass and E solves:

arg Γ

(

1 + s− E
2

)

= −|s|lnRt + arg Γ(1 + s) mod π,

(20)
s ≃ i · 1.00624 being the only solution s ∈ i · (0; +∞) of
the equation: s cos (sπ/2) − 8/

√
3 sin (sπ/6) = 0. This

allows to calculate ∂E/∂Rt, and Eq. (19) then gives [46]:

Etr =
1

2

(

E +
|s|

Imψ
(

1+s−E

2

)

)

(21)

where ψ is the digamma function. But we can also ex-
press Etr using the wavefunction, which has a simple ex-
pression in terms of the Whittaker W function [23]; the
result agrees with Eq. (21) provided that [46]:

∫ ∞

0

dx
[

W E

2
, s

2

(x)
]2

=

(

E · Imψ

(

1 + s− E
2

)

+ |s|
)

· 2 π

sinh(|s|π)
∣

∣Γ
(

1+s−E

2

)
∣

∣

2 . (22)

Numerical checks confirm this relation.
B. Hard sphere interactions. Here the domain is
defined by the condition that the wavefunction vanishes
if any interparticle distance is smaller than a. Applying

the general virial theorem with a single length scale gives:

E = 2Ẽtr −
1

2
a
∂E

∂a
. (23)

Again, it can be useful to rewrite Eq. (23) in an integral
form:

E(a) =
4

a2

∫ a

0

a′Ẽtr(a
′) da′. (24)

Within the 3D Gross-Pitaevskii theory, a ∂E/∂a is the
interaction energy, so that Eq. (23) agrees with the virial
theorem of [47].
C. Finite-range interactions. We now consider mod-
els with two parameters, the scattering length a and a
range l. Popular examples are the square-well interaction
potential [28], separable potentials [23], and Hubbard-like
lattice models where the lattice spacing l plays the role
of the interaction range [7, 26, 29]. For such 2-parameter
models the general virial theorem gives:

E = 2Ẽtr +
1

2

[

1

a

∂E

∂(1/a)
− l

∂E

∂l

]

, (25)

and for a = ∞:

E = 2Ẽtr −
l

2

∂E

∂l
. (26)

Setting E0 = liml→0 E(l), Eq. (26) implies

E0 = 3E − 4Ẽtr +O(l2), (27)

which can be used to compute numerically E0. This
method is simpler than the usual one, where one com-
putes E for several values of l and extrapolates linearly
to l = 0 [23, 26, 36].
D. Effective range model and narrow resonances.

The effective range model has two parameters, the
scattering length a and the effective range re. For
re < 0, the model describes a narrow Feshbach reso-
nance [4, 48, 49, 50, 51]. For re → 0−, the model has a
limit cycle described by the zero-range model of Sec. A.2,
with Rt = C re, where the constant C was obtained nu-
merically [48] and analytically [50]. The model is ex-
pected to be hermitian for a modified scalar product, for
2 particles [52] and 3 particles [49]. Thus the Hellmann-
Feynman theorem can be used and the general virial the-
orem holds, implying:

E = 2Ẽtr +
1

2

[

1

a

∂E

∂(1/a)
− re

∂E

∂re

]

. (28)

For re > 0, the effective range model is well-defined if
re is treated perturbatively [44], and Eq. (28) holds, in
agreement with Eq. (25).
At finite temperature. We will show that the above
results remain true at finite temperature, provided one
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considers adiabatic transformations. For concreteness
we restrict to zero-range interactions in the universal
case. We consider that each eigenstate n has an oc-
cupation probability pn. We set E =

∑

nEn pn and

Ẽtr =
∑

n(Ẽtr)n pn.
Let us first recall the reasoning of Tan [41, 53]: for

a finite system, in the limit where a is varied infinitely
slowly, the adiabatic theorem implies that the pn’s re-
main constant, so that

∑

n

∂En

∂(1/a)
pn =

∂

∂(1/a)

∑

n

En pn. (29)

Thus, E and Ẽtr can be replaced by their average values

E and Ẽtr in the virial theorem Eq. (14).
Alternatively, let us assume that the pn’s are given by

the canonical distribution pn ∝ e−En(a)/(kBT ), where the
temperature T varies with a in such a way that the en-
tropy S = −kB

∑

n pn ln pn remains constant. According
to the principles of thermodynamics, this assumption is
a good effective description of adiabatic sweep experi-
ments where a is changed at a rate much smaller than
thermalisation rates and much larger than heating and
evaporation rates [8, 30, 35, 54, 55]. Under this assump-
tion Eq. (29) also holds [56]. Thus:

E = 2 Ẽtr +
1

2a

(

∂E

∂(1/a)

)

S

, (30)

∂2Ẽtr

∂(1/a)2

(

1

a
= 0, S

)

= 0, (31)

a 2
2 E(a2, S)−a 2

1 E(a1, S) = −4

∫ 1/a2

1/a1

a3Ẽtr(a, S) d(1/a).

(32)
Experimental considerations. Both E and Ẽtr are

measurable. Indeed, Ẽtr and the trapping potential en-
ergy Etr can be deduced from an in-situ image of the den-
sity profile [32, 34, 35, 57], and the released energyE−Etr

from a time of flight image [33, 38, 58, 59]. By measur-

ing E and Ẽtr, and using the virial theorem Eq. (30),
one could deduce the quantity (∂E/∂(1/a))S [61]. This
quantity is also related to the large-momentum tail of the
momentum distribution [53] and to the total energy [62].

Moreover, Eqs. (30,31,32) can be directly checked by
measuring E(a) and Ẽtr(a) in an adiabatic sweep exper-
iment.
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