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Virial theorems for trapped quantum gases
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We present a general virial theorem for quantum particles with arbitrary zero-range or finite-range
interactions in an arbitrary external potential. We deduce virial theorems for several situations rel-
evant to trapped gases: zero-range interactions with and without Efimov effect, narrow resonances,
and finite-range interactions of infinite scattering length.

PACS numbers: 03.75.Ss, 05.30.Jp,03.65.-w

I. INTRODUCTION

In the early days of nuclear physics, Wigner, Bethe
and Peierls introduced the zero-range model [1]. This
zero-range limit is now realized experimentally to an un-
precedently good approximation with cold atoms. More-
over the scattering length can be tuned using a Fesh-
bach resonance and one can reach the unitary limit where
the scattering length tends to infinity ([2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and references
therein). Typically, numerics are necessary to solve ac-
curately few-body [6, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
and many-body problems [22, 23, 27, 29, 30] with reso-
nant interactions. But there also exists some analytical
results [1, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 47],
which are useful to better understand some aspects,
and to check the consistency of the zero-range model
with numerical calculations [22, 23, 24, 27] and exper-
iments [18, 48].

The most simple analytical result is the virial theorem
for the unitary gas in a harmonic trap: the energy equals
twice the trapping potential energy

E = 2Etrap (1)

for any N -body eigenstate of the zero-range model [40,
41, 42].

This was rederived using non-relativistic conformal
field theory [43]. It was also shown to hold within the
local-density approximation [18, 44].

Experimentally, the total energy is accessible from
the released energy [7, 8], and the trapping poten-
tial energy from in-situ measurement of the density
profile [9, 10, 11, 13]. If the expansion dynamics is
known theoretically, then other experimental methods
become available: energy can be precisely added to the
gas [14, 18] and the potential energy can be deduced from
a time-of-flight image [15, 18]. The expansion dynamics
is known if hydrodynamics is valid. This was used in par-
ticular to check the virial theorem experimentally [18]. In
situations where hydrodynamics break down [17], it could
be worth making an additional experimental effort to the
enter the validity regime of exact scaling solutions [34].

In this paper, we present a very general virial theorem,
and use it to generalize Eq. (1) to arbitrary scattering

lengths, trap shapes and space dimensions, to efimovian
states, to finite-range resonant interactions and to narrow
Feshbach resonances.

II. GENERAL VIRIAL THEOREM

Theorem: Consider a general quantum problem of
N particles, with arbitrary statistics and dispersion rela-
tions. The position of particle i is denoted by ri, which is
a vector of arbitrary dimension, with continuous or dis-
crete coordinates. Assume that the Hamiltonian is of the
form

H = H ′ + U(r1, . . . , rN) (2)

where
• H ′ and its domain depend on p parameters l1, . . . , lp
which have the dimension of a length, on h̄, and on some
arbitrary fixed mass m
• U(r1, . . . , rN) is an arbitrary smooth [54] function.
Then, as shown below:

E = 〈ψ|U +
1

2

N
∑

i=1

ri · ∇riU |ψ〉 − 1

2

p
∑

i=1

li
∂E

∂li
(3)

for any stationary state. The partial derivatives ∂E/∂li
are taken for a fixed function U .

Derivation: Using dimensional analysis, one can
rewrite U as

U(r1, . . . , rN) =
h̄2λ2

m
f(λr1, . . . , λrN) (4)

where λ has the dimension of the inverse of a length, and
f is dimensionless function. The theorem directly follows
from two lemmas:
Lemma 1:

λ
∂E

∂λ
= 〈ψ| 2U +

N
∑

i=1

ri · ∇riU |ψ〉 . (5)

Lemma 2:

λ
∂E

∂λ
= 2E +

p
∑

i=1

li
∂E

∂li
. (6)
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Here the partial derivatives with respect to λ are taken
for a fixed function f and for fixed l1, . . . , lp.
Lemma 1 follows from the Hellmann-Feynman theo-
rem [55, 56] and from Eq. (4).
Lemma 2 follows from the fact that, by dimensional anal-
ysis, the energy can be rewritten as

E(l1, . . . , lp, [U ]) =
h̄2λ2

m
F (λl1, . . . , λlp, [f ]) (7)

where F is a dimensionless functional.

III. A PARTICULAR CASE: THE

TRADITIONAL VIRIAL THEOREM

The traditional virial theorem concerns the case where
H ′ is just the kinetic energy

T = −
N
∑

i=1

h̄2

2mi
∆ri , (8)

mi being the mass of particle i. Since this operator and
its domain do not depend on any length, the general virial
theorem Eq. (3) reduces to the traditional one:

〈ψ|T |ψ〉 =
1

2
〈ψ|

N
∑

i=1

ri · ∇riU |ψ〉 (9)

and if U is a homogeneous function of degree n,

〈ψ|T |ψ〉 =
n

2
〈ψ|U |ψ〉 . (10)

This theorem is as old as many-particle quantum me-
chanics [52]. It is used e. g. to calculate and understand
the properties of many-electron atoms [53].

IV. VIRIAL THEOREMS FOR TRAPPED

GASES

In this Section we restrict to the case where U is a sum
of trapping potentials:

U(r1, . . . , rN) =
N
∑

i=1

Ui(ri). (11)

In this case it is convenient to rewrite the general virial
theorem Eq. (3) as:

E = 2Ẽtrap − 1

2

p
∑

i=1

li
∂E

∂li
, (12)

where

Ẽtrap ≡ 〈ψ|
N
∑

i=1

[2Ui(ri) + ri · ∇Ui(ri)] |ψ〉 /4. (13)

If each Ui is a harmonic trap, Ẽtrap reduces to the trap-
ping potential energy:

Ẽtrap = 〈ψ|
N
∑

i=1

Ui(ri) |ψ〉 = Etrap. (14)

A. Zero-range interactions

We first assume that each pair of particles either in-
teracts via a zero-range interaction of scattering length
a, or does not interact. Zero-range interactions are well-
known in d = 1, 2 and 3 dimensions. For d = 1, the
zero-range interaction is simply the interaction poten-
tial −h̄2/(µa)δ(x), µ being the reduced particle mass
[32, 57, 58]. For d = 2 and d = 3, the zero-range in-
teraction is most simply expressed as an a-dependent
boundary condition on the many-body wavefunction in
the limit of vanishing distance between two particles [59].
For d = 3 this is called Bethe-Peierls boundary condi-
tion. This boundary condition defines the domain of the
Hamiltonian.

We call universal state a stationary state of the zero-
range model which depends only on the scattering length.
All eigenstates are believed to be universal in dimension
d = 1 and d = 2 ([57, 58, 61] and references therein). In
d = 3, in some cases (e. g. for N = 3 bosons of zero total
orbital angular momentum), there is the so-called Efimov
effect, leading to non-universal states which we call efi-
movian states (in the absence of trapping potential, these
states are the well-known Efimov trimers). Even in cases
where the Efimov effect occurs, some of the eigenstates
can be universal [33, 39].

1. Universal states

In the Hilbert space generated by universal states, the
domain of the Hamiltonian depends only on the scatter-
ing length. Thus Eq. (12) gives for any universal state:

E = 2Ẽtrap − 1

2
a
∂E

∂a
, (15)

or equivalently

E = 2Ẽtrap +
1

2a

∂E

∂(1/a)
. (16)

This result generalizes the virial theorem Eq. (1) to an
arbitrary scattering length, trapping potential and space
dimension.

Thus it also applies to quantum gases in low dimen-
sions ([3, 82, 83, 84, 85, 86] and references therein).

For the 3D Fermi gas, it was shown by Shina Tan that
the quantity ∂E

∂(1/a) is related to the large-momentum tail

of the momentum distribution of the gas [37] and to its
total energy [36]. It would therefore be interesting to
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measure this fundamental quantity [36, 37]. This could
not yet be done by measuring the momentum distribu-
tion, although measurements of the momentum distribu-
tion already exist [16, 17]. An alternative method would

be to measure E and Ẽtrap, as discussed in the intro-
duction, and to use Eq. (16). This method can work if
one is sufficiently far from the Feshbach resonance, since
E − 2Ẽtrap needs to be larger than experimental error
bars.

For a = ∞ (which is the unitary limit for d = 3 and the
non-interacting limit for d = 1 and 2), Eq. (16) becomes:

E = 2Ẽtrap. (17)

This last result was obtained by Yvan Castin [62].
Of course it also holds for a = 0 (which is the Tonks-
Girardeau limit for d = 1 and the non-interacting limit
for d = 2 and 3) in accordance with Eq. (15).

Finally we note that taking the derivative of Eq. (16)
with respect to 1/a at a = ∞, one obtains:

∂E

∂(1/a)

∣

∣

∣

∣

a=∞

= 4
∂Ẽtrap

∂(1/a)

∣

∣

∣

∣

∣

a=∞

. (18)

2. Efimovian states

In cases where the Efimov effect occurs, the Bethe-
Peierls boundary condition is not sufficient to define a
hermitian problem, and one has to add a boundary con-
dition on the wavefunction when all 3 particles approach
each other. This boundary condition can be expressed in
terms of a 3-body parameter which we call Rt and has
the dimensions of a length [65]. This model is known to
be self-adjoint and physically meaningful for N = 3 par-
ticles [6, 31, 33, 39, 63, 64]. The case of N ≥ 4 is still
under debate [25].

Applying the general virial theorem Eq. (12) to this
2-parameter model, we get the virial theorem for an efi-
movian state:

E = 2Ẽtrap +
1

2

[

1

a

∂E

∂(1/a)
−Rt

∂E

∂Rt

]

. (19)

For a = ∞ this reduces to

E = 2Ẽtrap − Rt

2

∂E

∂Rt
. (20)

This allows to calculate the trapping potential energy
in the exactly solvable case of 3 bosons in an isotropic
harmonic trap, as shown in Appendix A.

B. Weakly repulsive interactions

Let us consider the regime of weak repulsive interac-
tions, which is relevant to many experiments. In 1D this

situation is well-described by the zero-range model (with
a large scattering length). But in 2 or 3 dimensions, it
is not obvious whether this regime can be described by
universal eigenstates of the zero-range model, and it is
simpler to use a finite-range repulsive potential. Results
become model-independent in the limit of small positive
scattering length [88]. We may thus choose the simple
model of a hard-sphere interaction potential of radius a
(or a hard-disc interaction 2D ). Applying the general
virial theorem with a single length scale then gives:

E = 2Ẽtrap − 1

2
a
∂E

∂a
. (21)

Within the 3D Gross-Pitaevskii theory, a ∂E/∂a is the
interaction energy [89], so that Eq. (21) agrees with the
virial theorem of [51].

C. Finite-range interactions of infinite scattering

length

In 3 dimensions, a particularly interesting case is an
interaction Vij between particles i and j which has an in-
finite scattering length, a finite range l, and does not
depend on any other length [76]. The virial theorem
Eq. (12) then reduces to:

E = 2Ẽtrap − l

2

∂E

∂l
. (22)

Let us apply this to a universal state. In the zero-range
limit l → 0 one recovers the virial theorem for the uni-
tary gas Eq. (17), as expected. In numerical calculations,
it is useful and sometimes crucial to perform an extrap-
olation to l → 0, which is typically done as follows: one
performs calculations at different values of l, checks that
the variation with l is linear, and extrapolates using a
linear fit [23, 29, 39, 78]. Interestingly, Eq. (22) allows to
obtain the first order correction to the energy, l ∂E/∂l,

by calculating E − 2Ẽtrap for a single value of l.

D. Narrow Feshbach resonances

In d = 3 dimensions, there exists an alternative zero-
range model with two parameters, the scattering length
a and a finite effective range re [28, 45, 47, 66, 67]. This
model describes a narrow Feshbach resonance, as realized
in [28] and further justified using a 2-channel model for
2 particles [45] and 3 particles [46, 47]. For re → 0, this
model has a limit cycle which is described by the zero-
range model of Section IVA2 with Rt = C re, where the
constant C was obtained numerically [28] and analyti-
cally [47]. The model is expected to be hermitian for a
modified scalar product, for 2 particles [67] and 3 parti-
cles [28, 47, 68]. Thus the Hellmann-Feynman theorem
can be used and the generalized virial theorem Eq. (12)
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holds, giving:

E = 2Ẽtrap +
1

2

[

1

a

∂E

∂(1/a)
− re

∂E

∂re

]

. (23)

V. IN A BOX

Finally we discuss what happens if the system in
enclosed in a box of size L. This may be a cubic
box with periodic boundary conditions or hard walls,
or any other box shape. Consider a system satisfying
the assumptions of the general virial theorem, with p
lengths l1, . . . , lp. Adding a box simply means to add
an additional length lp+1 = L on which the domain
of the Hamiltonian depends. Thus, the virial theo-
rems Eqs. (15,16,17,19,20,21,22,23) remain valid for a
system enclosed in a box, provided one adds the term
−L/2 · ∂E/∂L on the right-hand-side of these equa-
tions [90]. If one considers the ground state in a box of
volume V , then −L·∂E/∂L = dPV where d is the dimen-
sion of space and P = −∂E/∂V is the zero-temperature
pressure. The same conclusions hold for the standard
virial theorem Eq. (9,10), as is well-known [91, 92].

NOTE

Closely related but independent works were submitted
recently [93, 94, 95]. Some of the results found in this
paper and in [93, 94] are identical, and a method similar
to mine was used in [95].
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APPENDIX A: APPLICATION TO EFIMOVIAN

STATES AT UNITARITY

In this Section we apply the virial theorem for efi-
movian states Eq. (20) to the case of three equal mass
bosons in an isotropic harmonic trap with zero total an-
gular momentum. Since this problem is exactly solv-
able [33, 39, 69], the virial theorem will allow us to cal-
culate the trapping potential energy.

We take units in which

h̄ = m = ω = 1 (A1)

where m is the particle mass and ω is the trapping fre-
quency. Thus the total trapping potential energy is:

Etrap,tot =
1

2

3
∑

i=1

r 2
i . (A2)

In the following we call Etot and ψtot the energy and the
wavefunction of a stationary state of the 3-body problem,
so that the virial theorem Eq. (20) becomes:

Etot = 2Etot,trap − Rt

2

∂Etot

∂Rt
. (A3)

1. Separation of the center-of-mass

It is straightforward to deduce a virial theorem for the
relative motion. Since the center-of-mass coordinate C =
(r1 + r2 + r3)/3 is separable,

Etot = E + ECM (A4)

Ψtot(r1, r2, r3) = Ψ · ΨCM(C). (A5)

Here E denotes the energy for the relative motion of the
3 particles (this notation is inconsistent with the pre-
vious Sections but convenient) and Ψ depends only on
the relative coordinates [71], while ECM and ΨCM are
the well-known energy and wavefunction of the center-
of-mass problem of one particle of mass N in a trapping
potential

Etrap,CM =
1

2
NC2. (A6)

Moreover, we have

Etrap,tot = Etrap + Etrap,CM (A7)

where

Etrap =
1

2
R2, (A8)

R being the hyperradius

R =

√

1

3

∑

1≤i<j≤3

r 2
ij , (A9)

and rij = ‖ri − rj‖.
Of course, the virial theorem holds for the center-of-mass
problem:

ECM = 2Etrap,CM. (A10)

Subtracting Eq. (A10) from Eq. (A3) gives the virial the-
orem for the relative motion:

E = 2Etrap − Rt

2

∂E

∂Rt
. (A11)



5

2. Calculation of the trapping potential energy

The spectrum for the relative motion is given by the
implicit equation [33, 39]:

arg Γ

(

1 + s− E

2

)

= −|s|lnRt + arg Γ(1 + s) mod π.

(A12)
Here, s ≃ i · 1.00624 is the only solution such that s2 < 0
of the transcendental equation [31, 72]:

s cos
(

s
π

2

)

− 8√
3

sin
(

s
π

6

)

= 0. (A13)

This allows to calculate ∂E/∂Rt, and the virial theorem
Eq. (A11) then gives:

Etrap =
1

2

(

E +
|s|

Imψ
(

1+s−E
2

)

)

(A14)

where ψ is the digamma function.

3. Evaluation of an integral and numerical check

There is of course another way to express the trapping
potential energy for the relative motion:

Etrap = 〈Ψ| 1

2
R2 |Ψ〉 . (A15)

But the hyperradius is separable [33, 39]:

Ψ =
F (R)

R2
φ(Ω) (A16)

where Ω denotes the hyperangles [73]. Thus,

Etrap =

∫∞

0
dRR3 F (R)2

2
∫∞

0 dRRF (R)2
. (A17)

The hyperradial wavefunction is [39]:

F (R) = R−1WE

2
, s

2

(R2) (A18)

where W is a Whittaker function.
Using [74] we can evaluate the integral in the denomina-
tor on the right-hand-side of Eq. (A17):

∫ ∞

0

dRRF (R)2 =
π Imψ

(

1+s−E
2

)

sinh(|s|π)
∣

∣Γ
(

1+s−E
2

)∣

∣

2 . (A19)

The numerator on the right-hand-side of Eq. (A17) be-
comes, from Eq. (A18),

∫ ∞

0

dRR3 F (R)2 =
1

2
I (A20)

where

I =

∫ ∞

0

dx
[

WE

2
, s

2

(x)
]2

. (A21)

We did not find this last integral in [75]. But we
can evaluate it thanks to the expression of Etrap

which we obtained from the virial theorem. Using
Eq. (A14,A17,A19,A20) we get:

I =
2 π

sinh(|s|π)
∣

∣Γ
(

1+s−E
2

)
∣

∣

2

(

E Imψ

(

1 + s− E

2

)

+ |s|
)

.

(A22)
Numerical checks confirm this relation, thereby also con-
firming the virial theorem.
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