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Abstract

We study the periodic Hartree-Fock model used for the description
of electrons in a crystal. The existence of a minimizer was previously
shown by Catto, Le Bris and Lions (Ann. Inst. H. Poincaré Anal.

Non Linéaire 18 (2001), no. 6, 687–760). We prove in this paper that
any minimizer is necessarily a projector and that it solves a certain
nonlinear equation, similarly to the atomic case. In particular we show
that the Fermi level is either empty or totally filled.

1 Introduction

The Hartree-Fock model is widely used to describe quantum electrons in
usual matter. The purpose of this paper is to provide interesting properties
of the Hartree-Fock ground state in the periodic case, that is to say in a
condensed matter setting.

In Hartree-Fock theory [10, 2], the state of the electrons is represented
by a so-called density matrix γ. This is a self-adjoint operator 0 ≤ γ ≤ 1
acting on the physical space L2(R3). When γ has a finite trace, it models
a finite number of electrons. An important example is given by a so-called
Hartree-Fock state

γ =

N
∑

n=1

|ϕn〉〈ϕn| (1)

which is an orthogonal projector of rank and trace N , (ϕn)Nn=1 being an
orthonormal basis of the range of γ. This example models N uncorrelated
electrons, i.e. it corresponds to an N -body wavefunction of the form Ψ =
ϕ1∧· · ·∧ϕN in the antisymmetric product

∧N
1 L2(R3). The only correlation

present in such a wavefunction is that of the Pauli principle, i.e. the fact
that Ψ is antisymmetric.
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The Hartree-Fock energy is a nonlinear functional defined for any density
matrix γ and it has been largely studied in the literature [10, 13, 2, 9, 3]. An
important result due to Lieb [9] is that the minimization of this functional
over all possible density matrices having trace N , gives the same minimum
as when it is restricted to projectors of the form (1). Additionally, any
minimizer is automatically a projector, γ =

∑N
n=1 |ϕn〉〈ϕn|, and ϕ1, ..., ϕN

are the first eigenfunctions of a self-adjoint operator Hγ depending on γ

Hγϕn = λnϕn, (2)

σ(Hγ) = {λ1 ≤ · · · ≤ λN ≤ · · · } ∪ [0,∞). Notice that projectors of rank N
form the extremal points of the convex set of all density matrices of trace
N . Although it may seem natural that a minimizer is always an extremal
point of the variational convex set, this is indeed a non trivial result as the
Hartree-Fock energy is itself not concave. All these properties are important
for the device of efficient numerical methods [6, 4].

It was shown in [3] that necessarily λN < λN+1 which means that we
can write the nonlinear equation satisfied by a minimizer in the form

γ = χ(−∞,λN ](Hγ).

Throughout this article, we denote by χI the characteristic function of the
set I ⊂ R and by χI(A) the spectral projector on I of the self-adjoint
operator A.

This paper is devoted to the study of the periodic case, modeling an
infinite quantum crystal. Our main goal is to prove that any Hartree-Fock
minimizer satisfies properties similar to the molecular case described before.
For the sake of simplicity, we assume that the crystal is simply the lattice
Z

3 and that there is only one nucleus of charge Z at each site of Z
3. It is

straightforward to generalize our result to any other periodic system.
In the periodic case studied in the present paper, a state of the system is

also described by a density matrix γ. But this is no more a trace-class oper-
ator (it describes infinitely many electrons in the crystal) and it commutes
with the translations of the lattice. As before, the orthogonal projectors,
the extremal points of the set of all density matrices, will play a special role.

In the periodic setting, there is also a periodic Hartree-Fock-like energy
functional depending on γ, see Formula (8) below. It was proved by Catto,
Le Bris and Lions [7] that this energy admits a minimizer, but very few
properties of this minimizer are known at present. We prove in this paper
a result similar to [9, 3]. Namely we show that any minimizer γ of the
periodic Hartree-Fock energy is indeed always a projector and that it solves
an equation of the form

γ = χ(−∞,µ)(Hγ) + ǫχ{µ}(Hγ) (3)
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with ǫ ∈ {0, 1}. The spectrum of Hγ is composed of bands and µ may be an
eigenvalue (of infinite multiplicity, due to the invariance by translations of
the lattice). Hence the nonlinear equation (3) solved by a minimizer cannot
a priori be written in a simpler form like (2).

In [5], a result similar to (3) was recently proved for a simpler model
where the only non-convex term, called the exchange term, is neglected. In
this case the proof is much simpler than in the general case treated in the
present article. It is even possible to show that the spectrum of the self-
adjoint operator Hγ is purely absolutely continuous, hence µ cannot be an
eigenvalue and one can take ǫ = 0 in (3).

2 Model and main result

For the sake of simplicity, we assume that the nuclei are placed on the
lattice Z

3 and that they all have a charge +Z. We also discard the spin of
the electrons. Our result can of course easily be generalized to any periodic
system of spin-1/2 particles.

2.1 Notation

Let H be a Hilbert space. We denote by B(H) the space of bounded operators
and by S(H) the set of (possibly unbounded) self-adjoint operators acting on
H. In the whole paper, we denote by Sp(H) the Schatten class of operators
Q acting on the Hilbert space H and having a finite p trace, i.e. such that
trH(|Q|p) < ∞. Note that S1(H) is the space of trace-class operators on
H, and that S2(H) is the space of Hilbert-Schmidt operators on H. We
note by L2(M) the space of square-integrable complex-valued functions on
the Borel set M . Let us also introduce Γ = [−1/2, 1/2)3 the unit cell and
Γ∗ = [−π, π)3 the first Brillouin zone of the lattice.

In this paragraph, we introduce two functions G and W which we shall
need throughtout the paper. They will respectively yield the so-called direct
and exchange terms of periodic Hartree-Fock theory. We start by introduc-
ing the Z

3-periodic Green kernel of the Poisson interaction [11], denoted by
G and uniquely defined by



















−∆G = 4π





∑

k∈Z3

δk − 1





G Z
3-periodic, min

R3
G = 0

and where the first equation holds in the distributional sense. The Fourier
expansion of G is

G(x) = h +
∑

k∈2πZ3\{0}

4π

|k|2 eik·x (4)
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with h =

∫

Γ
G > 0. The electrostatic potential associated with a Z

3-periodic

density ρ ∈ L1
loc(R

3) ∩ L3
loc(R

3) is the Z
3-periodic function defined as

(ρ ∗ G)(x) :=

∫

Γ
G(x − y) ρ(y) dy.

We also set for any Z
3-periodic functions f and g

D(f, g) :=

∫

Γ

∫

Γ
G(x − y) f(x) g(y)dx dy.

Next we introduce the following function [7]

W (η, z) =
∑

k∈Z3

eik·η

|z + k| , η, z ∈ R
3. (5)

The function eiη·xW (η, x) is Γ-periodic with respect to x, when η is fixed.
So we can write W as a Fourier series and obtain

W (η, x) = 4πe−iη·x
∑

k∈2πZ3

eik·x

|η − k|2 . (6)

We have that, fixed x ∈ Γ, W (η, x)−4π e−iη·x

|η|2
is continuous in 0 with respect

to η and that

lim
η→0

(

W (η, x) − 4π
e−iη·x

|η|2
)

eiη·x + h = G(x). (7)

2.2 The periodic Hartree-Fock functional

The periodic Hartree-Fock functional was studied in [7].
The main object of interest will be the so-called (periodic) density matrix

of the electrons. We define the translation operator τk acting on L2
loc(R

3)
as follows: τku(x) = u(x − k) and introduce the following variational set of
density matrices:

Pper =

{

γ ∈ S
(

L2(R3)
)

| 0 ≤ γ ≤ 1, ∀k ∈ Z
3, τkγ = γτk,

∫

Γ∗

trL2
ξ(Γ)((1 − ∆ξ)

1/2γξ(1 − ∆ξ)
1/2) dξ < ∞

}

.

In the whole paper, we use the notation (Aξ)ξ∈Γ∗ for the Bloch waves de-
composition of a periodic operator A, see [15, 7]:

A =
1

(2π)3

∫

Γ∗

Aξ dξ, Aξ ∈ S(L2
ξ(Γ)),
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L2
ξ(Γ) =

{

u ∈ L2
loc(R

3) | τku = e−ik·ξu, ∀k ∈ Z
3
}

which corresponds to the decomposition in fibers L2(R3) =
∫ ⊕
Γ∗ dξL2

ξ(Γ).
For any γ ∈ Pper (and almost every ξ ∈ Γ∗), we denote by γξ(x, y) the

integral kernel of γξ ∈ S1(L
2
ξ(Γ)). The density of γ is then the non-negative

Z
3-periodic function of L1

loc(R
3) ∩ L3

loc(R
3) defined as

ργ(x) :=
1

(2π)3

∫

Γ∗

γξ(x, x) dξ.

Notice that for any γ ∈ Pper

∫

Γ
ργ(x)dx =

1

(2π)3

∫

Γ∗

trL2
ξ(Γ)(γξ) dξ,

i.e. this gives the number of electrons per unit cell. Later we shall add
the constraint that the system is neutral and restrict to states γ ∈ Pper

satisfying
∫

Γ
ργ(x)dx = Z

where Z is the charge of the only nucleus in each unit cell.
The periodic Hartree-Fock functional is defined by

E(γ) :=

∫

Γ∗

trL2
ξ(Γ)

(

−1

2
∆ξγξ

)

dξ

(2π)3
− Z

∫

Γ
G(x)ργ(x) dx

+
1

2
D(ργ , ργ) − 1

2
X(γ, γ) (8)

for any γ ∈ Pper. In the above formula, D(ργ , ργ)/2 is called the direct term,
while X(γ, γ)/2 is called the exchange term. The latter is defined for any
β, γ ∈ Pper as

X(β, γ) =
1

(2π)6

∫∫

Γ∗×Γ∗

dξ dξ′
∫∫

Γ×Γ

dx dy β(ξ, x, y)W (ξ−ξ′, x−y)γ(ξ′, x, y) (9)

where W is the function defined in (5). We remark that W (−η, z) =
W (η, z) = W (η,−z), so X(β, γ) = X(γ, β) = X(γ, β).

In the whole paper, we use the convention that for a density matrix
γ ∈ Pper

∫

Γ∗

trL2
ξ
(Γ)

(

−1

2
∆γξ

)

dξ

(2π)3
:=

1

2

∫

Γ∗

trL2
ξ
(Γ)

(

√

−∆ξγξ

√

−∆ξ

) dξ

(2π)3

which is well-defined by assumption.
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In (8), we have considered that one pointwise nucleus is located at each
site on Z

3. We can also consider extended nuclei, in which case the last term
of the first line of (8) is replaced by

−
∫

Γ
Vper(x)ργ(x) dx

where

Vper = Z





∑

k∈Z3

τkm



 ∗ G,

m being a C∞
0 (R3) nonnegative function such that

∫

R3 m(x) = 1 and with
a support small enough such that all the τkm have disjoint supports. For
the sake of simplicity, we shall restrict ourselves to pointwise nuclei, the
extension to the smeared nuclei case being straightforward. Of course the
pointwise case corresponds to taking m = δ0.

2.3 Existence and properties of minimizers

The following was proved in [7], see Theorem 2.3 p. 698:

Theorem 1 (Existence of minimizers [7]). Assume that Z > 0. The

functional E is well-defined and bounded from below on Pper. Additionally,

there exists a minimizer γ ∈ Pper of the minimization problem

I = inf
γ∈Pper
∫

Γ
ργ=Z

E(γ). (10)

Notice in (10) we could consider other constraints of the form
∫

Γ ργ = λ
but this does not make too much physical sense as the periodic system should
be neutral in the thermodynamic limit.

The purpose of this paper is to show that any minimizer γ of (10) solves
a specific nonlinear equation. Our main result is the following

Theorem 2 (Self-consistent equation and the last shell). Assume

that Z > 0 and let γ be a minimizer of (10). Then γ solves the following

nonlinear equation:






γ = χ(−∞,µ)(Hγ) + ǫχ{µ}(Hγ),

(Hγ)ξ = −∆ξ − ZG + ργ ∗ G − (2π)−3

∫

Γ∗

W (ξ′ − ξ, x − y)γξ′(x, y) dξ′,

(11)
where ǫ ∈ {0, 1} and µ ∈ R is a Lagrange multiplier due to the charge

constraint
∫

Γ ργ = Z.

Remark 1. In the periodic case, for the minimizer γ to be a projector, Z
need not be an integer as in the atomic setting.
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A result similar to Theorem 2 was proved for the reduced model in [5,
Theorem 1]. The reduced model consists in neglecting the exchange term,
i.e. the last term of (8). In this case, the Hartree-Fock energy becomes
convex and it admits a unique minimizer. The proof that it satisfies an
equation similar to (11) is then much easier because the only term which
depends on γ in the operator Hγ is ργ ∗ G when the exchange energy is
neglected. Using that ργ ∗ G is just a periodic function (hence its Bloch
decomposition does not depend on ξ), one obtains from a result of Thomas
[17] that the spectrum of Hγ is purely absolutely continuous. In particular
there cannot be any eigenvalue, hence we can take ǫ = 0 in (11).

When the exchange term is kept in the model as in the present paper,
the situation is much more complicated. The main difficulty is that the
Bloch decomposition of the last term of Hγ depends in a non trivial way of
ξ. In particular, we do not know if the spectrum of Hγ is purely absolutely
continuous. It is in principle possible that µ is an eigenvalue (of infinite
multiplicity) of Hγ in (11). However, we are able to prove that any mini-
mizer γ is automatically a projector. Theorem 2 even states that either the
minimizer γ does not contain the eigenspace corresponding to the eigenvalue
µ (ǫ = 0) or it fills it completely (ǫ = 1). The fact that γ is a projector is
an important property which can be used as a basis for the construction of
models for crystals with local defects, as this was done in [5].

The rest of the paper is devoted to the proof of Theorem 2.

3 Proof of Theorem 2

Step 1. Properties of W .

We start with the following useful

Lemma 1 (Properties of W ). We recall that W is defined in (5). We

have for all (ξ, x) ∈ Γ∗ × Γ

W (ξ, x) = 4π
e−iξ·x

|ξ|2 + e−iξ·x(G(x) − h) + e−iξ·xf(ξ, x) (12)

where f satisfies

∀ξ, ξ′ ∈ Γ∗,
∣

∣

∣

∣f(ξ, ·) − f(ξ′, ·)
∣

∣

∣

∣

L∞(Γ)
≤ C|ξ − ξ′|, (13)

∀x ∈ Γ, f(0, x) = 0. (14)

Similarly, we have for all (ξ, ξ′, x, y) ∈ (Γ∗)2 × Γ2

W (ξ − ξ′, x − y) = 4π
∑

m∈Z3, |m|∞≤1

e−i(ξ−ξ′−2πm)·(x−y)

|ξ − ξ′ − 2πm|2

+ e−i(ξ−ξ′)·(x−y)G(x − y) + g(ξ − ξ′, x − y) (15)
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where g ∈ L∞
(

(Γ∗)2 × Γ2
)

satisfies for all ξ1, ξ
′
1, ξ2, ξ

′
2 ∈ Γ∗

sup
x,y∈Γ2

|g(ξ1 − ξ′1, x − y) − g(ξ2 − ξ′2, x − y)| ≤ C|ξ1 − ξ′1 − ξ2 + ξ′2|. (16)

In (15), we have used the notation |x|∞ = sup{|xi|, i = 1, 2, 3}.

Proof. The proof is contained in [7, p. 744] and we only sketch it for the
convenience of the reader. A simple calculation gives

f(ξ, x) = 4π
∑

m∈Z3\{0}

e2im·x 4πξ · m − |ξ|2
|ξ − 2πm|2|2πm|2 .

Hence we obtain for ǫ small enough

∣

∣

∣

∣f(ξ, ·) − f(ξ′, ·)
∣

∣

∣

∣

2

L2((1+ǫ)Γ)
≤ C|ξ − ξ′|2.

Next one uses that x 7→ f(ξ, x) − f(ξ′, x) is harmonic to infer

∣

∣

∣

∣f(ξ, ·) − f(ξ′, ·)
∣

∣

∣

∣

L∞(Γ)
≤ C

∣

∣

∣

∣f(ξ, ·) − f(ξ′, ·)
∣

∣

∣

∣

L1((1+ǫ)Γ)
≤ C|ξ − ξ′|.

The proof is the same for g.

In view of the previous result, it is natural to introduce

XG(γ, γ) :=

∫∫

Γ∗×Γ∗

dξ dξ′
∫∫

Γ×Γ
dx dy G(x − y)e−i(ξ−ξ′)·(x−y)γξ(x, y)γξ′(x, y)

=

∫∫

Γ×Γ
dx dy G(x − y)|γ̃(x, y)|2 (17)

where we have defined γ̃ξ(x, y) = e−iξ·xγξ(x, y)eiξ·y. Remark that ργ = ργ̃ .
Definition (17) is quite natural as it is an exchange term taking the same
form as in usual Hartree-Fock theory [10]. For all γ ∈ Pper we have

|γ(x, y)|2 ≤ ργ(x)ργ(y), (18)

which is a consequence of γξ ≥ 0, see, e.g., [7, p. 746]. The same inequality
holds with γ replaced by γ̃. We infer that

XG(γ, γ) ≤ D(ργ , ργ). (19)

Indeed γ 7→ D(ργ , ργ)−XG(γ, γ) is easily seen to be continuous for the weak
topology by Fatou’s Lemma, and this can be used to prove the existence of
a minimizer.
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Step 2. Regularity of the spectral decomposition of Hγ.

In the rest of the proof, we consider a minimizer γ for (10). Such a minimizer
is known to exist by Theorem 1, proved in [7]. We know that it has a finite
kinetic energy since it belongs to Pper:

∫

Γ∗

trL2
ξ
(Γ)

(

−1

2
∆ξγξ

)

dξ

(2π)3
< ∞.

We recall the useful inequality [7, Eq. (4.42)]

∫

Γ∗

trL2
ξ(Γ) (−∆ξγξ)

dξ

(2π)3
≥

∫

Γ

∣

∣

∣

∣

∇
√

ργ(x)

∣

∣

∣

∣

2

dx (20)

which proves that the map γ ∈ Pper 7→ ργ ∈ H1
per(Γ) ⊂ L1

per(Γ) ∩ L3
per(Γ) is

continuous1.
We investigate the regularity of the eigenvalues and eigenvectors of Hγ .

For simplicity, we study Hγ on the fixed Hilbert space L2
per(Γ). This means

we introduce the unitary operator defined in each Bloch sector by

Uξ : L2
per(Γ) → L2

ξ(Γ)

u(x) 7→ eiξ·xu(x)

We shall use the convention that when Tξ is an operator on L2
ξ(Γ), then

T̃ξ := U∗
ξ TξUξ. Let us denote by X the exchange term defined by its kernel

Xξ(x, y) = (2π)−3

∫

Γ∗

W (ξ′ − ξ, x − y)γξ′(x, y) dξ′.

Then we get using (15)

X̃ξ(x, y) = U∗
ξ XξUξ(x, y) =

∫

Γ∗

[

4π
∑

m∈Z3, |m|∞≤1

e2iπm·(x−y)

|ξ′ − ξ − 2πm|2

+ G(x − y) + g̃(ξ − ξ′, x − y)

]

γ̃ξ′(x, y)
dξ′

(2π)3
(21)

where we have introduced g̃(η, x) = eiη·xg(η, x).

Lemma 2. The family (X̃ξ)ξ∈Γ is bounded in B(L2
per(Γ)) and it is Hölder:

∀0 ≤ p < 1,
∣

∣

∣

∣

∣

∣X̃ξ1 − X̃ξ2

∣

∣

∣

∣

∣

∣

B(L2
per(Γ))

≤ Cp|ξ1 − ξ2|p.

1This property can be used to properly define the term D(ργ , ργ) and see that it is
continuous for the topology of K.
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Proof. We have for all u, v ∈ L2
per(Γ)

∣

∣

∣
〈(X̃ξ1 − X̃ξ2)u, v〉L2

per(Γ)

∣

∣

∣

≤ 4π
∑

m∈Z3, |m|∞≤1

∫

Γ∗

∣

∣

∣

∣

1

|ξ′ − ξ1 − 2πm|2 − 1

|ξ′ − ξ2 − 2πm|2
∣

∣

∣

∣

×

× |〈γ̃ξ′U2πmu,U2πmv〉| dξ′

(2π)3

+

∫∫

Γ×Γ
dx dy

∫

Γ∗

∣

∣g̃(ξ′ − ξ1, x − y) − g̃(ξ′ − ξ2, x − y)
∣

∣×

× |γ̃ξ′(x, y)| |u(y)| |v(x)| dξ′

(2π)3
.

We recall that 0 ≤ γ ≤ 1 which means that 0 ≤ γ̃ξ ≤ 1 for all ξ ∈ Γ∗. Using
(16) we obtain

∣

∣

∣

∣

∣

∣
X̃ξ1 − X̃ξ2

∣

∣

∣

∣

∣

∣

B(L2
per(Γ))

≤ C|ξ1 − ξ2|
∫

Γ∗

∫∫

Γ×Γ
dx dy

∣

∣γ̃ξ′(x, y)
∣

∣

2 dξ′

(2π)3

+ 4π
∑

m∈Z3, |m|∞≤1

∫

Γ∗

∣

∣

∣

∣

1

|ξ′ − ξ1 − 2πm|2 − 1

|ξ′ − ξ2 − 2πm|2
∣

∣

∣

∣

dξ′

(2π)3
.

As 0 ≤ γ̃ξ ≤ 1 for all ξ ∈ Γ, we have

(2π)−3

∫

Γ∗

dξ′
∫∫

Γ×Γ
dx dy

∣

∣γ̃ξ′(x, y)
∣

∣

2
=

∫

Γ∗

trL2
per(Γ)

[

(γ̃ξ′)
2
] dξ′

(2π)3

≤
∫

Γ∗

trL2
per(Γ)

[

γ̃ξ′
] dξ′

(2π)3
= Z.

This easily proves the Hölder regularity.
The proof that (X̃ξ)ξ∈Γ is bounded in B(L2

per(Γ)) is essentially the same
for all the terms which we have treated above. We just estimate the term
involving G(x − y). We notice that

∣

∣

∣

∣

∣

∣

∣

∣

∫

Γ∗

G(x − y)γ̃ξ′(x, y)
dξ′

(2π)3

∣

∣

∣

∣

∣

∣

∣

∣

2

S2(L2
per(Γ))

=

∫∫

Γ×Γ
dx dy G(x − y)2

∣

∣

∣

∣

∫

Γ∗

γ̃ξ′(x, y)
dξ′

(2π)3

∣

∣

∣

∣

2

=

∫∫

Γ×Γ
G(x − y)2 |γ̃(x, y)|2 dx dy ≤

∫∫

Γ×Γ
G(x − y)2ργ(x)ργ(y)dx dy

by (18). The last term is well defined (and it is independent of ξ). To see
that, we notice that for all x, y ∈ Γ

G(x − y) =
∑

m∈Z3, |m|∞≤1

1

|x − y + m| + h(x − y)

10



where h(x − y) is bounded on Γ × Γ. We treat for instance the term with
m = 0, the argument being the same for the others. Fix some non negative
cut-off function χ which equals 1 on Γ and vanishes outside (1 + ǫ)Γ for ǫ
small enough. We have by Hardy’s inequality |x|−2 ≤ 4(−∆) and using the
periodicity of ργ together with the formula

∫

Γ ργ = Z

∫∫

Γ×Γ

ργ(x)ργ(y)

|x − y|2 dx dy ≤
∫

R3

dx

∫

Γ
dy

χ(x)2ργ(x)ργ(y)

|x − y|2

≤ 4Z

∫

R3

dx
∣

∣∇(χ
√

ργ)(x)
∣

∣

2 ≤ C

(

Z +

∫

Γ
dx

∣

∣∇√
ργ(x)

∣

∣

2
)

.

Arguing similarly for the other terms and using (20) we get

∣

∣

∣

∣

∣

∣

∣

∣

∫

Γ∗

G(x − y)γ̃ξ′(x, y)
dξ′

(2π)3

∣

∣

∣

∣

∣

∣

∣

∣

2

S2(L2
per(Γ))

≤ C

(

Z +

∫

Γ∗

dξ′ trL2
ξ′

(Γ)

[

(−∆)ξ′γξ′
]

)

which is independent of ξ.

Recall that the operator (H̃γ)ξ = U∗
ξ (Hγ)ξUξ acting on L2

per(Γ) reads

(H̃γ)ξ = −∆

2
− iξ · ∇ +

|ξ|2
2

− ZG + ργ ∗ G − X̃ξ (22)

where of course −∆ and ∇ are respectively the periodic Laplacian and the
periodic gradient acting on L2

per(Γ). We denote by λk(ξ) the eigenvalues of

(H̃γ)ξ which are the same as that of (Hγ)ξ since Uξ is unitary. We may
assume that the λk(ξ) are in nondecreasing order: λ1(ξ) ≤ λ2(ξ) ≤ · · · .

Lemma 3. The eigenvalues λk(ξ) tend to +∞ when k → +∞, uniformly

in ξ ∈ Γ∗.

Proof. We have proved in Lemma 2 that X̃ξ is a bounded family of operators
in B(L2

per(Γ)). Also we have ργ ≥ 0 and G ≥ 0. Hence the following holds
on L2

per(Γ)

(H̃γ)ξ ≥ −∆/2 − iξ · ∇ + |ξ|2/2 − ZG − C.

As G ∈ L2(Γ), it suffices to apply [17, Lemma A-2].

Lemma 4. Consider Ω an open set of Γ∗ and let K be a compact set in C

such that infξ∈Ω d(K,σ(H̃γ)ξ) ≥ ǫ > 0. Then we have that

1. (1 − ∆)
(

(H̃γ)ξ − z
)−1

is bounded on L2
per(Γ), uniformly with respect

to ξ ∈ Ω and z ∈ K;

11



2. the map ξ 7→ (1 − ∆)
(

(H̃γ)ξ − z
)−1

∈ B(L2
per(Γ)) is Hölder with

respect to ξ ∈ Ω, uniformly in z ∈ K.

Proof. By Lemma 3, we know that there exists a real number z0 > 0 such
that d

(

− z0, σ(H̃γ)ξ
)

> ǫ for all ξ ∈ Γ∗ and some ǫ > 0. We choose a
constant c > z0 large enough. We have

(

(H̃γ)ξ + c
)

(c − ∆)−1 = 1/2 + Rc,

where

Rc := −iξ · ∇
c − ∆

+ |ξ|2/2(c − ∆)−1 + (ργ ∗ G − ZG − Xξ) (c − ∆)−1.

We have
∣

∣

∣

∣

∣

∣

∣

∣

ξ · ∇
c − ∆

∣

∣

∣

∣

∣

∣

∣

∣

B(L2
per(Γ))

+
∣

∣

∣

∣|ξ|2/2(c − ∆)−1
∣

∣

∣

∣

B(L2
per(Γ))

≤ C

1 + c

and, as Xξ is uniformly bounded in B(L2
per(Γ)) by Lemma 2,

∣

∣

∣

∣Xξ(c − ∆)−1
∣

∣

∣

∣

B(L2
per(Γ))

≤ C

1 + c
.

Next we can use that G ∈ L2
per(Γ) to get that

∣

∣

∣

∣G(x)(c − ∆)−1
∣

∣

∣

∣

2

S2(L2
per(Γ))

= ||G||2L2
per(Γ)

∣

∣

∣

∣(c + | · |2)−1
∣

∣

∣

∣

2

ℓ2(2πZ3)
≤ C

c1/4
.

Similarly we have G ∈ L1
per(Γ) and ργ ∈ L2

per(Γ), hence ργ ∗ G ∈ L2
per(Γ)

and the same estimate furnishes the bound

∣

∣

∣

∣(ργ ∗ G)(x)(c − ∆)−1
∣

∣

∣

∣

2

S2(L2
per(Γ))

≤ C

c1/4
.

Eventually we have proved that

||Rc||B(L2
per(Γ)) ≤

C

c1/4
.

This shows that for c large enough, the operator ((H̃γ)ξ + c)(c − ∆)−1 is
invertible and that its inverse is bounded:

(c − ∆)
(

(H̃γ)ξ + c
)−1

∈ B(L2
per(Γ)). (23)

The last step is to use the formula

(

(H̃γ)ξ − z
)−1

=
(

(H̃γ)ξ + c
)−1

+ (z + c)
(

(H̃γ)ξ + c
)−1 (

(H̃γ)ξ − z
)−1

12



which, when inserted in (23) yields that (1 − ∆)((H̃γ)ξ − z)−1 is bounded
on L2

per(Γ), uniformly with respect to ξ ∈ Ω and z ∈ K.
For the second point of the Lemma, we use the resolvent formula

(1 − ∆)

[

(

(H̃γ)ξ − z
)−1

−
(

(H̃γ)ξ′ − z
)−1

]

=

= (1 − ∆)
(

(H̃γ)ξ − z
)−1 (

(H̃γ)ξ − (H̃γ)ξ′
) (

(H̃γ)ξ′ − z
)−1

=

= (1 − ∆)
(

(H̃γ)ξ − z
)−1 (

−i(ξ − ξ′) · ∇ + |ξ|2 − |ξ′|2 − X̃ξ + X̃ξ′

)

×

× (1 − ∆)−1(1 − ∆)
(

(H̃γ)ξ′ − z
)−1

.

Next we can use that ξ 7→ X̃ξ is Hölder for the norm of B(L2
per(Γ)) as shown

in Lemma 2, and that ∇(1 − ∆)−1 is a bounded operator on L2
per(Γ).

Lemma 5. The eigenvalues λk(ξ) are Hölder with respect to ξ ∈ Γ.

Proof. As before we take c large enough such that d
(

− c, σ(H̃γ)ξ
)

> ǫ
for all ξ ∈ Γ∗ and some ǫ > 0. For every ξ ∈ Γ∗, the spectrum of the
self-adjoint operator R(ξ) := ((H̃γ)ξ + c)−1 is composed of the eigenvalues
µk(ξ) := (λk(ξ) + c)−1. By Lemma 4, ξ 7→ R(ξ) is a Hölder family in
B(L2

per(Γ)). By the usual min-max Courant-Fisher formula, we have

|µk(ξ) − µk(ξ
′)| ≤

∣

∣

∣

∣R(ξ) − R(ξ′)
∣

∣

∣

∣

hence for any k ≥ 1, ξ ∈ Γ∗ 7→ µk(ξ) is a Hölder function. This a fortiori

proves the same property for the eigenvalues λk(·).

Lemma 6. Let Ω be an open subset of Γ∗ and I = (a, b) an interval of R

such that σ(H̃γ)ξ ∩ {a, b} = ∅ for all ξ ∈ Ω. Then the map

ξ ∈ Ω 7→ (1 − ∆)χI(H̃γ)ξ ∈ B(L2
per(Γ))

is Hölder. In particular, we can find an orthonormal basis (u1(ξ), ..., uK (ξ))
of the range of χI(H̃γ)ξ such that ξ ∈ Ω 7→ uk(ξ) ∈ H2

per(Γ) is Hölder with

respect to ξ ∈ Ω.

Proof. This is a simple application of Cauchy’s formula [8]

χI(H̃γ)ξ =
1

2iπ

∮

C
dz

(

(H̃γ)ξ − z
)−1

(24)

where C is a smooth curve in C enclosing the interval I and intersecting the
real axis at a and b only.
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Step 3. Variational property of a minimizer γ.

We follow a well-known argument [1, 2] (see [12, Section 4] for a very similar
setting) and consider a fixed state γ′ ∈ PZ

per := {γ ∈ Pper |
∫

Γ ργ = Z}. As

PZ
per is convex, we have (1 − t)γ + tγ′ ∈ PZ

per for all t ∈ [0, 1]. Hence, since
γ is a minimizer

∀t ∈ [0, 1],
E(γ + t(γ′ − γ)) − E(γ)

t
≥ 0. (25)

Expanding, we obtain
∫

Γ∗

trL2
ξ(Γ)

(

(Hγ)ξ(γ
′ − γ)ξ

) dξ

(2π)3
+

+
t

2

{

D(ργ′−γ , ργ′−γ) − X(γ′ − γ, γ′ − γ)

}

≥ 0 (26)

where Hγ is the mean-field operator defined in (11). Taking t = 0, we obtain
that γ is also a minimizer of the linearized functional at γ,

γ′ 7→
∫

Γ∗

trL2
ξ
(Γ)

(

(Hγ)ξγ
′
ξ

) dξ

(2π)3
,

on the convex set PZ
per. For any ξ ∈ Γ∗ we can choose {ϕk(ξ, ·)}k a basis of

eigenfunctions of (Hγ)ξ with eigenvalues λk(ξ), such that

(Hγ)ξ =
∑

k≥1

λk(ξ)|ϕk(ξ)〉〈ϕk(ξ)|. (27)

We know from Lemma 5 that each λk(ξ) is Hölder with respect to ξ. Let us
introduce like in [5, Appendix] the function

C : κ 7→
∑

k≥1

|{ξ ∈ Γ∗ | λk(ξ) ≤ κ}| .

The function C is nondecreasing on R. The operator Hγ being bounded
from below, we have C ≡ 0 on (−∞, inf λk(Γ

∗)). Also we know that
limκ→∞ C(κ) = +∞ by Lemma 3. We deduce that there exists a µ ∈ R

and a periodic operator δ ∈ Pper such that

lim
κ→µ−

C(κ) ≤ Z ≤ lim
κ→µ+

C(κ)

and
γ = χ(−∞,µ)(Hγ) + δ

where 0 ≤ δ ≤ 1 and Ran(δ) ⊂ ker(Hγ − µ). The proof of this fact was
given in the Appendix of [5]. When µ is not an eigenvalue of Hγ , i.e.
|{ξ ∈ Γ∗ | ∃k, λk(ξ) = µ}| = 0, the proof of Theorem 2 is finished, as nec-
essarily δ = 0. What rests to prove is that if µ is an eigenvalue of Hγ , then
δ = 0 or δ = χ{µ}(Hγ).

14



Step 4. The Fermi level is either empty or totally filled.

Now we argue by contradiction and assume that µ is an eigenvalue of Hγ :

|{ξ ∈ Γ∗ | ∃k ≥ 1, λk(ξ) = µ}| 6= 0.

We also assume that δ 6= 0 and δ 6= χ{µ}(Hγ). The following lemma will be
a key result to construct perturbations of δ.

Lemma 7. Assume that µ is an eigenvalue of Hγ, that δ 6= 0 and δ 6=
χ{µ}(Hγ). Then there exists a constant ǫ > 0, a Borel set A ⊆ Γ∗ with

|A| 6= 0 and two continuous functions ξ ∈ A 7→ u(ξ) ∈ H2
per(Γ) and ξ ∈ A 7→

u′(ξ) ∈ H2
per(Γ) such that

∀ξ ∈ A, u(ξ), u′(ξ) ∈ ker((H̃γ)ξ − µ),

||u(ξ)||L2
per(Γ) =

∣

∣

∣

∣u′(ξ)
∣

∣

∣

∣

L2
per(Γ)

= 1

and, denoting ϕ(ξ) = U∗
ξ u(ξ) and ϕ′(ξ) = U∗

ξ u′(ξ),

0 ≤ δξ + t|ϕ(ξ)〉〈ϕ(ξ)| − t′
∣

∣ϕ′(ξ)
〉〈

ϕ′(ξ)
∣

∣ ≤ 1 (28)

on L2
ξ(Γ), for all ξ ∈ A and all t, t′ ∈ [0, ǫ).

Proof. Assuming the eigenvalues are in nondecreasing order and using that
λk(ξ) → ∞ as k → ∞, uniformly in ξ and Lemma 5, we deduce that there
exists k1, m, ǫ′ > 0 and a subset A of Γ∗ with |A| 6= 0 such that

λk1−1(ξ) ≤ µ − ǫ′ < λk1
(ξ) = µ = λk1+m−1(ξ) < µ + ǫ′ ≤ λkn+m(ξ), (29)

0 < ǫ′ ≤ trL2
ξ
(Γ)(ΠξγξΠξ) ≤ m − ǫ′ (30)

for all ξ ∈ A and where we have introduced Πξ, the orthogonal projector on
ker((Hγ)ξ −µ) in L2

ξ(Γ). As 0 ≤ γξ ≤ 1 for all ξ ∈ Γ∗ and ΠξγξΠξ = δξ, (30)
means exactly that δξ is neither 0 nor 1 when ξ ∈ A.

Now we choose an adequate basis of the range of Πξ. By Lemma 5, we
know that the eigenvalues λk(ξ) of (Hγ)ξ depend continuously on ξ. Hence
(29) is satisfied on the set A. As |A| 6= 0, we deduce that the interior of A is
not empty. Hence, decreasing A if necessary, we can assume without any loss
of generality that A ⊆ Ω where Ω is an open set on which (29) holds true2.
By Lemma 6, we can choose uk1

(ξ), ..., uk1+m−1(ξ) an orthonormal basis in
L2

per(Γ) of ker((H̃γ)ξ − µ) for all ξ in Ω such that ξ 7→ uk(ξ) is a Hölder

map in H2
per(Γ) on Ω. Let us recall that (H̃γ)ξ := U∗

ξ (Hγ)ξUξ where Uξ :

L2
per(Γ) → L2

ξ(Γ) is the unitary operator which acts as a multiplication by

2However we cannot assume a similar property for (30) because we have no information
on the regularity of γξ on the range of Πξ.
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the function eiξ·x. Of course the functions ϕk(ξ) := U∗
ξ uk(ξ) are eigenvectors

of (Hγ)ξ with eigenvalue µ, by definition.
Next, for any ξ ∈ A, we may introduce the m×m matrix Mξ of ΠξδξΠξ

in the basis {ϕk(ξ)}k1+m−1
k=k1

(Mξ)ij = 〈ϕk1−1+i(ξ), δξϕk1−1+j(ξ)〉L2
ξ
(Γ).

As ξ 7→ Mξ ∈ S(Cm) is a bounded measurable function, Lusin’s theorem
[16] tells us that it is continuous on a Borel set B ⊂ Ω with |Ω \ B| as
small as we want. Hence, replacing A by A∩B if necessary, we may assume
that ξ 7→ Mξ ∈ S(Cm) is continuous on A. The eigenvalues 0 ≤ n1(ξ) ≤
· · · ≤ nm(ξ) ≤ 1 of the matrix Mξ are then continuous functions on A. Our
assumption is that on A, Mξ is not the zero matrix and is not the identity
matrix.

First we treat the case when Mξ has an eigenvalue which is not equal to
0 and not equal to 1. This means decreasing A one more time if necessary,
we may assume by continuity that for all ξ ∈ A

nk(ξ) < ǫ ≤ nk+1(ξ) ≤ · · · ≤ nk+J1
(ξ) ≤ 1 − ǫ < nk+J1+1(ξ)

with the convention that n0 = −∞ and nm+1 = ∞. By Cauchy’s formula
(24) the projector on

⊕J1

j=1 ker(Mξ − nk+j) depends continuously on ξ ∈
A, see [8]. Hence we can find a continuous function ξ ∈ A 7→ v(ξ) ∈
⊕J1

j=1 ker(Mξ − nk+j) ⊂ C
m such that

∀t ∈ (−ǫ, ǫ), 0 ≤ Mξ + tv(ξ)v(ξ)∗ ≤ 1. (31)

and |v(ξ)| = 1 for all ξ ∈ A. We may then introduce

ϕ(ξ) =

m
∑

j=1

v(ξ)j ϕk1−1+j(ξ) ∈ L2
ξ(Γ) and u(ξ) = Uξϕ(ξ) ∈ L2

per(Γ).

Notice that the function ξ ∈ A 7→ u(ξ) ∈ H2
per(Γ) is continuous by the

definition of v(ξ) and ϕk(ξ). To get (28), we just use ϕ′ := ϕ and u′ := u.
The other case is when Mξ is always a projector for almost every ξ ∈

A. By continuity of ξ 7→ tr(Mξ) we may, decreasing A one more time if
necessary, assume that it has a constant rank 0 < J2 < m. This means we
have on A

0 = n1(ξ) = · · · = nm−J ′(ξ) < nm−J2+1(ξ) = · · · = nm(ξ) = 1.

As before by Cauchy’s formula (24) the projectors on ker(Mξ) and on ker(Mξ−
1) depend continuously on ξ ∈ A. Hence we can find two continuous func-
tions ξ ∈ A 7→ v(ξ) ∈ ker(Mξ) and ξ ∈ A 7→ v′(ξ) ∈ ker(Mξ − 1) such
that

∀t, t′ ∈ [0, ǫ), 0 ≤ Mξ + tv(ξ)v(ξ)∗ − t′v′(ξ)v′(ξ)∗ ≤ 1
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and |v(ξ)| = |v′(ξ)| = 1 for all ξ ∈ A. It now rests to define

ϕ(ξ) :=

m
∑

j=1

v(ξ)j ϕk1−1+j(ξ) ∈ L2
ξ(Γ),

ϕ′(ξ) :=

m
∑

j=1

v′(ξ)j ϕk1−1+j(ξ) ∈ L2
ξ(Γ).

Equation (28) holds with u(ξ) = Uξϕ(ξ) and u′(ξ) = Uξϕ
′(ξ).

Lemma 8. Assume that µ is an eigenvalue of Hγ, that δ 6= 0 and δ 6=
χ{µ}(Hγ), and let be A and ϕ(ξ), ϕ′(ξ) as in Lemma 7. Then for all η, η′ ∈
L∞(A, R+) such that

∫

A η =
∫

A η′, we have

D(ρR, ρR) − X(R,R) ≥ 0 (32)

where R is the periodic operator defined by

Rξ = η(ξ)|ϕ(ξ)〉〈ϕ(ξ)| − η′(ξ)
∣

∣ϕ′(ξ)
〉〈

ϕ′(ξ)
∣

∣.

Proof. Let η, η′ ∈ L∞(A, R+) be such that
∫

A(η − η′) = 0 and R as defined
above. First we remark that for 0 ≤ (||η||L∞ + ||η′||L∞)t < ǫ, we have γ+tR ∈
PZ

per by construction of ϕ(ξ) and ϕ′(ξ). Next we use Equation (26) with
γ′ = γ + tR. We compute

∫

Γ∗

trL2
ξ(Γ) [(Hγ)ξ Rξ]

dξ

(2π)3
=

∫

A

η(ξ)〈(Hγ)ξϕ(ξ), ϕ(ξ)〉L2
ξ(Γ)

dξ

(2π)3

−
∫

A

η′(ξ)〈(Hγ)ξϕ
′(ξ), ϕ′(ξ)〉L2

ξ(Γ)

dξ

(2π)3

= µ

∫

A

(η(ξ) − η′(ξ))
dξ

(2π)3
= 0,

hence the first order term of (26) vanishes and the result follows.

The last step is to construct functions η, η′ ∈ L∞(A, R+) such that
∫

A(η−
η′) = 0 and D(ρR, ρR) − X(R,R) < 0 with R defined as above. This will
contradict (32) and finish the proof. Indeed, we even prove that

inf
η,η′∈L∞(A,R+),

∫

A
(η−η′)=0

(

D(ρR, ρR) − X(R,R)
)

= −∞.

The idea of the proof is somewhat similar to that of the atomic case [9,
1, 3, 2, 12]. The role of the perturbation R is to transfer some charge
from the eigenvector ϕ(ξ) to the eigenvector ϕ′(ξ) within the last level µ.
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The originality of the periodic case studied in the present paper is that the
transfer needs to be done between two different Bloch sectors L2

ξ1
(Γ) and

L2
ξ2

(Γ). This means essentially we want to take η = δξ1 and η′ = δξ2 in
Lemma 8.

As |A| 6= 0, we may find two points ξ1 and ξ2 in A such that |A ∩
B(ξ1, λ)| 6= 0 and |A ∩ B(ξ2, λ)| 6= 0 for all λ > 0. Here B(ξ, λ) denotes the
ball of radius λ centered at ξ. We may also assume that 0 < |ξ1 − ξ2| ≤ 1/4
in such a way that ξ − ξ′ ∈ Γ∗ if ξ ∈ B(ξ1, λ), ξ′ ∈ B(ξ2, λ) and λ is small
enough. Next we define

ηλ =
1A∩B(ξ1,λ)

|A ∩ B(ξ1, λ)| , η′λ =
1A∩B(ξ2,λ)

|A ∩ B(ξ2, λ)|
in such a way that ηλ ⇀ δξ1 and η′λ ⇀ δξ2 weakly as λ → 0. We denote
by Rλ the associated periodic operator, the Bloch decomposition of which
is given by

(Rλ)ξ = ηλ(ξ)|ϕ(ξ)〉〈ϕ(ξ)| − η′λ(ξ)
∣

∣ϕ′(ξ)
〉〈

ϕ′(ξ)
∣

∣.

We also introduce as usual the family of operators acting on the fixed space
L2

per(Γ)

(R̃λ)ξ = ηλ(ξ)|u(ξ)〉〈u(ξ)| − η′λ(ξ)
∣

∣u′(ξ)
〉〈

u′(ξ)
∣

∣.

Next using (12), we get

(2π)6
(

D(ρRλ , ρRλ) − X(Rλ, Rλ)

)

= I0(λ) + I1(λ) + I2(λ)

where

I0(λ) = (2π)6
(

D(ρR̃λ , ρR̃λ) − XG(R̃λ, R̃λ)

)

+ h

∫∫

Γ×Γ

dx dy

∣

∣

∣

∣

∣

∣

∫

A

(

ηλ(ξ)u(ξ, x)u(ξ, y) − η′λ(ξ)u′(ξ, x)u′(ξ, y)
)

dξ

∣

∣

∣

∣

∣

∣

2

−
∫∫

Γ×Γ

dx dy

∫∫

A×A

dξ dξ′ f(ξ − ξ′, x − y)×

×
(

ηλ(ξ)u(ξ, x)u(ξ, y) − η′λ(ξ)u′(ξ, x)u′(ξ, y)
)

×

×
(

ηλ(ξ′)u(ξ′, x)u(ξ′, y) − η′λ(ξ′)u′(ξ′, x)u′(ξ′, y)
)

+ 8π

∫∫

A×A

dξ dξ′
ηλ(ξ)η′λ(ξ′)

|ξ − ξ′|2
∣

∣

∣
〈u(ξ), u′(ξ′)〉L2

per(Γ)

∣

∣

∣

2
,

I1(λ) = −4π

∫∫

A×A

dξ dξ′
ηλ(ξ)ηλ(ξ′)

|ξ − ξ′|2
∣

∣

∣〈u(ξ), u(ξ′)〉L2
per(Γ)

∣

∣

∣

2
,
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I2(λ) = −4π

∫∫

A×A

dξ dξ′
η′λ(ξ)η′λ(ξ′)

|ξ − ξ′|2
∣

∣

∣〈u′(ξ), u′(ξ′)〉L2
per(Γ)

∣

∣

∣

2
.

To finish the proof, it rests to show the following

Lemma 9. We have

lim
λ→0

I0(λ) = I0 ∈ R, lim
λ→0

I1(λ) = lim
λ→0

I2(λ) = −∞.

Proof. Using the important property that the maps ξ ∈ Γ∗ 7→ u(ξ) ∈
H2

per(Γ) and ξ ∈ Γ∗ 7→ u′(ξ) ∈ H2
per(Γ) are continuous by construction,

we see that

lim
λ→0

I0(λ) = (2π)6
∫∫

Γ×Γ

dx dy G(x − y)
(

Z(x, x)Z(y, y) − |Z(x, y)|2
)

+ 2ℜ
∫∫

Γ×Γ

dx dy

(

f(ξ1 − ξ2, x − y) +
4π

|ξ1 − ξ2|2
)

u(ξ1, x)u(ξ1, y)×

× u′(ξ2, x)u′(ξ2, y) + h

∫∫

Γ×Γ

dx dy|Z(x, y)|2

with
Z(x, y) := u(ξ1, x)u(ξ1, y) − u′(ξ2, x)u′(ξ2, y).

We have also used that f(0, x) = 0. Finally, we use again the continuity of
ξ 7→ u(ξ) in L2

per(Γ) to infer that

〈u(ξ′), u(ξ)〉L2
per(Γ) = 1 + oλ→0(1)

when ξ, ξ′ ∈ B(ξ1, λ). Hence, for λ small enough

I1(λ) ≤ −2π

∫∫

A×A

dξ dξ′
ηλ
1 (ξ)ηλ

1 (ξ′)

|ξ − ξ′|2 ≤ −2π

λ2

which proves that limλ→0 I1(λ) = −∞. The argument is the same for I2(λ).
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for very useful discussions.

References

[1] V. Bach. Error bound for the Hartree-Fock energy of atoms and
molecules. Comm. Math. Phys. 147(3), 527–548, 1992

19



[2] V. Bach, E.H. Lieb and J.P. Solovej. Generalized Hartree-Fock theory
and the Hubbard model. J. Statist. Phys., 76 (1994), no. 1-2, p. 3–89.

[3] V. Bach, E.H. Lieb, M. Loss and J.P. Solovej. There are no unfilled
shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72 (1994),
p. 2981–2983.

[4] E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris, Y. Maday.
Computational quantum chemistry: a primer. In Handbook of numeri-

cal analysis, Volume X. Special volume: computational chemistry, Ph.
Ciarlet and C. Le Bris eds (Elsevier, 2003).
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