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Abstract

We study the asymptotic behavior of the solution of semi-linear PDEs. Neither pe-
riodicity nor ergodicity assumptions are assumed. The coefficients admit only a limit
in a C̀esaro sense. In such a case, the limit coefficients may have discontinuity. We use
probabilistic approach based on weak convergence techniques for the associated back-
ward stochastic differential equation in the S-topology. We establish weak continuity
for the flow of the limit diffusion process and related the PDE limit to the backward
stochastic differential equation via the representation of L

p-viscosity solution.

Keys words: Backward stochastic differential equations (BSDEs), Lp-viscosity solution for
PDEs, homogenization, S-topology, limit in C̀esaro sense.
MSC 2000 subject classifications, 60H20, 60H30, 35K60.

1 Introduction

In this paper, we study the limit of the solution of the semi-linear PDEs of the form





∂vε

∂s
(s, x1, x2) = Lε(x1, x2)v

ε(s, x1, x2) + f(x1

ε
, x2, v

ε(s, x1, x2)) s ∈ (0, t)

vε(0, x1, x2) = H(x1, x2)
(1.1)
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The infinitesimal generator Lε is associated to the IR × IRd-diffusion process (x1, ε
t , x2, ε

t )





x1, ε
t = x1 + 1

ε

∫ t

0
ϕ(x1, ε

s , x2, ε
s )dWs

x2, ε
t = x2 +

∫ t

0
b(1)(x1, ε

s , x2, ε
s )ds+

∫ t

0
σ(1)(x1, ε

s , x2, ε
s )dW̃s

(1.2)

where x1, ε
t is a null-recurrent fast component and x2, ε

t is a slow component. The function ϕ
(resp. σ) is IR-valued (resp. IRd×(k−1)-valued ). W is a one dimensional standard Brownian

motion and W̃ a IRk−1-standard Brownian motion with independent components. W and
W̃ are independent. The system (1.2) have been considered by Krylov and Khasminskii [4]
studying weak convergence without ergodicity and periodicity assumptions. They defined
averaged coefficients as a limit in C̀esaro sense. With the additional assumption that the
presumed SDE limit is weakly unique, they proved that the process (εx1, ε

t , x2, ε
t ) converges

in distribution towards a Markov diffusion (X1
t , X

2
t ). As a byproduct, if the the limit PDE

admits a unique weak solution, they derived the limit behavior of the PDE (1.1) in the linear
case.

In this work, we consider the averaged coefficients as a limits in C̀esaro sense too. In such a
case, the limit coefficients may have discontinuity. In our framework, in light of Krylov [5]
weak assumption on the SDE limit is dropped out. The BSDE limit admits a unique strong
solution. But, the classical probabilistic representation of viscosity solution for PDE fails
due, to the discontinuity of the coefficients. Then, we use a probabilistic representation of
Lp-viscosity solution of nonlinear PDE to make sense the connection to BSDE. Even if the
notion of Lp-viscosity solution is available for PDEs with non-smooth coefficients, one require
continuity property for such solutions. In our case, the lack of strong continuity property for
the flow (X1, x, X2, x) transfer the difficulty to the backward one. To overcome, we establish
weak continuity for the flow x 7→ (X1, x, X2, x) and using the fact that Y x

0 is deterministic,
we derive a strong continuity property for Y x

0 . The method used is a probabilistic arguments
based on weak convergence techniques of the corresponding BSDE in the S-topology. Let
also note that, in a periodic media, some authors have studied the asymptotic behavior of
the PDE (1.1) by probabilistic approach. We refer to Pardoux [7], Pardoux [8], Pardoux and
Verotennikov [9].

The paper is organized as follows: in section 2, we make some notations, precise the
problem and state the assumptions. In section 3, we state some facts on the FBSDE limit and
Lp-viscosity solution for the corresponding PDE. In section 4, we deal with the convergence
of the BSDEs while in section 5, we deduce the asymptotic behavior of the solutions of PDEs.

2 Statement of the problem and assumptions

2.1 Notations and problem’s formulation

Recall here the PDE,





∂vε

∂s
(s, x1, x2) = Lε(x1, x2)v

ε(s, x1, x2) + f(x1

ε
, x2, v

ε(s, x1, x2)) s ∈ (0, t)

vε(0, x1, x2) = H(x1, x2)
(2.1)
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where

Lε(x1, x2) = a00(
x1

ε
, x2)

∂2

∂2x1

+
∑

i, j

aij(
x1

ε
, x2)

∂2

∂x2i∂x2j

+
∑

i

b
(1)
i (

x1

ε
, x2)

∂

∂x2i

,

is the infinitesimal generator associated to the IR× IRd-diffusion process (ε x1, ε
t , x2, ε

t ) defined

by (1.2) and a00 =
1

2
ϕ2, aij =

1

2
(σ(1)σ(1) ∗)ij, i, j = 1, ..., d.

The measurable IR-valued functions f and H are defined on IRd+1×IR and IRd+1 respectively.
We denote X1, ε

t := εx1, ε
t , X2, ε

t := x2, ε
t , Xε := (X1, ε, X2, ε), b = (0, b(1))∗, B = (W, W̃ ) and

σ =

(
ϕ 0
0 σ(1)

)
. One has σ ∈ IR(d+1)×k with





σ00 = ϕ,
σ0j = 0, j = 1, ..., k − 1
σi0 = 0, i = 1, ..., d

σij = σ
(1)
ij , i = 1, ..., d, j = 1, ..., k − 1

The PDEs (2.1) is connected to the sequence of decoupled FBSDEs,





Xε
s = Xε

0 +
∫ s

0
b(X

1, ε
u

ε
, X2, ε

u )du+
∫ s

0
σ(X

1, ε
u

ε
, X2, ε

u )dBu,

Y ε
s = H(Xε

t ) +
∫ t

s
f(X

1, ε
u

ε
, X2, ε

u , Y ε
u )du−

∫ t

s
Zε

u dM
Xε

u , ∀ s ∈ [0, t]

(2.2)

thanks to the probabilistic representation vε(t, x) = Y ε
0 . (MXε

is a martingale part of the
process Xε := (X1, ε, X2, ε)).
For a given function g(x1, x2), we define g+(x2) := limx1→+∞

1
x1

∫ x1

0
g(t, x2)dt,

g−(x2) := limx1→−∞
1
x1

∫ x1

0
g(t, x2)dt and g±(x1, x2) := g+(x2)1{x1>0} + g−(x2)1{x1≤0}. We

denote by b(x1, x2), a(x1, x2) and f(x1, x2, y), the averaged coefficients defined as follows:

bi(x1, x2) =
(ρbi)±(x1, x2)

ρ±(x1, x2)
, i = 1, ..., d

aij(x1, x2) =
(ρaij)±(x1, x2)

ρ±(x1, x2)
, i, j = 0, 1, ..., d

f(x1, x2, y) =
(ρf)±(x1, x2, y)

ρ±(x1, x2)
,

where the weight ρ is defined by ρ(x1, x2) = a00(x1, x2)
−1 = [1

2
ϕ2(x1, x2)]

−1 . It’s worth

noting that b, a and f are discontinuous at x1 = 0. Using the asymptotic behavior of the
system (2.2), we shall show that vε tends towards v, which is a Lp-viscosity solution of the
following averaged system,





∂v
∂s

(s, x1, x2) = L(x1, x2)v(s, x1, x2) + f(x1, x2, v(s, x1, x2)) 0 < s ≤ t

v(0, x1, x2) = H(x1, x2)
(2.3)
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2.2 Assumptions

We assume that the following conditions hold for the coefficients.

(A1) The function b(1), σ1, ϕ are Lipschitz continuous in (x1, x2) and, for each x1, their
derivative in x2 up to and including second order derivatives are bounded continuous func-
tions of x2.

(A2) a = (σ(1)σ(1) ∗) ≥ ΛI for some Λ > 0. Moreover, there exists positive constants
C1, C2, C3 such that





(i) C1 ≤ a00(x1, x2) ≤ C2

(ii)
∑d

i=1[aii(x1, x2) + b2i (x1, x2)] ≤ C3(1 + |x2|2)
(B1) We denote ρ(x1, x2) := a00(x1, x2)

−1. We assume that, as x1 tends to ±∞, 1
x1

∫ x1

0
ρ(t, x2)dt

(resp. 1
x1

∫ x1

0
Dx2

ρ(t, x2)dt, resp. 1
x1

∫ x1

0
D2

x2
ρ(t, x2)dt) converges to ρ±(x2) (resp. Dx2

ρ±(x2),

resp. D2
x2
ρ±(x2)) uniformly in x2. Here Dx2

u, D2
x2
u denote respectively the gradient vector

and the matrix of second derivatives in x2 of u. We refer to ρ±(x2) as a limit in C̀esaro
sense.

(B2) For i = 1, ..., d, j = 0, ..., d, the coefficients ρbi, Dx2
(ρbi), D

2
x2

(ρbi), ρaij , Dx2
(ρaij),

D2
x2

(ρaij) have averages in a C̀esaro sense.

(B3) For any function k ∈ {ρ, ρbi, Dx2
(ρbi), D

2
x2

(ρbi), ρaij , Dx2
(ρaij), D

2
x2

(ρaij)}, there
exists a bounded function α such that





1
x1

∫ x1

0
k(t, x2)dt− k±(x1, x2) = (1 + |x2|2)α(x1, x2),

lim|x1|−→∞ sup
x2∈IR

d |α(x1, x2)| = 0.
(2.4)

(C1) There are positive constants C4, C5 such that the IR-valued functions H and f satisfy:





(i) 〈 y − y′, f(x1, x2, y) − f(x1, x2, y
′) 〉 ≤ C4|y − y′|, ∀ (x1, x2, y, y

′) ∈ IR × IRd × IR2

(ii) H is a continuous bounded function and |f(x1, x2, y)| ≤ C5(1 + |x2| + |y|)

(C2) ρf has a limit in C̀esaro sense and there exists a measurable and bounded function β
such that





1
x1

∫ x2

0
ρ(t, x2)f(t, x2, y)dt− (ρf)±(x1, x2, y) = (1 + |x2|2 + |y|2)β(x1, x2, y)

lim|x1|→∞ sup
(x2, y)∈IRd×IR |β(x1, x2, y)| = 0,

(2.5)

where (ρf)±(x1, x2, y) := (ρf)+(x2, y)1{x1>0} + (ρf)−(x2, y)1{x1≤0}.

(C3) For each x1, ρf has a derivatives up to a second order in x2 uniformly in y and these
derivatives are bounded and satisfy (C2).
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Throughout the paper, (A) stands for conditions (A1), (A2); (B) for conditions (B1), (B2),
(B3) and (C) for (C1), (C2), (C3).
We have the following:

Lemma 2.1. Assume (A), (B), (C2), (C3). For each y ∈ IR, let V ε, y(x1, x2) denote the
solution of the following equation:





a00(
x1

ε
, x2)D

2
x1
u(x1, x2) = f(x1

ε
, x2, y) − f(x1, x2, y)

u(0, x2) = Dx1
u(0, x2) = 0.

(2.6)

Then,

(i) Dx1
V ε, y(x1, x2) = x1(1 + |x2|2 + |y|2)β(

x1

ε
, x2, y) − x1(1 + |x2|2)m(x1,, x2, y),

(ii) for any Kε, y(x1, x2) ∈
{
V ε, y, Dx2

V ε, y, D2
x2
V ε, y, Dx1

Dx2
V ε, y

}
it holds,

Kε, y(x1, x2) = x2
1(1 + |x2|2 + |y|2)β(

x1

ε
, x2, y) + x2

1(1 + |x2|2)m(x1, x2, y)

where m(x1, x2, y) := (ρf)±(x1, x2, y)
ρ±(x1, x2)

α(x1

ε
, x2) and α(x1, x2), β(x1, x2, y) are various bounded

functions which satisfy property (2.4)and (2.5) respectively.

Proof. For any fixed y, we set

F (
x1

ε
, x2, y) :=

1

x1

∫ x1

0

ρ(
t

ε
, x2)g(

t

ε
, x2, y)dt

where g(x1

ε
, x2, y) := f(x1

ε
, x2, y) − f(x1, x2, y).

For x1 > 0, we have

F (
x1

ε
, x2, y) =

1

x1

∫ x1

0

ρ(
t

ε
, x2)f(

t

ε
, x2, y)dt− (ρf)+(x2, y)

+ (ρf)+(x2, y) −
(ρf)+(x2, y)

ρ+(x2)

1

x1

∫ x1

0

ρ(
t

ε
, x2)dt

= (1 + |x2|2 + |y|2)β1(
x1

ε
, x2, y)

+ (ρf)+(x2, y)

[
1 − 1

ρ+(x2)x1

∫ x1

0

ρ(
t

ε
, x2)dt

]

= (1 + |x2|2 + |y|2)β1(
x1

ε
, x2, y) − (1 + |x2|2)

(ρf)+(x2, y)

ρ+(x2)
α1(

x1

ε
, x2)

Since, Dx1
V ε, y(x1, x2) = x1F (x1

ε
, x2, y), we derive the result for Dx1

V ε, y(x1, x2). Further,
by integrating, we get

V ε, y(x1, x2) = x2
1(1 + |x2|2 + |y|2)

(
(
ε

x1
)2

∫ x1
ε

0

tβ1(t, x2, y)dt

)

− (1 + |x2|2)
(ρf)+(x2, y)

ρ+(x2)

(
(
ε

x1
)2

∫ x1
ε

0

tα1(t, x2)dt

)

Clearly, β(x1

ε
, x2, y) = ( ε

x1
)2
∫ x1

ε

0
tβ1(t, x2, y)dt, α(x1

ε
, x2) = ( ε

x1
)2
∫ x1

ε

0
tα(t, x2)dt

satisfy (2.4) and (2.5) respectively. For x1 < 0, the proof is the same as previous. The result
for Dx2

V ε, y(x1, x2), D
2
x2
V ε, y(x1, x2) and Dx1

Dx2
V ε, y(x1, x2) is obtained by using similar

arguments.
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3 FBSDE limit and Lp-viscosity solution of PDE

Consider the equation

X t, x
s = x+

∫ s

t

b(X t, x
u )du+

∫ s

t

σ(X t, x
u )dBu, t ≤ s ≤ T (3.1)

From assumption (A), (B), we deduce, thanks to Krylov [5] that the forward SDE (3.1)
admits a unique weak solution. Hence, the result of Khasminskii and Krylov [4] remain
valid. We state it for the sake of completeness. Namely, we have:

Theorem 3.1. (Khasminskii and Krylov [4])
Assume (A), (B). Then the process Xε = (X1, ε, X2, ε) converges in distribution to the

process X = (X1, X2) which is solution to forward SDE (3.1).

Now, we define the notion of Lp-viscosity solution of nonlinear PDE with non-smooth coeffi-
cients. We refer the reader to Crandall et al. [2], Caffarelli et al. [1] for a wide presentation
on this topic.
Let g : [0, T ] × IRd+1 × IR −→ IR be a Ft-progressively measurable which satisfies (C1),

and L(x1, x2) =
∑

i, j

aij(x1, x2)
∂2

∂xi∂xj

+
∑

i

bi(x1, x2)
∂

∂xi

, the associated generator of the

process X t, x. Consider the parabolic equation,





∂v
∂s

(s, x1, x2) + L(x1, x2)v(s, x1, x2) + g(s, x1, x2, v(s, x1, x2)) = 0, t ≤ s < T

v(T, x1, x2) = H(x1, x2).
(3.2)

Definition 3.2. Let p be an integer such that p > N = d+ 2.
(a) A function v ∈ C

(
[0, T ] × IRd+1, IR

)
is a Lp-viscosity sub-solution of the system (3.2),

if for every x ∈ IRd+1, v(T, x) ≤ H(x) and for every ϕ ∈ W 1, 2
p, loc

(
[0, T ] × IRd+1, IR

)
and

(t̂, x̂) ∈ [0, T ] × IRd+1 at which v − ϕ has a local maximum, one has

ess lim
(s, x)→(t̂, x̂)

inf

{
−∂ϕ
∂s

(s, x1, x2) −G(s, x, ϕ(s, x))

}
≤ 0.

(b) A function v ∈ C
(
[0, T ] × IRd+1, IR

)
is a Lp-viscosity super-solution of the system (3.2),

if for every x ∈ IRd+1, v(T, x) ≥ H(x) and for every ϕ ∈ W 1, 2
p, loc

(
[0, T ] × IRd+1, IR

)
and

(t̂, x̂) ∈ [0, T ] × IRd+1 at which v − ϕ has a local minimum, one has

ess lim
(s, x)→(t̂, x̂)

sup

{
−∂ϕ
∂s

(s, x1, x2) −G(s, x, ϕ(s, x))

}
≥ 0.

where

G(s, x, ϕ(s, x)) = L(x1, x2)ϕ(s, x1, x2) + g(s, x1, x2, v(s, x1, x2))

is assumed to be merely measurable on the variable x = (x1, x2).
(c) A function v ∈ C

(
[0, T ] × IRd+1, IR

)
is a Lp-viscosity solution of the system (3.2) if it is

both a Lp-viscosity sub-solution and super-solution.
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Since the SDE (3.1) is weakly unique, the martingale problem associated to X = (X1, X2)
is well posed. We have the following:

Proposition 3.3. Assume that g satisfies (C1). Then,
(i) For a fixed positive number T , the BSDE

Y t, x
s = H(X t, x

T ) +

∫ T

s

g(u, X t, x
u , Y t, x

u )du−
∫ T

s

Zt, x
u dMXt, x

u , t ≤ s ≤ T.

admit a unique strong solution (Y t, x
s , Zt, x

s )t≤s≤T . Moreover, (Y t, x
s )t≤s≤T is bounded.

(ii) If the function (t, x) ∈ [0, T ] × IRd+1 7→ v(t, x) = Y t, x
t is continuous, then

v(t, x) = Y t, x
t is a Lp-viscosity solution of the system of PDE (3.2).

Proof. (i) Thanks to Remark 3.5 in Pardoux [7], it is enough to prove existence and

uniqueness for the BSDE, Y t, x
s = H(X t, x

T )+

∫ T

s

g(u, X t, x
u , Y t, x

u )du−
∫ T

s

Zt, x
u dBu, t ≤ s ≤ T ;

which can be proved by usual argument for BSDE. For instance, it’s obvious that uniqueness
holds under (C1) and, we can prove the existence of the solution by using a Picard type
approximation.
(ii) We assume that v(t, x) is continuous. We only prove that v is Lp- viscosity sub-solution
since one can similarly verify that it is also a Lp-viscosity super-solution. Note that the
definition (a) is equivalent to the following: for every ε > 0, r > 0, there exists a set
A ⊂ Br(t̂, x̂) of positive measure such that, ∀ (s, x) ∈ A,

−∂ϕ
∂s

(s, x1, x2) − L(x1, x2)ϕ(s, x1, x2) − g(s, x1, x2, v(s, x1, x2)) ≤ ε.

For any ϕ ∈ W 1, 2
p, loc

(
[0, T ] × IRd+1, IR

)
, take (t̂, x̂) ∈ [0, T ] × IRd+1 a point which is a local

maximum of v−ϕ. By the choice of p > d+2, ϕ has a continuous version which we consider
bellow. We assume without loss of generality that v(t̂, x̂) = ϕ(t̂, x̂). Assume that there
exists ε0, r0 > 0 such that




∂ϕ

∂s
(s, x1, x2) + L(x1, x2)ϕ(s, x1, x2) + g(s, x1, x2, v(s, x1, x2)) < −ε0, λ-a.s in Br0

(t̂, x̂)

v(s, x) ≤ ϕ(s, x) + ε0(s− t̂ ), λ-a.s in Br0
(t̂, x̂)

Let A0 ∈ Br0
(t̂, x̂) a set of positive measure such that (t̂, x̂) ∈ A0. Define

τ = inf
{
s ≥ t̂; (s, X t, x

s ) /∈ A0

}
∧ (t̂+ r0)

The process (Y s, Zs) = ((Y t, x
s∧τ ), 1[0, τ ](s)(Z

t, x
s ))s∈[t̂, t̂+r0]

solves the BSDE

Y s = vl(τ, X
t, x
τ ) +

∫ t̂+r0

s

1[0, τ ](u)g(u, X
t, x
u , v(u, X t, x

u ))du−
∫ t̂+r0

s

ZudM
Xt, x

u , s ∈ [t̂, t̂+ r0].

On other hand, setting ψ(s, x) = ϕ(s, x) + ε0(s− t̂ ), we have by Itô-Krylov’s formula that

the process (Ŷs, Ẑs) =
(
ψ(s, X t, x

s∧τ ), 1[0, τ ](s)∇ϕ(s, X t, x
s )
)

s∈[t̂, t̂+r0]
solves the BSDE

Ŷs = ψ(τ, X t, x
τ ) −

∫ t̂+r0

s

1[0, τ ](u)[ε0 + (
∂ϕ

∂u
+ Lϕ)(u, X t, x

u )]du−
∫ t̂+r0

s

ẐudM
Xt, x

u .

From the choice of τ , (τ, X t, x
τ ) ∈ A0. Therefore v(τ, X t, x

τ ) ≤ ψ(τ, X t, x
τ ) and thanks to the

comparison theorem [7], we deduce that Y t̂ < Ŷt̂, i.e vl(t̂, x̂) < ϕ(t̂, x̂), which contradicts
our assumptions.
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Remark 3.4. (i) Whenever g does not depends on t; v(t, x) = Ỹ x
0 is a Lp-viscosity solution

of the PDE



∂v
∂s

(s, x1, x2) = L(x1, x2)v(s, x1, x2) + g(x1, x2, v(s, x1, x2))

v(0, x1, x2) = H(x1, x2), s > 0, x = (x1, x2) ∈ IRd+1

where (Xx, Ỹ x
s , Z̃

x
s ; 0 ≤ s ≤ t), solves the decoupled FBSDE





Xx
s = x+

∫ s

0
b(Xx

u)du+
∫ s

0
σ(Xx

u)dBu, 0 ≤ s ≤ t.

Ỹ x
s = H(Xx

t ) +
∫ t

s
g(Xx

u , Ỹ
x
u )du−

∫ t

s
Z̃x

udM
Xx

u , 0 ≤ s ≤ t

(ii) Since f satisfies (C) and p is bounded, one can easily verify that f satisfies (C1).
Therefore, for a fixed positive number t, the BSDE with data (H(Xx

t ), f) admit a unique
strong solution (Y x

s , Z
x
s )0≤s≤t. Moreover, if the function (t, x) ∈ IR+× IRd+1 7→ v(t, x) = Y x

0

is continuous, it is a Lp-viscosity solution of the system of PDE (2.3).

4 Convergence results for BSDE

4.1 Tightness and convergence results

Proposition 4.1. There exists a positive constant C which does not depend on ε such that

sup
ε

{
IE

(
sup

0≤s≤t

|Y ε
s |2 +

∫ t

0

|Zε
s |2 d〈MXε〉s

)}
≤ C.

Proof. Throughout this proof, K, C are positive constants which depends only on (s, t)
and may change from line to line. It is easy to check that for all k ≥ 1,

sup
ε

IE

(
sup

0≤s≤t

[
|X1, ε

s |2k + |X2, ε
s |2k

])
< +∞. (4.1)

Using Itô’s formula, we get:

|Y ε
s |2 +

∫ t

s

|Zε
u|2d〈MXε 〉u ≤ |H(Xε

t )|2 +K

∫ t

s

|Y ε
u |2du+

∫ t

s

|f(X
1, ε

u , X2, ε
u , 0)|2du

− 2

∫ t

s

〈Y ε
u , Z

ε
udM

Xε

s 〉.

Passing to expectation, it is then follows by using Gronwall’s lemma that, there exists a
constant which does not depend on ε such that,

IE
(
|Y ε

s |2
)
≤ CIE

(
|H(Xε

t )|2 +

∫ t

0

|f(X
1, ε

u , X2, ε
u , 0)|2du

)
, ∀s ∈ [0, t]

We deduce that

IE

(∫ t

s

|Zε
u|2d〈MXε 〉u

)
≤ CIE

(
|H(Xε

t )|2 +

∫ t

0

|f(X
1, ε

u , X2, ε
u , 0)|2du

)
(4.2)

Combining (4.2) and the Burkhölder-Davis-Gundy inequality, we get

IE

(
sup

0≤s≤t

|Y ε
t |2 +

1

2

∫ t

0

|Zε
u|2d〈MXε 〉u

)
≤ CIE

(
|H(Xε

t )|2 +

∫ t

0

|f(X
1, ε

u , X2, ε
u , 0)|2du

)

In view of condition (C1 − iii) and (4.1), the proof is complete.
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Proposition 4.2. The sequence (Y ε, Mε)ε>0 is tight on the space D ([0, t], IR)×D ([0, t], IR)
endowed with the S-topology.

Proof. Since Mε is a martingale, the Meyer-Zheng tightness criteria is fulfilled whenever

sup
ε

(
CV (Y ε) + IE

(
sup

0≤s≤t

|Y ε
t | + |Mε

t |
))

< +∞. (4.3)

see [6] or [3]. The conditional variation CV is defined in appendix A. From [9], CV (Y ε)
satisfies

CV (Y ε) ≤ KIE

(∫ t

0

|f(X
1, ε

s , X2, ε
s , Y ε

s )|2ds
)
,

where K is a constant which only depends on t.
Combining condition (C1 ) and Proposition 4.1, we deduce (4.3).

Theorem 4.3. There exists
(
Y , M

)
and a countable subset D of [0, t] such that along a

subsequence of ε,

(i) (Y ε, Mε)
law
=⇒

(
Y , M

)
on D ([0, t], IR) ×D ([0, t], IR) endowed with the S-topology.

(ii) (Y ε, Mε) −→
(
Y , M

)
in finite-distribution on D

c.

Proof. From Proposition 4.2, the family (Y ε, Mε)ε is tight on D ([0, t], IR) × D ([0, t], IR)
endowed with the S-topology. Hence, along a subsequence (still denoted by ε), (Y ε, Mε)ε

converges in law on D ([0, t], IR)×D ([0, t], IR) towards a càd-làg process
(
Y , M

)
. Moreover,

thanks to Theorem 3.1 in Jakubowski [3], there exists a countable set D such that along a
subsequence the convergence in law as well as in finite-distribution hold on D

c.

Theorem 4.4. As ε→ 0, (X1,ε, X2,ε, Y ε) ⇒ (X1, X2, Y ) , in the sense of weak convergence
in C(IR+×IRd+1)×D(IR+×IR), equipped with the product of the locally uniform convergence
and the S topologies.

The following two lemmas are fundamentals for the convergence result.

Lemma 4.5. sup
0≤s≤t

∣∣∣∣
∫ s

0

(
f(
X1, ε

u

ε
, X2, ε

u , Y ε
u ) − f(X1, ε

u , X2, ε
u , Y ε

u )

)
du

∣∣∣∣ tends to zero

in probability as ε −→ 0.

Proof. We set h(X
1, ε

s , X2, ε
s , Y ε

s ) = f(X
1, ε
s

ε
, X2, ε

s , Y ε
s ) − f(X1, ε

s , X2, ε
s , Y ε

s ). We shall show

that for any 0 ≤ s ≤ t,
∣∣∣
∫ s

0
h(X

1, ε

u , X2, ε
u , Y ε

u )du
∣∣∣ tends to zero in probability as ε tends to

zero.
Let V ε := V Y ε, ε denote the solution of equation (2.6). Note that the first and second
derivatives of V ε in (x1, x2) are locally integrable. Then, as in [4], since the matrix a is non
degenerate, we can use Itô-Krylov’s formula to get

V ε(X1, ε
s , X2, ε

s ) = V ε(εx1, x2) +

∫ s

0

h(X
1, ε

u , X2, ε
u , Y ε

u ))ds (4.4)

+

∫ s

0

aij(X
1, ε
u , X2, ε

u )
∂2V ε

∂x2i∂x2j

(X1, ε
s , X2, ε

s )du+

∫ s

0

bj(X
1, ε
u , X2, ε

u )
∂V ε

∂x2j

(X1, ε
u , X2, ε

u )du

+

∫ s

0

[
∂V ε

∂x1
(X1, ε

u , X2, ε
u )ϕ(X1, ε

u , X2, ε
u ) +

∂V ε

∂x2
(X1, ε

u , X2, ε
u )σ(X1, ε

u , X2, ε
u )]dWu.
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In view of Lemma 2.1, it is obvious to see that V ε(εx1, x2) tends to zero. Once again, from
Lemma 2.1, we have

∣∣V ε(X1, ε
s , X2, ε

s )
∣∣ ≤ ε

[
(1 + |X2, ε

s |2 + |Y ε
s |2)|β(

X1, ε
s

ε
, X2, ε

s , Y ε
s )|
]

+ ε

[
(1 + |X2, ε

s |2)(pf)±(X2, ε
s , Y ε

s )

p±(X2, ε
s )

|α(
X1, ε

s

ε
, X2, ε

s )|
]

+ 1{|X1, ε
s |≥√

ε}|X1, ε
s |2

[
(1 + |X2, ε

s |2 + |Y ε
s |2)|β(

X1, ε
s

ε
, X2, ε

s , Y ε
s , Z

ε, n
s )

]

+ 1{|X1, ε
s |≥√

ε}|X1, ε
s |2

[
(1 + |X2, ε

s |2)(pf)±(X2, ε
s , Y ε

s )

p±(X2, ε
s )

|α(
X1, ε

s

ε
, X2, ε

s )|
]

From the uniform estimates of the processes X1, ε
s , X2, ε

s , Y ε
s and the fact that (pf)± satisfies

(C1 − iii), we deduce that

IE

(
sup

0≤s≤t

|V ε, n(X1, ε
s , X2, ε

s )|
)

≤ K

(
ε+ sup

|x1|≥
√

ε

sup
(x2, y)

|β(
x1

ε
, x2, y)| + sup

|x1|≥
√

ε

sup
x2

|α(
x1

ε
, x2)|

)

Then, since α and β satisfy (2.4) and (2.5) respectively, the right hand side of the previous
inequality tends to zero as ε −→ 0. Similarly, on can show that
∫ s

0

aij(X
1, ε
u , X2, ε

u )
∂2V ε

∂x2i∂x2j

(X1, ε
s , X2, ε

s )du+

∫ s

0

bj(X
1, ε
u , X2, ε

u )
∂V ε

∂x2j

(X1, ε
u , X2, ε

u )du

+

∫ s

0

[
∂V ε

∂x1
(X1, ε

u , X2, ε
u )ϕ(X1, ε

u , X2, ε
u ) +

∂V ε, n

∂x2
(X1, ε

u , X2, ε
u )σ(X1, ε

u , X2, ε
u )]dWu

converge to zero in probability.

Lemma 4.6.

∫ .

0

f(X1, ε
u , X2, ε

u , Y ε
u )du

law
=⇒

∫ .

0

f(X1
u, X

2
u, Y u)du on (C([0, t], IR), || ||∞) as

ε −→ 0.

For the proof of this Lemma, we need first the two following results. Let

X1
s = x1 +

∫ s

0

ϕ(X1
u, X

2
u)dWu, 0 ≤ s ≤ t.

Lemma 4.7. Assume (A2-i), (B1).

Let for each ε > 0, let Dε
n =

{
s : s ∈ [0, t] / X1,ε

s ∈ B(0,
1

n
)

}
. Define also

Dn =

{
s : s ∈ [0, t] / X1

s ∈ B(0,
1

n
)

}
. Then there exists a constant c > 0 such that for each

n ≥ 1, ε > 0,

IE|Dε
n| ≤

c

n
, IE|Dn| ≤

c

n
,

where |. | stands for the Lebesgue measure on [0, t].

Proof. Consider the function define as follows: for every n ∈ IN∗,

Ψn(x) =





−x/n− 1/2n2 if x ≤ −1/n

x2/2 if − 1/n ≤ x ≤ 1/n

x/n− 1/2n2 if x ≥ 1/n
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By using the Itô formula, we get

Ψn(X1
s ) = Ψn(X

1
0 ) +

∫ s

0

Ψ
′

n(X
1
s )ϕ(X1

s , X
2
s )dWs +

1

2

∫ s

0

Ψ”
n(X1

s )ϕ2(X1
s , X

2
s )ds, s ∈ [0, t]

Since ϕ = a00 = ρ(x1, x2)
−1 is lower bounded by C1, taking the expectation, we get

C1IE

∫ t

0

1[− 1

n
, 1

n
](X

1
s )ds ≤ IE

∫ t

0

Ψ”
n(X1

s )ϕ2(X1
s , X

2
s )ds

= 2IE
[
Ψn(X1

t ) − Ψn(x1)
]

It follows that IE(|Dn|) ≤ 2C−1
1 IE [Ψn(X1

t ) − Ψn(x1)] ≤ c/n. The same argument applies to
Dε

n.

Lemma 4.8. Consider a collection {Zε, ε > 0} of real valued random variables, and a real
valued random variable Z be such that for each n ≥ 1, we have the decompositions

Zε = Z1,ε
n + Z2,ε

n

Z = Z1
n + Z2

n,

such that for each fixed n ≥ 1,

Z1,ε
n ⇒ Z1

n

IE|Z2,ε
n | ≤ c√

n

IE|Z2
n| ≤

c√
n
.

Then Zε ⇒ Z, as ε→ 0.

Proof. The above assumptions imply that the collection of random variables {Zε, ε > 0}
is tight. Hence the result will follow from the fact that

IEΦ(Zε) → IEΦ(Z), as ε→ 0

for all Φ ∈ Cb(IR) which is uniformly Lipschitz. Let Φ be such a function, and denote by K
its Lipschitz constant. Then

|IEΦ(Zε) − IEΦ(Z)| ≤ IE|Φ(Zε) − Φ(Z1,ε
n )| + +|IEΦ(Z1,ε

n ) − IEΦ(Z1
n)| + IE|Φ(Z1

n) − Φ(Z)|
≤ |IEΦ(Z1,ε

n ) − IEΦ(Z1
n)| + 2K

c√
n
.

Hence
lim sup

ε→0
|IEΦ(Zε) − IEΦ(Z)| ≤ 2K

c√
n
,

for all n ≥ 1. The result follows.



Homogenization of semi-linear PDEs with discontinuous coefficients 12

Proof of Lemma 4.6 For each n ≥ 1, define a function θn ∈ C(IR, [0, 1]) such that θn(x) = 0
for |x| ≤ 1/(2n), and θn(x) = 1 for |x| ≥ 1/n. Now

∫ t

0

f(X1,ε
s , X2,ε

s , Y ε
s )ds =

∫ t

0

f(X1,ε
s , X2,ε

s , Y ε
s )θn(X1,ε

s )ds+

∫ t

0

f(X1,ε
s , X2,ε

s , Y ε
s )[1 − θn(X1,ε

s )]ds

= Z1,ε
n + Z2,ε

n∫ t

0

f(X1
s , X

2
s , Ys)ds =

∫ t

0

f(X1
s , X

2
s , Ys)θn(X1

s )ds+

∫ t

0

f(X1
s , X

2
s , Ys)[1 − θn(X1

s )]ds

= Z1
n + Z2

n

Now the mapping

(x1, x2, y) →
∫ t

0

f(x1
s, x

2
s, ys)θn(x1

s)ds

is continuous from C([0, t]) ×D([0, t]) equipped with the product of the sup–norm and the
S topologies into IR. Hence from Theorem 4.4, Z1,ε

n ⇒ Z1
n as ε → 0, for each fixed n ≥ 1.

Moreover, from Lemma 4.7, the linear growh property of f , Proposition 4.1 and (4.1), we
deduce that

E|Z2,ε
n | ≤ c√

n
, E|Z2

n| ≤
c√
n
.

The Lemma now follows from Lemma 4.8. �

The following proposition is obtained by passing to the limit on the backward component of
the equation (2.2).

Proposition 4.9. Let (Y , M), the limit process defined in Theorem 4.3. Then,
(i) For every s ∈ [0, t] − D,





Y s = H(Xt) +
∫ t

s
f(X1

u, X
2
u, Y )du− (M t −Ms),

IE
(
sup0≤s≤t |Y s|2 + |X1

s |2 + |X2
s |2
)
≤ C.

(4.5)

(ii) Moreover, M is Fs-martingale, where Fs = σ
{
Xu, Y u, Mu, 0 ≤ u ≤ s

}
.

Proof. (i)Passing to the limit in the backward component of the equation (2.2) and using
Lemmas 4.5 and 4.6, we derive (i).
(ii) Let Fs = σ

{
Xu, Y u, Mu, 0 ≤ u ≤ s

}
be the filtration generated by X, Y , M and

completed by the IP-null sets. Combining the uniform estimates in Proposition 4.1 , the
inequality (4.1), Lemma (A.4) and Lemma (A.5) in Appendix A, we show that M is Fs-
martingale.

4.2 Identification of the limits

Proposition 4.10. Let (Ys, Zs, 0 ≤ s ≤ t) be the unique solution of the BSDE (H(Xt), f).
Then, for every s ∈ [0, t],

IE|Y s − Ys|2 + IE

(
[M −

∫ .

0

ZudM
X
u ]t − [M −

∫ .

0

ZudM
X
u ]s

)
= 0.
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Proof. For every s ∈ [0, t] − D, we have





Ys = H(Xt) +
∫ t

s
f(Xu, Yu)du−

∫ t

s
ZudM

X
u

Y s = H(Xt) +
∫ t

s
f(Xu, Y u)du− (M t −Ms)

Since f satisfies condition (C1), we get by Itô’s formula, that

IE|Y s − Ys|2 + IE

(
[M −

∫ .

0

ZudM
X
u ]t − [M −

∫ .

0

ZudM
X
u ]s

)
≤ CIE

∫ t

s

|Y u − Yu|2du.

Therefore, Gronwall’s lemma yields that IE|Y s − Ys|2 = 0, ∀s ∈ [0, t] − D. But, Y is
continuous, Y is càd-lag and D is countable. Hence, Y s = Ys, IP-a.s, ∀s ∈ [0, t]. Moreover,

we deduce that, IE

(
[M −

∫ .

0

ZudM
X
u ]t − [M −

∫ .

0

ZudM
X
u ]s

)
= 0.

As a consequence of Proposition 4.10, we have

Corollary 4.11.

(
Y ε,

∫ .

0

Zε
udM

Xε

u

)
law
=⇒

(
Y,

∫ .

0

ZudM
X
u

)
.

5 Application to the convergence of PDE.

Under assumptions (A), (B), the SDE (3.1) has a unique weak solution [5]. And we have
the following:

Proposition 5.1. (Continuity in law of the flow x 7→ Xx
. )

Assume (A), (B). Let Xx
s be the unique weak solution of the SDE (3.1), and

Xn
s := xn +

∫ s

0

b(Xn
u )du+

∫ s

0

σ(Xn
u )dBu, 0 ≤ s ≤ t

Assume that xn converges towards x = (x1, x2) ∈ IR1+d. Then, Xn law
=⇒ Xx.

Proof. Since b and σ satisfy (A), (B), one can easily check that the sequence Xn is tight in
C([0, t] × IRd+1). By Prokhorov’s theorem, there exists a subsequence (denoted also by Xn)

which converges weakly to a process X̂. In the sequel, we show that X̂ is a weak solution of
SDE (3.1).
• Step 1: For every ϕ ∈ C∞

c (IR1+d),

∀u ∈ [0, t], ϕ(X̂u) −
∫ u

0

Lϕ(X̂v)dv is a F X̂-martingale.

We need to show that for every 0 ≤ s ≤ u and any function Φs of Xxn
r , 0 ≤ r < s which is

bounded and continuous in the topology of the uniform convergence,

0 = IE

{
[ϕ(Xxn

u ) − ϕ(Xxn

s ) −
∫ u

s

Lϕ(Xxn

v )dv]Φs(X
xn

. )

}

n−→ IE

{
[ϕ(X̂u) − ϕ(X̂s) −

∫ u

s

Lϕ(X̂v)dv]Φs(X̂.)

}
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Indeed, since ϕ, Φ are continuous functions and L is continuous out of the set {x1 = 0},
similar argument as in the proof of Lemma 4.6 yields that

[ϕ(Xxn

u ) − ϕ(Xxn

s ) −
∫ u

s

Lϕ(Xxn

v )dv]Φs(X
xn

. )
law−→ [ϕ(X̂u) − ϕ(X̂s) −

∫ u

s

Lϕ(X̂v)dv]Φs(X̂.)

Moreover ϕ, Φ are bounded functions and supn IE(sups∈[0, t] |Xxn|2) < ∞, the result follows
by the the uniform integrability criterium. Hence

IE

{
[ϕ(X̂u) − ϕ(X̂s) −

∫ u

s

Lϕ(X̂v)dv]Φs(X̂.)

}
= 0 and ϕ(X̂u) − ϕ(X̂s) −

∫ u

s
Lϕ(X̂v)dv is a

F X̂-martingale for any ϕ ∈ C∞
c (IR1+d).

•Step 2: From step 1, there exists a F X̂-Brownian motion B̂ such that X̂,

X̂s = x+

∫ s

0

b(X̂u)du+

∫ s

0

σ(X̂u)dB̂u, 0 ≤ s ≤ t.

Weak uniqueness tell us that (Xx, B) and (X̂, B̂) have the same law on some probability

space (Ω̂, F̂ , P̂ ). Hence Xxn
law
=⇒ Xx.

Theorem 5.2. Assume (A), (B), (C). Let p > d+ 2.Then,

(i) lim
ε→0

IE|Y ε
0 − v(t, x)|2 = 0.

(ii) Y t, x
0 = v(t, x) ∈ C(IR+ × IRd+1), and it is a Lp-viscosity solution of the PDE (2.3).

Proof. (i) We shall prove that limε→0 IE|Y ε
0 − Y 0|2 = 0. We have,





Y ε
0 = H(Xε

t ) +
∫ t

0
f(X

ε

u, X
2, ε
u , Y ε

u )du−Mε
t

Y 0 = H(Xt) +
∫ t

0
f(Xu, Y u)du−M t

From Jakubowski [3], the projection: y 7→ yt is continuous in the S-topology. We then deduce
that Y ε

0 converges towards Y 0 in distribution. Moreover, since Y ε
0 and Y0 are deterministic

and bounded, we have limε→0 IE|Y ε
0 − Y 0|2 = 0. That is limε→0 IE|vε(t, x) − v(t, x)|2 = 0.

(ii) For every fixed t ∈ IR+, we check that the map (t, x) 7→ Y t, x
0 is continuous. Let

(tn, xn) → (t, x). We assume that t > tn > 0. We have,

Y tn, xn

s = H(Xxn

tn
) +

∫ tn

s

f(Xxn

u , Y tn, xn

u )du−
∫ tn

s

Ztn, xn

u dMXxn

u , 0 ≤ s ≤ tn, (5.1)

where Xxn
law⇒ Xx.

Since H is a continuous and bounded function and f satisfies (C1), one can easily show that
the sequence {(Y tn, xn,

∫ .

0
1[s,tn](u)Z

xn
u dMXxn

u )}
n∈IN∗ is tight in D([0, t] × IR × IR).

Let us rewrite the equation (5.1) as follows,

Y tn, xn

s = H(Xxn

tn
) +

∫ t

s

f(Xxn

u , Y tn, xn

u )du−
∫ t

s

1[s,tn](u)Z
tn, xn

u dMXxn

u (5.2)

−
∫ t

tn

f(Xxn

u , Y tn, xn

u )du, 0 ≤ s ≤ t.

= A1
n + A2

n
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• Convergence of A2
n

One has IE

∣∣∣∣
∫ t

tn

f(Xxn

u , Y tn, xn

u )du

∣∣∣∣ ≤ K(|x|)|t− tn|. Hence A2
n tends to zero in probability.

• Convergence of A1
n

Denote by (Y ′, M ′) the weak limit of {(Y tn, xn ,
∫ .

0
1[s,tn](u)Z

xn
u dMXxn

u )}
n∈IN∗ . In view of

Lemma 4.6, one has

∫ t

s

f(Xxn

u , Y tn, xn

u )du
law
=⇒

∫ t

s

f(Xx
u , Y

′
u)du.

We now pass into the limit in (5.2) and obtain that

Y ′
s = H(Xx

t ) +

∫ t

s

f(Xx
u , Y

′
u)du− (M ′

t −M ′
s), s ∈ [0, t] ∩Dc.

The uniqueness of the considered BSDE ensures that ∀s ∈ [0, t], Y ′
s = Y t, x

s IP-ps. Hence

Y tn, xn
law⇒ Y t, x. As in (i), one derive that Y tn, xn

0
law⇒ Y t, x

0 which yields to the continuity of
Y t, x

0 . Therefore, in view of Remark 3.4, we conclude that v(t, x) = Y x, t
0 is a Lp-viscosity

solution of the system of PDEs (2.3).

Remark 5.3. The result is extended to the multi-dimensional case under our standing as-
sumptions. In this case Y is IRL-values process and the strategy is line by line the same.

A Appendix: S-topology

The S-topology has been introduced by Jakubowski ([3], 1997) as a topology defined on
the Skorohod space of càdlàg functions: D([0, T ]; IR). This topology is weaker than the
Skorohod topology but tightness criteria are easier to establish. These criteria are the same
as the one used in Meyer-Zheng topology, ([6], 1984).
Let Na, b(z) denotes the number of up-crossing of the function z ∈ D([0, T ]; IR) in a given
level a < b. We recall some facts about the S-topology.

Proposition A.1. (A criteria for S-tight). A sequence (Y ε)ε>0 is S-tight if and only if it is
relatively compact on the S-topology.
Let (Y ε)ε>0 be a family of stochastic processes in D([0, T ]; IR). Then this family is tight for
the S-topology if and only if (‖Y ε‖∞)ε>0 and (Na, b(Y ε))ε>0 are tight for each a < b.

Let (Ω, F , IP, (Ft)t≥0) be a stochastic basis. If (Y )0≤t≤T is a process in D([0, T ]; IR) such
that Yt is integrable for any t, the conditional variation of Y is defined by

CV (Y ) = sup
0≤t1<...<tn=T, partition of [0, T ]

n−1∑

i=1

IE[|IE[Yti+1
− Yti | Fti ]|].

The process is call quasimartingale if CV (Y ) < +∞. When Y is a Ft-martingale, CV (Y ) =
0. A variation of Doob inequality (cf. lemma 3, p.359 in Meyer and Zheng, 1984, where it
is assumed that YT = 0) implies that

IP

[
sup

t∈[0, T ]

|Yt| ≥ k

]
≤ 2

k

(
CV (Y ) + IE

[
sup

t∈[0, T ]

|Yt|
])

,
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IE
[
Na, b(Y )

]
≤ 1

b− a

(
|a| + CV (Y ) + IE

[
sup

t∈[0, T ]

|Yt|
])

.

It follows that a sequence (Y ε)ε>0 is S-tight if

sup
ε>0

(
CV (Y ε) + IE

[
sup

t∈[0, T ]

|Y ε
t |
])

< +∞.

Theorem A.2. Let (Y ε)ε>0 be a S-tight family of stochastic process in D([0, T ]; IR). Then
there exists a sequence (εk)k∈IN decreasing to zero, some process Y ∈ D([0, T ]; IR) and a
countable subset D ∈ [0, T ] such that for any n and any (t1, ..., tn) ∈ [0, T ]\D,

(Y εk

t1
, ..., Y εk

tn )
Dist−→ (Yt1 , ..., Ytn)

Remark A.3. The projection :πT y ∈ (D([0, T ]; IR), S) 7→ y(T )is continuous (see Remark
2.4, p.8 in Jakubowski,1997), but y 7→ y(t) is not continuous for each 0 ≤ t ≤ T .

Lemma A.4. Let (Xε, Mε) be a multidimensional process in D([0, T ]; IRp) (p ∈ IN∗) con-
verging to (Y, M) in the S-topology. Let (FXε

t )t≥0 (resp. (FX
t )t≥0) be the minimal complete

admissible filtration for Xε (resp.X). We assume that supε>0 IE
[
sup0≤t≤T |Mε

t |2
]
< CT ∀T >

0, Mε is a FXε

-martingale and M is a FX-adapted. Then M is a FX-martingale.

Lemma A.5. Let (Y ε)ε>0 be a sequence of process converging weakly in D([0, T ]; IRp) to Y .
We assume that supε>0 IE

[
sup0≤t≤T |Y ε

t |2
]
< +∞. Hence, for any t ≥ 0, E

[
sup0≤t≤T |Yt|2

]
<

+∞.
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