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ABSTRACT 

This paper presents some calculation results in the cases of steady and non-steady partial cavity. These results are 
obtained with the commercial Navier-Stokes codes FLUENT and STAR-CD and compared with experimental 
results. Under cavitation conditions the first code uses a bubbles two-phase model. The second code uses the VOF 
(volume of fluid) technique to calculate the interface and allows the use of either the barotropic or the bubbles two-
phase model. Different arrangements of the three parameters step height, channel confinement and cavitation number 
are examined. Cavities observed experimentally are compared with that obtained by the calculation. We investigate 
the ability of the models to reproduce the non-steady behaviours (re-entrant jet thickness, shedding frequencies).  

Nomenclature 

a Speed of sound in water (m/s) 
av Speed of sound in vapour (m/s) 
Cp Pressure coefficient  () 
D0 Tunnel width (mm) 
e Confinement height (mm) 
h Step height (mm) 
H0 Tunnel height (mm) 
L Cavity length (mm) 
N Bubble number density per unit volume (m-3) 
P Pressure (Pa) 
Pr Reference pressure (Pa) 
Pv Vapour pressure (Pa) 
P0 Pressure in the inlet section (Si) (Pa) 
Si Area of the inlet (Si) & outlet (So) sections (m2) 

Se Area of the confinement section (Se) (m2) 
Se’ Area of the upper section (Se’) (m2) 
Ve Velocity in the confinement section (m/s) 
V0 Velocity in the inlet section (Si) (m/s) 
Vr Reference velocity (m/s) 
V Velocity vector () 
β Divergent angle (deg) 
µ Molecular viscosity of water (kg/(m.s)) 
µv Molecular viscosity of vapour (m2/s) 
ρ Density of the water (kg/m3) 
ρv Density of the vapour (kg/m3) 
σ Cavitation number () 
∇ Divergence operator () 

1. INTRODUCTION

Attached cavities are more or less unsteady and unstable. In particular, cavitation instabilities often occur in a 
turbomachinery and induce abnormal dynamic behaviours, noise and erosion. Among several kinds of instabilities 
that may occur in cavity flows, one of the most important is the development of a re-entrant jet at the end of the 
cavity (Knapp et al., 1970, Furness & Hutton, 1975). Knapp et al. (1970) give a precise description of the flow at the 
downstream end of a cavity. In this region the liquid hits the wall and locally divides into two parts. The adverse one 
gives birth to the re-entrant jet, whereas the other one, in the direction of the main flow, makes the liquid flow re-
attach to the wall. Furness & Hutton (1975) describe and modelize the dynamic behaviour of the cavity which 
develops on a Venturi-type nozzle by a two-dimensional unsteady potential flow theory. The theory holds true for the 
early formation of the re-entrant jet, but is unable to model the shedding of a cloud when the re-entrant jet intersects 
the cavity interface. 
The flow structure analysis around unsteady cloud cavitation shows that the shedded cloud is a large-scale vortex 
structure containing many small cavitation bubbles (Kubota et al., 1989, Yamaguchi et al., 1990). The generation 
mechanism of cloud cavitation was studied in detail by Kawanami et al. (1997). This study definitely confirms the 
essential role of the re-entrant jet on the onset of cloud cavitation. The study (Reboud et al., 1998) highlights the 
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structure of the two-phase flow inside the cavity using a double optical probe. The local void fraction and the 
velocity measurements confirm the existence of a reversed two-phase flow along the wall. 
From a modelling viewpoint, the main difficulty relates to the strong coupling between the pressure field and the 
vapour fraction. In addition, an accurate model should take into account both the compressible behaviour of the two-
phase medium and the non-compressible behaviour of the pure liquid. It should also be able to describe the growth 
phase of the sheet cavity, the development of the re-entrant jet, the break-off and the fully detached cloud. Under 
unsteady configurations several approaches were used to model the two-phase fluid as an homogeneous fluid of 
variable density. Kubota et al. (1992) describe the evolution of the bubble cluster and computes the void fraction. 
Reboud & Delannoy (1994) use an arbitrary barotropic equation of state to describe the behaviour of the mixture. 
Diéval et al. (1998) develop a separated two-phase flow model using a free surface tracking method (volume of 
fluid, named VOF) to capture the interfaces. 
In this paper we present recent numerical results obtained by the commercial codes FLUENT and STAR-CD and 
compared with the experimental results obtained by Callenaere et al. (1998). In this last study the authors highlight 
the different patterns of partial cavities, yield the re-entrant jet thickness and pressure fluctuation measurements just 
as the cavity evolution in the periodic case. In this study, it appears of primary importance to know the adverse 
pressure gradient at cavity closure. 
In the framework of the FLUENT code, a two-phases homogeneous flow model is used. In this model the inside and 
the outside of the cavity is treated as a mixture. In this approach, the momentum and continuity equations for the 
mixture are solved. A simplified Rayleigh equation applied to a cluster of identical bubbles is used to evaluate a 
mass transfer term between the two phases. The model does not assume that there is an interface between two 
immiscible fluids; it allows the fluids to be interpenetrating. The volume fractions of the two phases, for a control 
volume, can therefore be equal to any value between 0 and 1, depending on the space occupied by the two phases. 
In the framework of the STAR-CD code the VOF model is used. It is a fixed grid technique for two fluids where the 
position of the interface is of interest. The formulation relies on the fact that the two phases are not interpenetrating 
(Hirt & Nichols, 1981). A variable is introduced, the volume fraction of one of the phases in the computational cell. 
The position of the liquid-vapour interface is determined by solving the volume fraction transport equation in which 
a source term is introduced. This term is representative of the vapour production rate, depends on the local pressure 
and is determined by the cavitation model. The barotropic and the two-phase models are used. For the barotropic 
model an analytical relation between the pressure and the void fraction is used (Schmidt et al., 1997). For the bubble 
two-phase model a Rayleigh-Plesset equation is applied to a cluster of bubbles (Kubota et al., 1992). 
All the calculations are performed under turbulent conditions using the standard k-ε model and wall functions. The 
results are analysed in order to verify the ability of the calculation to reproduce the main features of the cavitating 
flow. Particularly, the thickness and the velocity of the re-entrant jet and the Strouhal number are compared to 
experimental values. 

2. EXPERIMENTAL TUNNEL CONFIGURATION
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Figure1. Schematic view of the test tunnel. 

The experimental study was conducted in the hydrodynamic tunnel of the Laboratoire des Écoulements 
Géophysiques & Industriels of Grenoble (Briançon-Marjollet & Michel, 1987). For the present study, the test 
section, used in closed mode, is H0 = A1A2 = 280 mm high and D0 = 175 mm wide (figure 1). The tunnel bottom 
consists of a quarter-ellipse-shaped nose topped by a tiny quarter-circle-shaped obstacle. The ellipse sides values are 
respectively OT = 140 mm and OT0 = 70 mm. The quarter-circle radius value is T0w = T0E = 15 mm, where point E 
is the intersection point between the quarter-circle and the quarter-ellipse. The tiny obstacle creates a stagnation 
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point directly upstream of the cavity and consequently generates a laminar flow close to the beginning of the cavity. 
Located downstream of the nose, a flat plate (T1Q), 600 mm long, can be moved vertically (h = T1w) and positioned 
at incidence β. The plate (T1Q) is joined with a smaller one (QF), 240 mm long, intersecting the tunnel bottom at 
point F. This arrangement leads to a diverging step of adjustable height h. An additional horizontal plate (IJ), 800 
mm long and 16 mm thick, is set above the step to change the confinement height e = wD2. The leading edge I and 
the nose T of the quarter-ellipse are in the same cross-section. This confinement plate is tooled in its rear part by a 
chamfered-edge 62 mm wide and in its front part by a half-ellipse 36 mm main radius. It is fixed in place by 8 rods, 
12 mm in diameter and originating from the  tunnel ceiling. The figure 2 shows a photographic insight focused on the 
cavity region. 

Figure2. Photo of the region of interest. 

Notice that, these rods in the upper  channel generate 
substantial head losses. In effect, the lower channel 
flow rate is not the same as that the one obtained 
without rods. Consequently, a numerical calculation has 
to insure the correct experimental flow rate in the lower 
channel. Three geometrical parameters are controlled in 
the present configuration: 
➝ the step height h, varying from 0 to 12 mm, which 
controls the cavity thickness; 
➝ the slope β, varying from 0 to 4.2°, which controls 
the divergence and so the adverse pressure gradient; 
➝ the confinement height e, varying from 20 to 60 

mm, which is an additional way to change the 
pressure distribution.

In comparison with classical venturis (Furness & Hutton, 1975), the present configuration allows to get various 
cavity patterns, including self-pulsating cavities, and to analyse the cavities stabilities just as the onset of cloud 
cavitation (Callenaere et al., 1998). 
A cartesian coordinate system (Oxy) is defined on the low channel bottom with the x-axis originating from the centre 
O of the elliptical nose and positive values indicating the direction downstream. The cavity length L is measured 
along the lower plate (T1Q) from the step origin T1. 
The various measurement techniques are described in details in the very full article (Callenaere et al., 2000). The 
characteristic velocity Ve in the lower channel is measured by Laser Doppler Velocimetry (LDV) in the middle of the 
section (Se) at x=0. Pressure fluctuations were measured with the use of 5 piezoelectric transducers located along the 
lower plate (T1Q) at the locations 50, 75, 100, 125 and 150 mm from the origin of the step. In order to measure the 
re-entrant jet thickness an ultrasonic technique was developed; most results were obtained with the 2.25 MHz 
ultrasonic transducer (PANAMETRICS ref. V306-SU and V311-SU). 
In the inlet section (Si), situated at a distance of 280 mm from the leading edge I of the confinement plate, the total 
flow rate Qt is obtained uniform and the velocity V0 unidirectional with the help of a converging section. For the 
computation of the cavitation number, the reference pressure Pr and velocity Vr are defined by the relations: 

Qt = (Se+Se’) Vr (1) 

P0 + 1/2 ρ V0
2 = Pr +1/2 ρ Vr

2 (2)

P0 is the pressure measured in the inlet section (Si) and ρ the water density. So the experimental cavitation number is 
defined as σ = (Pr – Pv) / (1/2 ρ Vr 

2 ), where Pv is the vapour pressure. Using (1) and (2) the pressure P0 is given by: 

(Po – Pv) / (1/2 ρ Vr
2) = 1 + σ - [(Se+Se’) / Si]2 (3)

We define the pressure coefficient with respect to the reference pressure and velocity as Cp = (P – Pr) / (1/2 ρ Vr
2). 

3. NUMERICAL MODELLING

The numerical results are obtained with the use of the Navier-Stokes codes FLUENT and STAR-CD. The two-
dimensional calculation domain is limited by the (Si) inlet section and the (So) outlet section located at the abscissa 
of 1120 mm value. The domain mesh is constructed with the use of the FLUENT pre-processor. 
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The mesh of the domain, containing 15288 cells, has been realised by the connection of structured and unstructured 
different meshes. The figure 3 shows the entire mesh for a confinement height e = 20 mm, a step height h = 10 mm 
and a divergence angle β = 4.2°. 

Figure3. Mesh of the entire domain. 

Figure4. Upstream region. 

 
Figure5. Cavity region. 

The mesh structure is triangular upstream the confinement plate 
(figure 4) and regular downstream the tiny obstacle, in the upper and 
lower channels (figures 3 & 5). The mesh is refined near the zones of 
strong gradients, in particular close to the cavity region (behind the 
step), close to the geometrical discontinuity zones and near the 
leading and trailing edges of the confinement plate. In order to 
intercept the walls boundary layers, a normal-wise progressive mesh 
has been used. The first cell height is 0.3 mm and the progression rate 
is equal to 1.2. The figure 5 illustrates the mesh refinement close to 
the step and the progression of the boundary layer mesh. A grid 
sensitivity study demonstrates that, a more refined grid does not
influence significantly either the velocity field nor the pressure field. 
One uses the well known semi-empirical k-ε model (Launder & 
Spalding, 1972) to solve the transport equations for the turbulent 
kinetic energy k and its dissipation rate ε. In the case of the tunnel 
configuration, measurements show that the flow turbulence level is 
about 0.1 %. Because of the strong converging region, upstream, 
close to the inlet section (Si), the boundary layers are negligible, thus 
the inlet velocity is uniform. The boundary conditions are the 
followings: no-slip conditions on the walls, uniform pressure and 
velocity on the inlet section (Si), plus an outlet condition on the outlet 
section (So). The outlet condition consists of assuming a zero normal
gradient for all flow variables except pressure. 

The equations are integrated with respect to time using an implicit scheme. The velocity, pressure and void fraction 
are calculated at the cell centre. The SIMPLE algorithm is used for the pressure correction. 
The flow calculation leads to a flow rate value different of those obtained experimentally. This gap is due to the head 
loss induced by the rods presence in the upper channel. In order to calculate the rods head loss, a porous medium is 
introduced in the upper channel, close to the cross-section (Sp) located at the middle of the confinement plate (figure 
1). Thus, the region of interest (lower channel) is not disturbed. Across the (Sp) section, the flow velocity is 
unidirectional and uniform. So, the one-dimensional porous model, termed “porous jump”, is used to model a 
membrane coinciding with the section (Sp). The pressure jump, Pd-Pg, across the membrane is given as a 
combination of the Darcy’s law and an additional inertial loss term: 

(Pd – Pg) / ρ v2 = - A1 - A2 / v (4) 

Where v is the flow velocity normal to the membrane, A1 the pressure drop coefficient and A2 a term inversely 
proportional to the porous medium permeability. In the present study, the permeability value is assumed to be 
infinite, so the A2 coefficient disappears and the pressure jump becomes proportional to the dynamic pressure. The 
A1 coefficient can be viewed as a loss coefficient per unit length along the flow direction. For each calculation, the 
A1 value is calculated under non-cavitating configuration, then introduced as a known value in the calculation of the 
cavitating case. The A1 coefficient is adjusted such as the experimental value Qe of the flow rate through the 
characteristic section (Se) is identical to those obtained by calculation. 
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Both for the VOF (STAR-CD) and the homogeneous (FLUENT) models, the mixture density is defined as  ρM = α ρ 
+ (1-α) ρv, where ρv is the vapour density and  α the volume fraction of the water. For the mixture the mass 
conservation equation gives the relation: 

DρM / Dt + ρM ∇.V = 0 (5) 

D/Dt is the material time derivative and V the velocity vector at any point of the mixture. Assuming that the two 
phases are non-compressible, the equation (5), expressed in terms of the vapour volume fraction  αv = 1 - α becomes: 

ρv [∂αv / ∂t + ∇.(αvV )] = ρv Dαv / Dt (6) 

The term, m’v = ρv Dαv / Dt, on the right-hand side, is the mass flow rate per unit volume between the water phase 
and the vapour phase. In order to close the models, one uses either the barotropic or the bubble cavitation model 
mentioned in paragraph 1. 

Barotropic model. 
Several assumptions are made: the liquid and vapour are in thermal equilibrium, the two phases are uniformly 
distributed within a cell, and that there is no sub-cell slip between the liquid and vapour. Using these assumptions, 
the energy equation is simplified to a barotropic equation: AM

2 DρM / Dt = DP / Dt. The two-phase speed of sound 
AM is modeled using the classic homogeneous equilibrium model of Wallis (1969). Thus, the following equation of 
state is applied as a closure for the model (Schmidt et al., 1997): 

(Pv – P) / ρ a2 = [(1 - 1/ξ) / (1 - ϖ2)] Log [(α + ϖ ξ αv) / [(α + ξ αv)] (7)

Where, ξ = ρv / ρ, ϖ = (ρ a / ρv av)
2, a and av are the speed of sound in water and vapour respectively. 

Bubble model. 
This model allows the fluids to be interpenetrating and so mass to be transferred from one phase to another. It 
models the formation of bubbles when the local pressure becomes less than the vaporization pressure. Under 
isothermal conditions, the pressure within the bubble remains nearly constant and the change in bubble radius is 
approximated by a simplified Rayleigh equation (Kubota et al., 1992): 

dR / dt = sign (Pv-P) . [2 |Pv - P| / 3 ρ ]1/2 (8)

The total vapour mass per unit volume can be written: mv = ρv αv = 4/3πR3 N ρv, where N is the bubble number 
density per unit volume and R a typical bubble radius. Then, the term on the right-hand side of equation (6) is 
expressed as: m’v / mv = (3 / R) (dR / dt), with 1 / R = (4/3πN / αv)

1/3. 

4. RESULTS

The experimental tests were carried out at the ambient temperature of 20°C. The water density ρ is equal to 998.21 
kg/m3, the molecular viscosity µ to 1.002 10-3 kg/(m.s), the speed of sound a to 1531 m/s and the vapour pressure Pv 
to 2337 Pa. Under the saturated vapour condition, coming into the cavity, the vapour density ρv is equal to 1.73 10-2 
kg/m3, the molecular viscosity µv to 0.88 10-5 kg/m3 and the speed of sound av to 378 m/s. All the herein results are 
obtained with the following parameters values. The divergence angle β is set equal to 4.2° and the Qt total flow rate 
value to 170.72 l/s which leads to a 3.48 m/s value for V0. The confinement plate is positioned at the fixed value e = 
20 mm which provides a 40.42 l/s value for the lower channel Qe flow rate and the corresponding value of 11.55 m/s 
for the characteristic velocity Ve. For the given confinement height, the calculations are performed for the highest 
step height h = 10 mm. When the bubble two-phase model is used the bubble number density per unit volume N is 
adjusted so that the calculation converges. The results are presented for a cavitation number σ equal to 3; the 
corresponding value of the Pr reference pressure is 46810 Pa. 
In order to correctly initialise the calculation, a characteristic length value of the large turbulent structures is 
required. With regard to the present configurations, Schlichting (1970) estimates this length with the approximate 
law 0.37 [ν/V0]

0.2 ∆0.8, where ∆ = 30 mm is the distance between the convergent outlet and the inlet section (Si). The 
characteristic length value is about 0.5 mm. In addition, the standard wall functions are based on the non-
dimensional wall quantity y+ = ρ Vt δ/µ, where Vt is the tangential velocity and δ the normal-wise distance from the 
wall at any point of the domain. With the use of the boundary layer mesh, previously described (cf. §2), the y+ value 
of the wall-adjacent cells varies between 15 to 100, a range over which the classical log-law is valid. 
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Concerning the determination of the A1 coefficient of equation (4), the calculation shows that, without a porous 
medium (A1 = 0) the lower channel flow rate has a 26.01 l/s value, to be compared with the experimental one of 
40.42 l/s. For the coefficient A1 = 1, the calculated flow rate value is equal to the experimental one to within 1%. 

e = 20mm 

h=10 mm

 σ =3
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Figure 6. Time evolution of the vapour volume. 

Both for the two codes, a non-cavitating calculation 
initialise the flow field. Under cavitating condition 
the time step is equal to 0.5 ms. A simulation of 
5000 ms long is performed. The figure 6 presents the 
vapour volume rate evolution ( ratio of thecavity 
volume on the domain volume) versus time. During 
the first 800 ms the flow is strongly disturbed, due to 
the sudden start up of the cavity region. The vapour 
fills the detached flow region and then vanishes 
because of the non-steady behaviour of the flow. 
From t = 800 ms to t = 3000 ms the vapour volume 
rate increases; from this time to the end of the 
simulation it stabilises to a value of about 14%. 
Beyond t = 3000 ms, the cavity volume oscillates 
continuously with an average period of 500 ms.  
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Figure 10. Cavity & velocity at time 2268 ms [zoom]; 

σ =3. 

This instability corresponds to the vapour shedding in the flow. The figures 7 to 11 illustrate the cavity region and 
the flow field during one period of this phenomenon. At time t = 1842 ms, the cavity growths; in the water and on the 
boundary cavity the x velocity is positive. At time t = 1974 ms, the cavity is still increasing but a thick re-entrant jet 
appears with an important reverse flow. This is in agreement with the experimental observations (Franc, 2001). The 
time t = 2268 ms corresponds to the very beginning of the shedding process. Two vapour vortices are present in the 
flow, the first in the new developing cavity just behind the step, and the second in a large cloud of bubbles detaching 
downstream (figure 10). This figure illustrates the counter-current flow with the velocity field distribution. The 
process go on and at time t = 2292 ms, the two vapour vortices are now clearly separated (figure 11). 
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The figure 12 shows x-velocities in the cross-section x = 300 mm at the different times: t = 1788 , 1842 and 1974 ms. 
The re-entrant jet development is related to the change in velocity direction near the wall. At time t = 1974 ms, the 
re-entrant jet thickness dj is about 15 mm for a 500 mm value of the cavity length. The ratio dj / L = 0.03 is very 
close to the experimental one corresponding to a cavity length value of 95 mm. 
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Figure 11. Cavity at time 2292 ms; σ =3. 

The experiments have highlighted  that the re-entrant 
jet velocity can be considered as nearly constant all 
along its development. It covers a distance of about 
75% of the maximum cavity length Lm during a time 
of about 40% of the shedding period T. Hence, its 
mean velocity is of the order of 1.9 Lm/T. In the 
present case this relation yields a re-entrant jet 
velocity value of 1.9 m/s, to be compared with the 
1.6 m/s value observed on the figure 12. The 
numerical Strouhal number Lm/[T.Ve] is found equal 
to 0.1, the half of the usual experimental value. 
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σ = 3. 

The figure 13 illustrates the void fraction for the same cases considered in figure 12. Notice that the cavity is full of 
vapour only during the period where the re-entrant jet develops. 

5. CONCLUSION

A complete simulation of a cavitating flow studied experimentally is performed. The use of the FLUENT solver has 
shown its ability to reproduce the typical dynamical behaviour of the cavity development, the re-entrant jet and the 
vapour shedding. The re-entrant jet velocity and thickness have been found close to the experimental values. The 
Srouhal number is the half of the value usually observed. 
The numerical test case corresponds to a case of long cavity. The obtained  results are very promising. The next 
calculations concern smaller cavities and other channel configurations. One of the goals is to reproduce by the 
calculation the experimental mapping of the cavitation regimes. It would be very interesting to obtain the different 
mapping regions: cloud cavitation with periodic instabilities, non auto-oscillating thin cavities with periodic re-
entrant jet, cavitation surge, non auto-oscillating long cavities and shear cavitation.  
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