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Summary

We study the dynamo mechanism for a flomdea&f a ring of stationary helical vorticesan electrically conducting media. The
choice of this flow is related to the one obtained in thermavection in a rotating shell which is also expected in thenBasuter-
core. This choicés also related to a sodium experiment, carriediousrenoble, based on a spisal Taylor-Couette model.
Applying the mean field approach and relying on the second oodeslation approximation we derive the mean electromotiveefor
(e.m.f.) produced by such a flow. We find that such a rinigetital vortices may produce, from an azimuthal mean magndtic fie
an azimuthal mean e.m.f. leading te tieneration of a poloidal magnetic field.

INTRODUCTION
A ring of helical vortices is a common feature of thermal convection in a rotating shell. This fluid motion has beer
reproduced experimentally and numerically [1] for specific ranges of parameters. The question to know if such a flo
is relevant to the flow in the Earth’s outercore is not answered yet. However there is some interest to investigate furtt
what kind of dynamo mechanism such a flow could produce. Besides, a sodium experiment in preparation in Grenol
is designed to reproduce such a ring of vortices [2][3]. The device is made of a spherical shell in which there is
rotating innercore. Between the innercore and the sphatiedil there is liquid sodium, the whole device being in a
rotating frame. The difference of rotation between the innercore and the spherical shell produces a shear instability
the innercore tangential cylinder leagito a ring of vortices. These vorticai®e helical because of Ekman pumping
due to the Ekman layers at the top and bottom and alsodgeofithe spherical shape of the top and bottom. We want
to know what kind of dynamo mechanism such a flow can produce.

DESCRIPTION OF THE WORK

Themean field approach
We assume a given flow Instead of calculating dictly the magnetic fiel@ by solving the induction equation

OB/t =V x(uxB)+nV°B )

where 7 is the magnetic diffusivity, we use the mean field approach, decompasing + U' and B =B + B' into
mean and fluctuating parts where the mean is defined as the avetbganmuthal directiop where §, ¢, 2) are the

cylindrical coordinates. Then oumais to calculate the mean electrdive force (mean e.m.f.) defined ky= U'xB".
We can show (see [4]) thatdan be expressed in the form:
B, (s)

£.()=4,,(9)B,(3) +b(s) 2

whereaand b are pseudo-tensors of rank 2 and 3. Then knowiagd b the dynamo problem is reduced to solving
the mean part of the induction equation:

+... 2)

%—?IVX(UX§)+VX8+HV2§. ©))
Assumptions
Let us write the fluctuating part of the induction equation:
% =V x(UxB)+Vx(UxB")+Vx(UxB)-Vx(UuxB)+nVB (4)

Then we consider the low conductivity limit (see [4]), leading to neglecting the term at the left hand side of (4). We
also consider that the second order approximation (see [4]) is valid (leading to neglectifhigriief3terms of the

right hand side of (4)). Finally, we coneitthat the mean e.m.f. does not dependidsee [4]), assuming that it is
sufficient to considdd in (3) only.

Finally we come out with the following equation to solve:

nV?B'=-V x (U'xB). )
Thevelocity field
The flow is considered to be steady, z-independent and harmapidtiis non-zero foll— 6 <s/l, <1+ 6 where

|O is a typical length scale defined by the radius of the ring of vortices. The velocity is defined by

u = (us(s)sinmg,u, (s)cosme, u, (s)cosme) and a typical example is given in figure 1.
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Tensor of second rank

REA. 0 O |
= ~ u
Solving (5) and replacing’ in & = U'xB', we find thata,_, _|QR,: 0 Rfa, O|with R} =—"Cand
0 = n
0 R, 0

z
gl
RZ =—20 "y and U being typical horizontal and vertical velocities, and with:

n
~ _ 1t(oh,(ss) W, O, (ss) o o
8= 1[(—85' U, (9u,(8) + =2 2= uz(s)uw(s)jsds

S

ﬁw—z (h (Ss)u(s)u (s)+ (: )u(s)u (s)jsdg
a,, = ET(MU (s)u, (s)+mh (Ss)u , (S, (s)jsds
29 0s S

and Wherehm(ss'):i(ij for S < sand hm(ss'):i[ij for S<S'.
2m\ s 2m\ s

The tensor of third rank has also been calculated but cannot be included in this short summary.

Oneexample

157z
As an example, we consider the velocity profile definedipy uZ = —— (1 £%)? cosmg and

S—l
(ug,u, 0)/uf' =—e,x Vi with = 5 (1-£%)° cosme and & = ek Thes-profiles obtained for the three

coefficientsa are given in figure 2 in the case whe¥ = /2, corresponding to helical vortices with similar length
scales in the and ¢ directions.
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Fig.1. Isolines ofi, form=4.  Fig.2. The functions ‘& versus(s—1)/ & for M=z /2andm=1, 2, 4, 8, 16

CONCLUSIONSAND FURTHER WORK
The coefﬁcientéw being not zero and even dominant compared to thespthie can conclude that from an azimuthal mean

magnetic field an azimuthal mean e.m.f. is generated. Tlsemthf. can generate a poldideagnetic field. The generation
of a azimuthal field from a poloidal field by some differential rotatibrcould then close the loop. We are now considering
the case where the flow is z-dependent. énftture we shall exame the influence ofl onto the mean e.m.f.
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