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INTRODUCTION

A ring of helical vortices is a common feature of thermal convection in a rotating shell. This fluid motion has been reproduced experimentally and numerically [1] for specific ranges of parameters. The question to know if such a flow is relevant to the flow in the Earth's outercore is not answered yet. However there is some interest to investigate further what kind of dynamo mechanism such a flow could produce. Besides, a sodium experiment in preparation in Grenoble is designed to reproduce such a ring of vortices [2][3]. The device is made of a spherical shell in which there is a rotating innercore. Between the innercore and the spherical shell there is liquid sodium, the whole device being in a rotating frame. The difference of rotation between the innercore and the spherical shell produces a shear instability at the innercore tangential cylinder leading to a ring of vortices. These vortices are helical because of Ekman pumping due to the Ekman layers at the top and bottom and also because of the spherical shape of the top and bottom. We want to know what kind of dynamo mechanism such a flow can produce.

DESCRIPTION OF THE WORK

The mean field approach We assume a given flow u. Instead of calculating directly the magnetic field B by solving the induction equation

B B u t B 2 ) ( / ∇ + × × ∇ = ∂ ∂ η ( 1 )
where η is the magnetic diffusivity, we use the mean field approach, decomposing ' u u u + = and ' B B B + = into mean and fluctuating parts where the mean is defined as the average in the azimuthal direction ϕ where (s, ϕ, z) are the cylindrical coordinates. Then our aim is to calculate the mean electromotive force (mean e.m.f.) defined by ' ' B u × = ε . We can show (see [4]) that it can be expressed in the form:
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where a

( and b ( are pseudo-tensors of rank 2 and 3. Then knowing a ( and b ( the dynamo problem is reduced to solving the mean part of the induction equation:

B B u t B 2 ) ( ∇ + × ∇ + × × ∇ = ∂ ∂ η ε . (3)

Assumptions

Let us write the fluctuating part of the induction equation:
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Then we consider the low conductivity limit (see [4]), leading to neglecting the term at the left hand side of (4). We also consider that the second order approximation (see [4]) is valid (leading to neglecting the 3 rd and 4 th terms of the right hand side of (4)). Finally, we consider that the mean e.m.f. does not depend on u (see [4]), assuming that it is sufficient to consider u in (3) only.

Finally we come out with the following equation to solve:
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The velocity field

The flow is considered to be steady, z-independent and harmonic in ϕ. It is non-zero for δ δ 
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and where
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The tensor of third rank has also been calculated but cannot be included in this short summary.

One example

As an example, we consider the velocity profile defined by 

CONCLUSIONS AND FURTHER WORK

The coefficient ϕϕ a ( being not zero and even dominant compared to the others, we can conclude that from an azimuthal mean magnetic field an azimuthal mean e.m.f. is generated. Then this e.m.f. can generate a poloidal magnetic field. The generation of a azimuthal field from a poloidal field by some differential rotation u could then close the loop. We are now considering the case where the flow is z-dependent. In the future we shall examine the influence of u onto the mean e.m.f. [3] N. Schaeffer, P. Cardin, Boundary driven shear layer instability in a rotating fluid, submitted to J. Fluid Mech 2004.
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  is a typical length scale defined by the radius of the ring of vortices. The velocity is defined by ) typical horizontal and vertical velocities, and with:

  helical vortices with similar length scales in the s and ϕ directions.
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