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In this paper we address the problem of efficient estimation of Sobol sensitivy
indices. First, we focus on general functional integrals of conditional moments
of the form E(ψ(E(ϕ(Y )|X))) where (X,Y ) is a random vector with joint den-
sity f and ψ and ϕ are functions that are differentiable enough. In particular,
we show that asymptotical efficient estimation of this functional boils down
to the estimation of crossed quadratic functionals. An efficient estimate of
first-order sensitivity indices is then derived as a special case. We investigate
its properties on several analytical functions and illustrate its interest on a
reservoir engineering case.

Keywords: density estimation, semiparametric Cramér-Rao bound, global
sensitivity analysis.
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1. Introduction

In the past decade, the increasing interest in the design and analysis of computer experi-
ments motivated the development of dedicated and sharp statistical tools (Santner et al..
2003). Design of experiments, sensitivity analysis and proxy models are examples of re-
search fields where numerous contributions have been proposed. More specifically, global
Sensitivity Analysis (SA) is a key method for investigating complex computer codes
which model physical phenomena. It involves a set of techniques used to quantify the
influence of uncertain input parameters on the variability in numerical model responses.
Recently, sensitivity studies have been applied in a large variety of fields, ranging from
chemistry (Cukier et al. 1973; Turanyi 1990) or oil recovery (Iooss et al. 2011) to space
science (Carrasco et al. 2007) and nuclear safety (Iooss et al. 2006).
In general, global SA refers to the probabilistic framework, meaning that the uncertain
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input parameters are modelled as a random vector. By propagation, every computer code
output is itself a random variable. Global SA techniques then consists in comparing the
probability distribution of the output with the conditional probability distribution of the
output when some of the inputs are fixed. This yields in particular useful information
on the impact of some parameters. Such comparisons can be performed by consider-
ing various criteria, each one of them providing a different insight on the input-output
relationship. For example, some criteria are based on distances between the probability
density functions (e.g. L1 and L2 norms (Borgonovo (2007)) or Kullback-Leibler distance
(Liu et al. (2006)), while others rely on functionals of conditional moments. Among those,
variance-based methods are the most widely used (Saltelli et al. 2000). They evaluate
how the inputs contribute to the output variance through the so-called Sobol sensitivity
indices (Sobol’ 1993), which naturally emerge from a functional ANOVA decomposition
of the output (Antoniadis 1984; Hoeffding 1948; Owen 1994). Interpretation of the in-
dices in this setting makes it possible to exhibit which input or interaction of inputs
most influences the variability of the computer code output. This can be typically rel-
evant for model calibration (Kennedy and O’Hagan 2001) or model validation (Bayarri
et al. 2007).
Consequently, in order to conduct a sensitivity study, estimation of such sensitivity in-
dices is of great interest. Initially, Monte-Carlo estimates have been proposed (McKay
1995; Sobol’ 1993). Recent work also focused on their asymptotic properties (Janon et al.
2012). However, in many applications, calls to the computer code are very expensive, from
several minutes to hours. In addition, the number of inputs can be large, making Monte-
Carlo approaches untractable in practice. To overcome this problem, recent work focused
on the use of metamodeling techniques. The complex computer code is approximated by
a mathematical model, referred to as a ”metamodel”, which should be as representative
as possible of the computer code, with good prediction capability. Once the metamodel
is built and validated, it is used in the extensive Monte-Carlo sampling instead of the
complex numerical model. Several metamodels can be used: polynomials, Gaussian pro-
cess metamodels (Oakley and O’Hagan (2004), Iooss et al. (2011)) or local polynomials
(Da Veiga et al. (2009)). However, in these papers, the approach is generally empirical
in the sense that no convergence study is performed and do not provide any insight
about the asymptotic behavior of the sensitivity indices estimates. The only exception
is the work of Da Veiga et al. (2009), where the authors investigate the convergence of a
local-polynomial based estimate using the work of Fan and Gijbels (1996) and Wand and
Jones (1994). In particular, this plug-in estimate achieves a nonparametric convergence
rate.
In this paper, we go one step further and propose the first asymptotically efficient esti-
mate for sensitivity indices. More precisely, we investigate the problem of efficient esti-
mation of some general nonlinear functional based on the density of a pair of random
variables. Our approach follows the work of Laurent (1996, 2005), and we also refer to
Levit (1978) and Kerkyacharian and Picard (1996) for general results on nonlinear func-
tionals estimation. Such functionals of a density appear in many statistical applications
and their efficient estimation remains an active research field (Chacón and Tenreiro 2011;
Giné and Nickl 2008; Giné and Mason 2008). However we consider functionals involving
conditional densities, which necessitate a specific treatment. The estimate obtained here
can be used for global SA involving general conditional moments, but it includes as a
special case Sobol sensitivity indices. Note also that an extension of the approach devel-
oped in our work is simultaneously proposed in the context of sliced inverse regression
(Loubes et al. 2011).
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The paper is organized as follows. Section 2 first recaps variance-based methods for
global SA. In particular, we point out which type of nonlinear functional appears in
sensitivity indices. Section 3 then describes the theoretical framework and the proposed
methodology for building an asymptotically efficient estimator. In Section 4, we focus
on Sobol sensitivity indices and study numerical examples showing the good behavior of
the proposed estimate. We also illustrate its interest on a reservoir engineering example,
where uncertainties on the geology propagate to the potential oil recovery of a reservoir.
Finally, all proofs are postponed to the appendix.

2. Global sensitivity analysis

In many applied fields, physicists and engineers are faced with the problem of estimating
some sensitivity indices. These indices quantify the impact of some input variables on an
output. The general situation may be formalized as follows.
The output Y ∈ R is a nonlinear regression of input variables τ = (τ1, . . . , τl) (l ≥ 1 is
generally large). This means that Y and τ satisfy the input-output relationship

Y = Φ(τ ) (1)

where Φ is a known nonlinear function. Usually, Φ is complicated and has not a closed
form, but it may be computed through a computer code (Oakley and O’Hagan 2004).
In general, the input τ is modelled by a random vector, so that Y is also a random
variable. A common way to quantify the impact of input variables is to use the so-called
Sobol sensitivity indices (Sobol’ 1993). Assuming that all the random variables are square
integrable, the Sobol index for the input τj (j = 1, . . . , l) is

Σj =
Var(E(Y |τj))

Var(Y )
. (2)

Observing an i.i.d. sample (Y1, τ
(1)), . . . , (Yn, τ

(n)) (with Yi = Φ(τ (i)), i = 1, . . . , n), the
goal is is then to estimate Σj (j = 1, . . . , l). Obviously, (2) may be rewritten as

Σj =
E(E(Y |τj)2)− E(Y )2

Var(Y )
.

Thus, in order to estimate Σj, the hard part is E(E(Y |τj)2). In this paper we will provide
an asymptotically efficient estimate for this kind of quantity. More precisely we will tackle
the problem of asymptotically efficient estimation of some general nonlinear functional.
Let us specify the functionals we are interested in. Let (Y1,X1), . . . , (Yn,Xn) be a sample
of i.i.d. random vectors of R2 having a regular density f (see Section 3 for the precise
frame). We will study the estimation of the nonlinear functional

T (f) = E

(
ψ
(
E(ϕ(Y )|X)

))

=

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy
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where ψ and ϕ are regular functions. Hence, the Sobol indices are the particular case
obtained with ψ(ξ) = ξ2 and ϕ(ξ) = ξ.
The method developed in order to obtain an asymptotically efficient estimate for T (f)
follows the one developed by Laurent (1996). Roughly speaking, it involves a preliminary

estimate f̂ of f built on a small part of the sample. This preliminary estimate is used in a
Taylor expansion of T (f) up to the second order in a neighbourhood of f̂ . This expansion
allows to remove the bias that occurs when using a direct plug-in method. Hence, the
bias correction involves a quadratic functional of f . Due to the form of T , this quadratic
functional of f may be written as

θ(f) =

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2.

This kind of functional does not fall in the frame treated in Laurent (1996) or Giné
and Nickl (2008) and have not been studied to the best of our knowledge. We study this
problem in Section 3.1 where we build an asymptotically efficient estimate for θ. Efficient
estimation of T (f) is then investigated in Section 3.2.

3. Model frame and method

Let a < b and c < d, L2(dxdy) will denote the set of square integrable functions on
[a, b] × [c, d]. Further, L2(dx) (resp. L2(dy)) will denote the set of square integrable
functions on [a, b] (resp. [c, d]). For sake of simplicity, we work in the whole paper with
the Lebesgue measure as reference measure. Nevertheless, most of the results presented
can be obtained for a general reference measure on [a, b]× [c, d]. Let (αiα(x))iα∈D1

(resp.
(βiβ (y))iβ∈D2

) be a countable orthonormal basis of L2(dx) (resp. of L2(dy)). We set
pi(x, y) = αiα(x)βiβ (y) with i = (iα, iβ) ∈ D := D1 × D2. Obviously (pi(x, y))i∈D is a
countable orthonormal (tensor) basis of L2(dxdy). We will also use the following subset
of L2(dxdy) :

E =

{
∑

i∈D

eipi : (ei)i∈D is a sequence with
∑

i∈D

∣∣∣∣
ei
ci

∣∣∣∣
2

≤ 1

}
,

here (ci)i∈D is a given fixed positive sequence.
Let (X,Y ) having a bounded joint density f on [a, b]× [c, d] from which we have a sample
(Xi, Yi)i=1,...,n. We will also assume that f lies in the ellipsoid E . Recall that we wish to
estimate a conditional functional

E

(
ψ
(
E(ϕ(Y )|X)

))

where ϕ is a measurable bounded function with χ1 ≤ ϕ ≤ χ2 and ψ ∈ C3([χ1, χ2]) the
set of thrice continuously differentiable functions on [χ1, χ2]. This last quantity can be
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expressed in terms of an integral depending on the joint density f :

T (f) =

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy.

=

∫∫
ψ(m(x))f(x, y)dxdy

where m(x) =
∫
ϕ(y)f(x, y)dy/

∫
f(x, y)dy is the conditional expectation of ϕ(Y ) given

(X = x). We suggest as a first step to consider a preliminary estimator f̂ of f , and to

expand T (f) in a neighborhood of f̂ . To achieve this goal we first define F : [0, 1] → R :

F (u) = T (uf + (1− u)f̂) (u ∈ [0, 1]).

The Taylor expansion of F between 0 and 1 up to the third order is

F (1) = F (0) + F ′(0) +
1

2
F ′′(0) +

1

6
F ′′′(ξ)(1− ξ)3 (3)

for some ξ ∈]0, 1[. Here, we have

F (1) = T (f)

and

F (0) = T (f̂) =

∫∫
ψ

(∫
ϕ(y)f̂(x, y)dy∫
f̂(x, y)dy

)
f̂(x, y)dxdy

=

∫∫
ψ(m̂(x))f̂ (x, y)dxdy

where m̂(x) =
∫
ϕ(y)f̂(x, y)dy/

∫
f̂(x, y)dy. Straightforward calculations also give

higher-order derivatives of F :

F ′(0) =

∫∫ ([
ϕ(y) − m̂(x)

]
ψ̇(m̂(x)) + ψ(m̂(x))

) (
f(x, y)− f̂(x, y)

)
dxdy

F ′′(0) =

∫∫∫
ψ̈(m̂(x))(∫
f̂(x, y)dy

)
(
m̂(x)− ϕ(y)

)(
m̂(x)− ϕ(z)

)

(
f(x, y)− f̂(x, y)

)(
f(x, z)− f̂(x, z)

)
dxdydz
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F ′′′(ξ) =

∫∫∫∫
(∫

f̂(x, y)dy
)2

(∫
ξf(x, y) + (1− ξ)f̂(x, y)dy

)5

[(
m̂(x)− ϕ(y)

)(
m̂(x)− ϕ(z)

)(
m̂(x)− ϕ(t)

)
(∫

f̂(x, y)dy

)
...
ψ (r̂(ξ, x))− 3

(
m̂(x)− ϕ(y)

)(
m̂(x)− ϕ(z)

)

(∫
[ξf(x, y) + (1− ξ)f̂(x, y)]dy

)
ψ̈ (r̂(ξ, x))

]

(
f(x, y)− f̂(x, y)

)(
f(x, z)− f̂(x, z)

)

(
f(x, t)− f̂(x, t)

)
dxdydzdt

where r̂(ξ, x) =

∫
ϕ(y)[ξf(x, y) + (1− ξ)f̂(x, y)]dy
∫
[ξf(x, y) + (1− ξ)f̂(x, y)]dy

and ψ̇, ψ̈ and
...
ψ denote the three

first derivatives of ψ.

Plugging these expressions into (3) yields the following expansion for T (f):

T (f) =

∫∫
H(f̂ , x, y)f(x, y)dxdy (4)

+

∫∫∫
K(f̂ , x, y, z)f(x, y)f(x, z)dxdydz + Γn

where

H(f̂ , x, y) =
[
ϕ(y)− m̂(x)

]
ψ̇(m̂(x)) + ψ(m̂(x)),

K(f̂ , x, y, z) =
1

2

ψ̈(m̂(x))(∫
f̂(x, y)dy

)(m̂(x)− ϕ(y)
)(
m̂(x)− ϕ(z)

)
,

Γn =
1

6
F ′′′(ξ)(1 − ξ)3

for some ξ ∈]0, 1[. Notice that the first term is a linear functional of the density f , it will
be estimated with

1

n2

n2∑

j=1

H(f̂ ,Xj , Yj).

The second one involves a crossed term integral which can be written as

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2 (5)

where η : R
3 → R is a bounded function verifying η(x, y1, y2) = η(x, y2, y1) for all

(x, y1, y2) ∈ R
3. In summary, the first term can be easily estimated, unlike the second one
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which deserves a specific study. In the next section we then focus on the asymptotically
efficient estimation of such crossed quadratic functionals. In Section 3.2, these results are
finally used to propose an asymptotically efficient estimator for T (f).

3.1. Efficient estimation of quadratic functionals

In this section, our aim is to build an asymptotically efficient estimate for

θ =

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2.

We denote ai =
∫
fpi the scalar product of f with pi as defined at the beginning of

Section 3. We will first build a projection estimator achieving a bias equal to

−
∫∫∫

[SMf(x, y1)− f(x, y1)] [SMf(x, y2)− f(x, y2)] η(x, y1, y2)dxdy1dy2

where SMf =
∑

i∈M aipi and M is a subset of D. Thus, the bias would only be due to
projection. Developing the previous expression leads to a goal bias equal to

2

∫∫∫
SMf(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

SMf(x, y1)SMf(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

f(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2. (6)

Consider now the estimator θ̂n defined by

θ̂n =
2

n(n− 1)

∑

i∈M

n∑

j 6=k=1

pi(Xj , Yj)

∫
pi(Xk, u)η(Xk , u, Yk)du

− 1

n(n− 1)

∑

i,i′∈M

n∑

j 6=k=1

pi(Xj , Yj)pi′(Xk, Yk)

∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2. (7)

This estimator achieves the desired bias :

Lemma 3.1: The estimator θ̂n defined in (7) estimates θ with bias equal to

−
∫∫∫

[SMf(x, y1)− f(x, y1)][SMf(x, y2)− f(x, y2)]η(x, y1, y2)dxdy1dy2.

Since we will carry out an asymptotic analysis, we will work with a sequence (Mn)n≥1

of subsets of D. We will need an extra assumption concerning this sequence:



March 13, 2012 16:46 Journal of Nonparametric Statistics EfficientSA˙newversion

8

A1. For all n ≥ 1, we can find a subset Mn ⊂ D such that
(
supi/∈Mn

|ci|2
)2 ≈ |Mn|

n2 (An ≈
Bn means λ1 ≤ An/Bn ≤ λ2 for some positive constants λ1 and λ2). Furthermore,

∀t ∈ L2(dxdy),

∫
(SMn

t− t)2dxdy → 0 when n→ ∞.

The following theorem gives the most important properties of our estimate θ̂n :

Theorem 3.2 : Assume A1 hold. Then θ̂n has the following properties:

(i) If |Mn|/n→ 0 when n→ ∞, then

√
n
(
θ̂n − θ

)
→ N (0,Λ(f, η)) , (8)

∣∣∣∣E
(
θ̂n − θ

)2
− Λ(f, η)

∣∣∣∣ ≤ γ1

[ |Mn|
n

+ ‖SMn
f − f‖2 + ‖SMn

g − g‖2
]
, (9)

where g(x, y) :=

∫
f(x, u)η(x, y, u)du and

Λ(f, η) = 4

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dxdy

)2
]
.

(ii) Otherwise

E

(
θ̂n − θ

)2
≤ γ2

|Mn|
n

,

where γ1 and γ2 are constants depending only on ‖f‖∞, ‖η‖∞ and ∆Y (with ∆Y = d−c).
Moreover, these constants are increasing functions of these quantities.

Remark 1 : Since in our main result (to be given in the next section) η will depend on

n through the preliminary estimator f̂ , we need in (9) a bound that depends explicitly
on n. Note however that (9) implies

lim
n→∞

nE
(
θ̂n − θ

)2
= Λ(f, η).

The asymptotic properties of θ̂n are of particular importance, in the sense that they
are optimal as stated in the following theorem.

Theorem 3.3 : Consider the estimation of

θ = θ(f) =

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2.

Let f0 ∈ E. Then, for all estimator θ̂n of θ(f) and every family V(f0) of vicinities of f0,
we have

inf
{V(f0)}

lim inf
n→∞

sup
f∈V(f0)

nE(θ̂n − θ(f0))
2 ≥ Λ(f0, η).
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In other words, the optimal asymptotic variance for the estimation of θ is Λ(f0, η). As
our estimator defined in (7) achieves this variance, it is therefore asymptotically efficient.
We are now ready to use this result to propose an efficient estimator of T (f).

3.2. Main Theorem

In this section we come back to our main problem of the asymptotically efficient estima-
tion of

T (f) =

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy.

Recall that we have derived in (4) an expansion for T (f). The key idea is to use here
the previous results on the estimation of crossed quadratic functionals. Indeed we have
provided an asymptotically efficient estimator for the second term of this expansion,
conditionally on f̂ . A natural and straightforward estimator for T (f) is then

T̂n =
1

n2

n2∑

j=1

H(f̂ ,Xj , Yj)

+
2

n2(n2 − 1)

∑

i∈M

n2∑

j 6=k=1

pi(Xj , Yj)

∫
pi(Xk, u)K(f̂ ,Xk, u, Yk)du

− 1

n2(n2 − 1)

∑

i,i′∈M

n2∑

j 6=k=1

pi(Xj , Yj)pi′(Xk, Yk)

∫
pi(x, y1)pi′(x, y2)K(f̂ , x, y1, y2)dxdy1dy2.

In the above expression, one can note that the remainder Γn does not appear : we will see
in the proof of the following theorem that it is negligible comparing to the two first terms.

In order to study the asymptotic properties of T̂n, some assumptions are required
concerning the behavior of the joint density f and its preliminary estimator f̂ :

A2. suppf ⊂ [a, b]× [c, d] and ∀(x, y) ∈ suppf , 0 < α ≤ f(x, y) ≤ β with α, β ∈ R

A3. One can find an estimator f̂ of f built with n1 ≈ n/ log(n) observations, such that

∀(x, y) ∈ suppf, 0 < α− ǫ ≤ f̂(x, y) ≤ β + ǫ.

Moreover,

∀2 ≤ q < +∞, ∀l ∈ N
∗, Ef‖f̂ − f‖lq ≤ C(q, l)n−lλ

1

for some λ > 1/6 and some constant C(q, l) not depending on f belonging to the
ellipsoid E .
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Here suppf denotes the set where f is different from 0. Assumption A2 is restrictive
in the sense that only densities with compact support can be considered, excluding for
example a Gaussian joint distribution.
Assumption A3 imposes to the estimator f̂ a convergence fast enough towards f . We
will use this result to control the remainder term Γn.

We can now state the main theorem of the paper. It investigates the asymptotic prop-
erties of T̂n under assumptions A1, A2 and A3.

Theorem 3.4 : Assume that A1, A2 and A3 hold. Then T̂n has the following properties

if
|Mn|
n

→ 0:

√
n
(
T̂n − T (f)

)
→ N (0, C(f)), (10)

lim
n→∞

nE
(
T̂n − T (f)

)2
= C(f), (11)

where C(f) = E

(
Var(ϕ(Y )|X)

[
ψ̇
(
E(Y |X)

)]2)
+ Var

(
ψ
(
E(ϕ(Y )|X)

))
.

We can also compute as in the previous section the semiparametric Cramér-Rao bound
for this problem.

Theorem 3.5 : Consider the estimation of

T (f) =

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy = E

(
ψ
(
E(ϕ(Y )|X)

))

for a random vector (X,Y ) with joint density f ∈ E. Let f0 ∈ E be a density verifying

the assumptions of Theorem 3.4. Then, for all estimator T̂n of T (f) and every family
V(f0) of vicinities of f0, we have

inf
{V(f0)}

lim inf
n→∞

sup
f∈V(f0)

nE(T̂n − T (f0))
2 ≥ C(f0).

Combination of theorems 3.4 and 3.5 finally proves that T̂n is asymptotically efficient.

4. Application to the estimation of sensitivity indices

Now that we have built an asymptotically efficient estimate for T (f), we can apply it
to the particular case we were initially interested it: the estimation of Sobol sensitivity
indices. Let us then come back to model (1) :

Y = Φ(τ )
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where we wish to estimate (2):

Σj =
Var(E(Y |τj))

Var(Y )
=

E(E(Y |τj)2)− E(Y )2

Var(Y )
j = 1, . . . , l.

To do so, we have an i.i.d. sample (Y1, τ
(1)), . . . , (Yn, τ

(n)). We will only give here the
procedure for the estimation of Σ1 since it will be the same for the other sensitivity
indices. Denoting X := τ1, this problem is equivalent to estimating E(E(Y |X)2) with an
i.i.d. sample (Y1,X1), . . . , (Yn,Xn) with joint density f . We can hence apply the estimate
we developed previously by letting ψ(ξ) = ξ2 and ϕ(ξ) = ξ:

T (f) = E(E(Y |X)2)

=

∫∫ (∫
yf(x, y)dy∫
f(x, y)dy

)2

f(x, y)dxdy.

The Taylor expansion in this case becomes

T (f) =

∫∫
H(f̂ , x, y)f(x, y)dxdy

+

∫∫∫
K(f̂ , x, y, z)f(x, y)f(x, z)dxdydz + Γn

where

H(f̂ , x, y) = 2ym̂(x)− m̂(x)2,

K(f̂ , x, y, z) =
1(∫

f̂(x, y)dy
)(m̂(x)− y

)(
m̂(x)− z

)

and the corresponding estimator is

T̂n =
1

n2

n2∑

j=1

H(f̂ ,Xj , Yj)

+
2

n2(n2 − 1)

∑

i∈M

n2∑

j 6=k=1

pi(Xj , Yj)

∫
pi(Xk, u)K(f̂ ,Xk, u, Yk)du

− 1

n2(n2 − 1)

∑

i,i′∈M

n2∑

j 6=k=1

pi(Xj , Yj)pi′(Xk, Yk)

∫
pi(x, y1)pi′(x, y2)K(f̂ , x, y1, y2)dxdy1dy2.

for some preliminary estimator f̂ of f , an orthonormal basis (pi)i∈D of L2(dxdy) and a
subset M ⊂ D verifying the hypotheses of Theorem 3.4.

We propose now to investigate the practical behavior of this estimator on two analyti-
cal models and on a reservoir engineering test case. In all subsequent simulation studies,



March 13, 2012 16:46 Journal of Nonparametric Statistics EfficientSA˙newversion

12

Table 1. Conditional moments for analytical model (12). Mean and standrad

deviation of T̂n for different values of n.

Inputs E(E(Y |τj)
2) T̂n T̂n

n = 100 n = 10000

Configuration (a)
τ1 0.5733 0.5894 +/- 0.052 0.5729 +/- 0.005
τ2 0.5611 0.5468 +/- 0.054 0.5611 +/- 0.005

Configuration (b)
τ1 314.04 305.98 +/- 52.1 318.27 +/- 7.52
τ2 779.85 814.04 +/- 10.3 787.82 +/- 0.53

Configuration (c)
τ1 16258 18414 +/- 3759 16897 +/- 427
τ2 44034 44667 +/- 82.6 44073 +/- 8.17

the preliminary estimator f̂ will be a kernel density estimator with bounded support
built on n1 = [log(n)/n] observations. Moreover, we choose the Legendre polynomials
on [a, b] and [c, d] to build the orthonormal basis (pi)i∈D and we will take |M | = √

n.

Finally, the integrals in T̂n are computed with an adaptive Simpson quadrature.

4.1. Simulation study on analytical functions

The first model we investigate is

Y = τ1 + τ42 (12)

where three configurations are considered (τ1 and τ2 being independent):

(a) τj ∼ U(0, 1), j = 1, 2;
(b) τj ∼ U(0, 3), j = 1, 2;
(c) τj ∼ U(0, 5), j = 1, 2.

For each configuration, we report the results obtained with n = 100 and n = 10000 in
Table 1. Note that we repeat the estimation 100 times with different different random
samples of (τ1, τ2).

The asymptotically efficient estimator T̂n gives a very accurate approximation of
sensitivity indices when n = 10000. But surprisingly, it also gives a reasonably accurate
estimate when n only equals 100, whereas it has been built to achieve the best symptotic
rate of convergence.

It is then interesting to compare it with other estimators, more precisely two nonpara-
metric estimators that have been specifically built to give an accurate approximation
of sensitivity indices when n is not large. The first one is based on a Gaussian process
metamodel (Oakley and O’Hagan 2004), while the other one involves local polynomial
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Table 2. Comparison between efficient estimation and nonparametric estimates
on analytical model (13).

True value Oakley-O’Hagan Local polynomials T̂n

Var(E(Y |X1)) 1.0932 1.0539 1.0643 1.1701
Var(E(Y |X2)) 0.0729 0.1121 0.0527 0.0939

estimators (Da Veiga et al. 2009). The comparison is performed on the following model :

Y = 0.2 exp(τ1 − 3) + 2.2|τ2|+ 1.3τ62 − 2τ22 − 0.5τ42 − 0.5τ41

+2.5τ21 + 0.7τ31 +
3

(8τ1 − 2)2 + (5τ2 − 3)2 + 1
+ sin(5τ1) cos(3τ

2
1 ) (13)

where τ1 and τ2 are independent and uniformly distributed on [−1, 1]. This nonlinear
function is interesting since it presents a peak and valleys. We estimate the sensitivity
indices with a sample of size n = 100, the results are given in Table 2.

Globally, the best estimates are given by the local polynomials technique. However,
the accuracy of the asymptotically efficient estimator T̂n is comparable to that of the
nonparametric ones. These results confirm that T̂n is a valuable estimator even with a
rather complex model and a small sample size (recall that here n = 100).

4.2. Reservoir engineering example

The PUNQ test case (Production forecasting with UNcertainty Quantification) is an
oil reservoir model derived from real field data (Manceau et al. 2001). The considered
reservoir is surrounded by an aquifer in the north and the west, and delimited by a fault
in the south and the east. The geological model is composed of five independent layers,
three of good quality and two of poorer quality. Six producer wells (PRO-1, PRO-4, PRO-
5, PRO-11, PRO-12 and PRO-15) have been drilled, and production is supported by four
additional wells injecting water (X1, X2, X3 and X4). The geometry of the reservoir and
the well locations are given in Figure 1, left.
In this setting, 7 variables which are characteristic of media, rocks, fluids or aquifer

activity, are considered as uncertain: the coefficient of aquifer strength (AQUI),
horizontal and vertical permeability multipliers in good layers (MPV1 and MPH1,
respectively), horizontal and vertical permeability multipliers in poor layers (MPV2
and MPH2, respectively), residual oil saturation after waterflood and after gas flood
(SORW and SORG, respectively). We focus here on the cumulative production of oil of
this field during 12 years. In practice, a fluid flow simulator is used to forecast this oil
production for every value of the uncertain parameters we might want to investigate.
The uncertain parameters are assumed to be uniformly distributed, with ranges given in
Table 3. We draw a random sample of size n = 200 of these 7 parameters, and perform
the corresponding fluid-flow simulations to compute the cumulative oil production after
12 years. The histogram of the production obtained with this sampling is depicted in
Figure 1, right. Clearly, the impact of the uncertain parameters on oil production is
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Figure 1. Left: top view of the PUNQ reservoir. Producer and injector wells are indicated by
black and white circles, respectively. OWC and GOW stand for Oil Water Contact and Gas Oil
Contact. Right: histogram of the cumulative production after 12 years (106 m3).

Table 3. Range of variation and estimated first-order sensitivity
index of the uncertain parameters of the PUNQ model.

Parameter Range of variation Estimated sensitivity index

with T̂n (%)

AQUI 0.2 - 0.3 7.206
MPH1 0.8 - 1.2 40.929
MPH2 0.8 - 1.2 0.419
MPV1 0.8 - 1.2 0.041
MPV2 0.8 - 1.2 0.693
SORG 0.15 - 0.2 0.338
SORW 0.15 - 0.25 49.4

large, since different values yield forecats varying by tens of thousands of oil barrels.
In this context, reservoir engineers aim at identifying which parameters affect the most
the production. This help them design strategies in order to reduce the most influential
uncertainties, which will reduce, by propagation, the uncertainty on production forecasts.

In this context, computation of sensivity indices is of great interest. Starting from
the random sample of size n = 200, we then estimate the first-order sensitivity index
of each parameter with the estimator T̂n. Results are given in Table 3. As expected,
the most influential parameters are the horizontal permeability multiplier in the good
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reservoir units MPH1 and the residual oil saturation after waterflood SORW. Indeed, fluid
dispacement towards the producer wells is mainly driven by the permeability in units
with good petrophysical properties and by water injection. More interestingly, vertical
permeability multipliers do not seem to impact oil production in this case. This means
that fluid displacements are mainly horizontal in this reservoir.

5. Discussion and conclusions

In this paper, we developed a framework to build an asymptotically efficient estimate
for nonlinear conditional functionals. This estimator is both practically computable and
has optimal asymptotic properties. In particular, we show how Sobol sensitivty indices
appear as a special case of our estimator. We investigate its practical behavior on two an-
alytical functions, and illustrate that it can compete with metamodel-based estimators. A
reservoir engineering application case is also studied, where geological and petrophysical
uncertain parameters affect the forecasts on oil production. The methodology developed
here will be extended to other problems in forthcoming work. A very attractive exten-
sion is the construction of an adaptive procedure to calibrate the size of Mn as done in
Laurent (2005) for the L2 norm. However, this problem is non obvious since it would
involve treating refined inequalities on U-statistics such as presented in Houdret and
Reynaud (2002). From a sensitivity analysis perspective, we will also investigate efficient
estimation of other indices based on entropy or other norms. Ideally, this would give a
general framework for building estimates in global sensitivity analysis.

Acknowledgements

Many thanks are due to A. Antoniadis, B. Laurent and F. Wahl for helpful discussion.
This work has been partially supported by the French National Research Agency (ANR)
through COSINUS program (project COSTA-BRAVA ANR-09-COSI-015).

References

Antoniadis, A. (1984). Analysis of variance on function spaces. Math. Oper. Forsch. und
Statist., series Statistics, 15(1):59–71.

Bayarii, M.J., Berger, J., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J., Lin, C., and Tu,
J. (2007). A framework for validation of computer models. Technometrics, 49:138–154.

Borgonovo E. (2007). A New Uncertainty Importance Measure. Reliability Engineering
and System Saftey, 92:771–784.

Carrasco, N., Banaszkiewicz, M., Thissen, R., Dutuit, O., and Pernot, P. (2007). Uncer-
tainty analysis of bimolecular reactions in Titan ionosphere chemistry model. Planetary
and Space Science, 55:141–157.

Chacón, J.E. and Tenreiro C. (2011) Exact and Asymptotically Optimal Bandwidths
for Kernel Estimation of Density Functionals. Methodol Comput Appl Probab, DOI
10.1007/s11009-011-9243-x.

Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G., and Schaibly, J.H. (1973).
Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients.
I Theory. The Journal of Chemical Physics, 59:3873–3878.



March 13, 2012 16:46 Journal of Nonparametric Statistics EfficientSA˙newversion

16 REFERENCES

Da Veiga, S., Wahl, F., and Gamboa, F. (2006). Local polynomial estimation for sensi-
tivity analysis on models with correlated inputs. Technometrics, 59(4):452–463.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications. London:
Chapman and Hall.

Ferrigno, S. and Ducharme, G.R. (2005). Un test d’adéquation global pour la fonction
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Appendix A. Proofs of Theorems

A.1. Proof of Lemma 3.1

Let θ̂n = θ̂1n − θ̂2n where

θ̂1n =
2

n(n− 1)

∑

i∈M

n∑

j 6=k=1

pi(Xj , Yj)

∫
pi(Xk, u)η(Xk , u, Yk)du

and

θ̂2n =
1

n(n− 1)

∑

i,i′∈M

n∑

j 6=k=1

pi(Xj , Yj)pi′(Xk, Yk)

∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2.
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Let us first compute E(θ̂1n) :

E(θ̂1n) = 2
∑

i∈M

∫∫
pi(x, y)f(x, y)dxdy

∫∫∫
pi(x, y)η(x, u, y)f(x, y)dxdydu

= 2
∑

i∈M

ai

∫∫∫
pi(x, y)η(x, u, y)f(x, y)dxdydu

= 2

∫∫∫ (∑

i∈M

aipi(x, y)

)
η(x, u, y)f(x, y)dxdydu

= 2

∫∫∫
SMf(x, y)η(x, u, y)f(x, y)dxdydu.

Furthermore,

E(θ̂2n) =
∑

i,i′∈M

∫∫
pi(x, y)f(x, y)dxdy

∫∫
pi′(x, y)f(x, y)dxdy

∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2

=
∑

i,i′∈M

aiai′

∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2

=

∫ (∑

i∈M

aipi(x, y1)

)(
∑

i′∈M

ai′pi′(x, y2)

)
η(x, y1, y2)dxdy1dy2

=

∫
SMf(x, y1)SMf(x, y2)η(x, y1, y2)dxdy1dy2.

Finally, E(θ̂n)− θ = E(θ̂1n)− E(θ̂2n)− θ and we get the desired bias with (6).

A.2. Proof of Theorem 3.2

We will write M instead of Mn for readability and denote m = |M |. We want to bound

the precision of θ̂n. We first write

E

(
θ̂n −

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2

)2

= Bias2(θ̂n) + Var(θ̂n).

The first term of this decomposition can be easily bounded, since θ̂n has been built to
achieve a bias equal to

Bias(θ̂n) = −
∫∫∫

[SMf(x, y1)− f(x, y1)][SMf(x, y2)− f(x, y2)]

η(x, y1, y2)dxdy1dy2.

We then get the following lemma :
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Lemma A.1: Assuming the hypotheses of Theorem 3.2 hold, we have

|Bias(θ̂n)| ≤ ∆Y ‖η‖∞ sup
i/∈M

|ci|2.

Proof :

|Bias(θ̂n)| ≤ ‖η‖∞
∫ (∫

|SMf(x, y1)− f(x, y1)|dy1
)

(∫
|SMf(x, y2)− f(x, y2)|dy2

)
dx

≤ ‖η‖∞
∫ (∫

|SMf(x, y)− f(x, y)|dy
)2

dx

≤ ∆Y ‖η‖∞
∫∫

(SMf(x, y)− f(x, y))2dxdy

≤ ∆Y ‖η‖∞
∑

i/∈M

|ai|2 ≤ ∆Y ‖η‖∞ sup
i/∈M

|ci|2.

Indeed, f ∈ E and the last inequality follows from Hölder inequality. �

Bounding the variance of θ̂n is however less straightforward. Let A and B be the m×1
vectors with components

ai :=

∫∫
f(x, y)pi(x, y)dxdy i = 1, . . . ,m

bi :=

∫∫∫
pi(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

=

∫∫
g(x, y)pi(x, y)dxdy i = 1, . . . ,m

where g(x, y) =

∫
f(x, u)η(x, y, u)du for each i ∈M . ai et bi are the components of f and

g onto the ith component of the basis. Let Q and R be the m× 1 vectors of the centered

functions qi(x, y) = pi(x, y)−ai and ri(x, y) =
∫
pi(x, u)η(x, u, y)du − bi for i = 1, . . . ,m.

Let C be the m×m matrix of constants cii′ =

∫∫∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2

for i, i′ = 1, . . . ,m. Take care that here cii′ is double subscript unlike in the
(ci) sequence appearing in the definition of the ellipsoid E . We denote by Un

the process Unh =
1

n(n− 1)

n∑

j 6=k=1

h(Xj , Yj ,Xk, Yk) and by Pn the empirical measure

Pnf =
1

n

n∑

j=1

f(Xj, Yj). With the previous notation, θ̂n has the following Hoeffding’s de-

composition (see chapter 11 of Van Der Vaart (1998)):

θ̂n = UnK + PnL+ 2tAB − tACA (A1)
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where

K(x1, y1, x2, y2) = 2tQ(x1, y1)R(x2, y2)− tQ(x1, y1)CQ(x2, y2),

L(x1, y1) = 2tAR(x1, y1) + 2tBQ(x1, y1)− 2tACQ(x1, y1).

Then Var(θ̂n) = Var(UnK) + Var(PnL) + 2 Cov(UnK,PnL). We have to get bounds for
each of these terms : they are given in the three following lemmas.

Lemma A.2: Assuming the hypotheses of Theorem 3.2 hold, we have

Var(UnK) ≤ 20

n(n− 1)
‖η‖2∞‖f‖2∞∆2

Y (m+ 1).

Proof : Since UnK is centered, Var(UnK) equals

E


 1

(n(n− 1))2

n∑

j 6=k=1

n∑

j′ 6=k′=1

K(Xj , Yj,Xk, Yk)K(Xj′ , Yj′ ,Xk′ , Yk′)




=
1

n(n− 1)
E(K2(X1, Y1,X2, Y2) +K(X1, Y1,X2, Y2)K(X2, Y2,X1, Y1)).

By the Cauchy-Schwarz inequality,

Var(UnK) ≤ 2

n(n− 1)
E(K2(X1, Y1,X2, Y2)).

Moreover, the inequality 2|E(XY )| ≤ E(X2) + E(Y 2) leads to

E(K2(X1, Y1,X2, Y2)) ≤ 2
[
E
(
(2Q′(X1, Y1)R(X2, Y2))

2
)

+E
(
(Q′(X1, Y1)CQ(X2, Y2))

2
)]
.

We have to bound these two terms. The first one is

E
(
(2Q′(X1, Y1)R(X2, Y2))

2
)
= 4(W1 −W2 −W3 +W4)
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where

W1 =

∫∫∫∫∫∫ ∑

i,i′

pi(x, y)pi′(x, y)pi(x
′, u)pi′(x

′, vη(x′, u, y′)η(x′, v, y′)

f(x, y)f(x′, y′)dudvdxdydx′dy′

W2 =

∫∫ ∑

i,i′

bibi′pi(x, y)pi′(x, y)f(x, y)dxdy

W3 =

∫∫∫∫ ∑

i,i′

aiai′pi(x, u)pi′(x, v)η(x, u, y)η(x, v, y)f(x, y)dxdy

W4 =
∑

i,i′

aiai′bibi′ .

Straightforward manipulations show that W2 ≥ 0 and W3 ≥ 0. This implies that

E
(
(2Q′(X1, Y1)R(X2, Y2))

2
)
≤ 4(W1 +W4).

On the one hand,

W1 =

∫∫∫∫ ∑

i,i′

pi(x, y)pi′(x, y)

∫
pi(x

′, u)η(x′, u, y′)du

∫
pi′(x

′, v)η(x′, v, y′)dvf(x, y)f(x′, y′)dxdydx′dy′

≤
∫∫∫∫ (∑

i

pi(x, y)

∫
pi(x

′, u)η(x′, u, y′)du

)2

f(x, y)f(x′, y′)dxdydx′dy′

≤ ‖f‖2∞
∫∫∫∫ (∑

i

pi(x, y)

∫
pi(x

′, u)η(x′, u, y′)du

)2

dxdydx′dy′

≤ ‖f‖2∞
∫∫∫∫ ∑

i,i′

pi(x, y)pi′(x, y)

∫
pi(x

′, u)η(x′, u, y′)du

∫
pi′(x

′, v)η(x′, v, y′)dvdxdydx′dy′

≤ ‖f‖2∞
∑

i,i′

∫∫
pi(x, y)pi′(x, y)dxdy

∫∫ (∫
pi(x

′, u)η(x′, u, y′)du

)(∫
pi′(x

′, v)η(x′, v, y′)dv

)
dx′dy′

≤ ‖f‖2∞
∑

i

∫∫ (∫
pi(x

′, u)η(x′, u, y′)du

)2

dx′dy′

since the pi are orthonormal. Moreover,

(∫
pi(x

′, u)η(x′, u, y′)du

)2

≤
(∫

pi(x
′, u)2du

)(∫
η(x′, u, y′)2du

)

≤ ‖η‖2∞∆Y

∫
pi(x

′, u)2du,
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and then

∫∫ (∫
pi(x

′, u)η(x′, u, y′)du

)2

dx′dy′ ≤ ‖η‖2∞∆2
Y

∫∫
pi(x

′, u)2dudx′

‖η‖2∞∆2
Y .

Finally,

W1 ≤ ‖η‖2∞‖f‖2∞∆2
Ym.

On the other hand,

W4 =

(
∑

i

aibi

)2

≤
∑

i

a2i
∑

i

b2i ≤ ‖f‖22‖g‖22 ≤ ‖f‖∞‖g‖22.

By the Cauchy-Scharwz inequality we have ‖g‖22 ≤ ‖η‖2∞‖f‖∞∆2
Y and then

W4 ≤ ‖η‖2∞‖f‖2∞∆2
Y

which leads to

E
(
(2Q′(X1, Y1)R(X2, Y2))

2
)
≤ 4‖η‖2∞‖f‖2∞∆2

Y (m+ 1).

Let us bound now the second term E
(
(Q′(X1, Y1)CQ(X2, Y2))

2
)
=W5−2W6+W7 where

W5 =

∫∫∫∫ ∑

i,i′

∑

i1,i′1

cii′ci1i′1pi(x, y)pi1(x, y)pi′(x
′, y′)pi′

1
(x′, y′)f(x, y)f(x′, y′)dxdydx′dy′

W6 =
∑

i,i′

∑

i1,i′1

∫∫
cii′ci1i′1aiai1pi′(x, y)pi′1(x, y)f(x, y)dxdy

W7 =
∑

i,i′

∑

i1,i′1

cii′ci1i′1aiai1ai′ai′1 .

Following the previous manipulations, we show that W6 ≥ 0. Thus,

E
(
(Q′(X1, Y1)CQ(X2, Y2))

2
)
≤W5 +W7.
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First, observe that

W5 =

∫∫∫∫ 
∑

i,i′

cii′pi(x, y)pi′(x
′, y′)




2

f(x, y)f(x′, y′)dxdydx′dy′

≤ ‖f‖2∞
∫∫∫∫ 


∑

i,i′

cii′pi(x, y)pi′(x
′, y′)




2

dxdydx′dy′

≤ ‖f‖2∞
∑

i,i′

∑

i1,i′1

cii′ci1i′1

∫∫∫∫
pi(x, y)pi1(x, y)

pi′(x
′, y′)pi′

1
(x′, y′)dxdydx′dy′

≤ ‖f‖2∞
∑

i,i′

c2ii′

since the pi are orthonormal. Besides,

∑

i,i′

c2ii′ =

∫∫ ∑

iα,i′α

αiα(x)αi′α(x)αiα(x
′)αi′α(x

′)
∑

iβ ,i′β

(∫∫
βiβ (y1)βi′β (y2)η(x, y1, y2)dy1dy2

)

(∫∫
βiβ(y1)βi′β (y2)η(x

′, y1, y2)dy1dy2

)
dxdx′

=

∫∫ (∑

iα

αiα(x)αiα(x
′)

)2∑

iβ ,i′β

(∫∫
βiβ (y1)βi′β (y2)η(x, y1, y2)dy1dy2

)

(∫∫
βiβ(y1)βi′β (y2)η(x

′, y1, y2)dy1dy2

)
dxdx′.

But

∑

iβ ,i′β

(∫∫
βiβ(y1)βi′β (y2)η(x, y1, y2)dy1dy2

)

(∫∫
βiβ(y1)βi′β (y2)η(x

′, y1, y2)dy1dy2

)

=
∑

iβ ,i′β

∫∫∫∫
βiβ (y1)βi′β (y2)η(x, y1, y2)βiβ (y

′
1)βi′β (y

′
2)η(x

′, y′1, y
′
2)dy1dy2dy

′
1dy

′
2

=

∫∫ ∑

iβ

(∫
βiβ (y1)η(x, y1, y2)dy1

)
βiβ (y

′
1)
∑

i′β

(∫
βi′β(y

′
2)η(x

′, y′1, y
′
2)dy

′
2

)
βi′β (y2)dy

′
1dy2

=

∫∫
η(x, y′1, y2)η(x

′, y′1, y2)dy
′
1dy2

≤ ∆2
Y ‖η‖2∞
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using the fact that (βi) is an orthonormal basis. We then get

∑

i,i′

c2ii′ ≤ ∆2
Y ‖η‖2∞

∫∫ (∑

iα

αiα(x)αiα(x
′)

)2

dxdx′

≤ ∆2
Y ‖η‖2∞

∫∫ ∑

iα,i′α

αiα(x)αi′α(x)αiα(x
′)αi′α(x

′)dxdx′

≤ ∆2
Y ‖η‖2∞

∑

iα,i′α

(∫
αiα(x)αi′α(x)dx

)2

≤ ∆2
Y ‖η‖2∞

∑

iα

(∫
αiα(x)

2dx

)2

≤ ∆2
Y ‖η‖2∞m

since the αi are orthonormal. Finally,

W5 ≤ ‖η‖2∞‖f‖2∞∆2
Ym.

Besides,

W7 =



∑

i,i′

cii′aiai′




2

with

∣∣∣∣∣∣

∑

i,i′

cii′aiai′

∣∣∣∣∣∣
≤ ‖η‖∞

∫∫∫
|SMf(x, y1)SMf(x, y2)|dxdy1dy2

≤ ‖η‖∞
∫∫ (∫

|SMf(x, y1)SMf(x, y2)|dx
)
dy1dy2.
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By using the Cauchy-Schwarz inequality twice, we get



∑

i,i′

cii′aiai′




2

≤ ∆2
Y ‖η‖2∞

∫∫ (∫
|SMf(x, y1)SMf(x, y2)|dx

)2

dy1dy2

≤ ∆2
Y ‖η‖2∞

∫∫ (∫
SMf(u, y1)

2du

)(∫
SMf(v, y2)

2dv

)
dy1dy2

≤ ∆2
Y ‖η‖2∞

∫∫∫∫
SMf(u, y1)

2SMf(v, y2)
2dudvdy1dy2

≤ ∆2
Y ‖η‖2∞

(∫∫
SMf(x, y)

2dxdy

)2

≤ ∆2
Y ‖η‖2∞‖f‖2∞.

Finally,

E
(
(Q′(X1, Y1)CQ(X2, Y2))

2
)
≤ ‖η‖2∞‖f‖2∞∆2

Y (m+ 1).

Collecting this inequalities, we obtain

Var(UnK) ≤ 20

n(n− 1)
‖η‖2∞‖f‖2∞∆2

Y (m+ 1)

which concludes the proof of Lemma A.2. �

Let us now deal with the second term of the Hoeffding’s decomposition of θ̂n :

Lemma A.3: Assuming the hypotheses of Theorem 3.2 hold, we have

Var(PnL) ≤
36

n
∆2

Y ‖f‖2∞‖η‖2∞.

Proof : First note that

Var(PnL) =
1

n
Var(L(X1, Y1)).
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We can write L(X1, Y1) as

L(X1, Y1) = 2A′R(X1, Y1) + 2B′Q(X1, Y1)− 2A′CQ(X1, Y1)

= 2
∑

i

ai

(∫
pi(X1, u)η(X1, u, Y1)du− bi

)

+2
∑

i

bi(pi(X1, Y1)− ai)− 2
∑

i,i′

cii′ai′(pi(X1, Y1)− ai)

= 2

∫ ∑

i

aipi(X1, u)η(X1, u, Y1)du+ 2
∑

i

bipi(X1, Y1)

−2
∑

i,i′

cii′ai′pi(X1, Y1)− 4A′B + 2A′CA

= 2

∫
SMf(X1, u)η(X1, u, Y1)du+ 2SMg(X1, Y1)

−2
∑

i,i′

cii′ai′pi(X1, Y1)− 4A′B + 2A′CA.

Let h(x, y) =

∫
SMf(x, u)η(x, u, y)du, we have

SMh(z, t) =
∑

i

(∫∫
h(x, y)pi(x, y)dxdy

)
pi(z, t)

=
∑

i

(∫∫∫
SMf(x, u)η(x, u, y)pi(x, y)dudxdy

)
pi(z, t)

=
∑

i,i′

(∫∫∫
ai′pi′(x, u)η(x, u, y)pi(x, y)dudxdy

)
pi(z, t)

=
∑

i,i′

cii′ai′pi(z, t)

and we can write

L(X1, Y1) = 2h(X1, Y1) + 2SMg(X1, Y1)− 2SMh(X1, Y1)− 4A′B + 2A′CA.

Thus,

Var(L(X1, Y1)) = 4Var[h(X1, Y1) + SMg(X1, Y1)− SMh(X1, Y1)]

≤ 4E[(h(X1, Y1) + SMg(X1, Y1)− SMh(X1, Y1))
2]

≤ 12E[(h(X1, Y1))
2 + (SMg(X1, Y1))

2 + (SMh(X1, Y1))
2].
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Each of these three terms has to be bounded :

E((h(X1, Y1))
2) =

∫∫ (∫
SMf(x, u)η(x, u, y)du

)2

f(x, y)dxdy

≤ ∆Y

∫∫∫
SMf(x, u)

2η(x, u, y)2f(x, y)dxdydu

≤ ∆2
Y ‖f‖∞‖η‖2∞

∫∫
SMf(x, u)

2dxdu

≤ ∆2
Y ‖f‖∞‖η‖2∞‖SMf‖22

≤ ∆2
Y ‖f‖∞‖η‖2∞‖f‖22

≤ ∆2
Y ‖f‖2∞‖η‖2∞

E((SMg(X1, Y1))
2) ≤ ‖f‖∞‖SMg‖22 ≤ ‖f‖∞‖g‖22 ≤ ∆2

Y ‖f‖2∞‖η‖2∞

E((SMh(X1, Y1))
2) ≤ ‖f‖∞‖SMh‖22 ≤ ‖f‖∞‖h‖22 ≤ ∆2

Y ‖f‖2∞‖η‖2∞

from previous calculations. Finally,

Var(L(X1, Y1)) ≤ 36∆2
Y ‖f‖2∞‖η‖2∞.

�

The last term of the Hoeffding’s decomposition can also be controled :

Lemma A.4: Assuming the hypotheses of Theorem 3.2 hold, we have

Cov(UnK,PnL) = 0.

Proof : Since UnK et PnL are centered, we have

Cov(UnK,PnL) = E(UnKPnL)

= E


 1

n2(n− 1)

n∑

j 6=k=1

K(Xj , Yj ,Xk, Yk)

n∑

i=1

L(Xi, Yi)




=
1

n
E(K(X1, Y1,X2, Y2)(L(X1, Y1) + L(X2, Y2)))

= 0

since K, L, Q and R are centered. �

The four previous lemmas give the expected result on the precision of θ̂n :

Lemma A.5: Assuming the hypotheses of Theorem 3.2 hold, we have :
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• If m/n→ 0,

E(θ̂n − θ)2 = O

(
1

n

)
,

• Otherwise,

E(θ̂n − θ)2 ≤ γ2(m/n
2)

where γ2 only depends on ‖f‖∞, ‖η‖∞ and ∆Y .

Proof : Lemmas A.2, A.3 and A.4 imply

Var(θ̂n) ≤
20

n(n− 1)
∆2

Y ‖f‖2∞‖η‖2∞(m+ 1) +
36

n
∆2

Y ‖f‖2∞‖η‖2∞.

Finally, for n large enough and a constant γ ∈ R,

Var(θ̂n) ≤ γ∆2
Y ‖f‖2∞‖η‖2∞

(
m

n2
+

1

n

)
.

Lemma A.1 gives

Bias2(θ̂n) ≤ ∆2
Y ‖η‖2∞

(
sup
i/∈M

|ci|2
)2

and by assumption
(
supi/∈M |ci|2

)2 ≈ m/n2. If m/n → 0, then E(θ̂n − θ)2 = O( 1n).

Otherwise E(θ̂n − θ)2 ≤ γ2(m/n
2) where γ2 only depends on ‖f‖∞, ‖η‖∞ and ∆Y . �

The lemma we just proved gives the result of Theorem 3.2 whenm/n does not converge

to 0. Let us now study more precisely the semiparametric case, that is when E(θ̂n−θ)2 =
O( 1n), to prove the asymptotic normality (8) and the bound in (9). We have

√
n
(
θ̂n − θ

)
=

√
n(UnK) +

√
n(PnL) +

√
n(2A′B −A′CA).

We will study the asymptotic behavior of each of these three terms. The first one is easily
treated :

Lemma A.6: Assuming the hypotheses of Theorem 3.2 hold, we have

√
nUnK → 0

in probability when n→ ∞ if m/n→ 0.

Proof : Since Var(
√
nUnK) ≤ 20

(n− 1)
‖η‖2∞‖f‖2∞∆2

Y (m+ 1),
√
nUnK converges to 0 in

probability when n→ ∞ if m/n→ 0. �

The random variable PnL will be the most important term for the central limit theorem.
Before studying its asymptotic normality, we need the following lemma concerning the
asymptotic variance of

√
n(PnL) :
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Lemma A.7: Assuming the hypotheses of Theorem 3.2 hold, we have

nVar(PnL) → Λ(f, η)

where

Λ(f, η) = 4

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dxdy

)2
]
.

Proof : We proved in Lemma A.3 that

Var(L(X1, Y1)) = 4Var[h(X1, Y1) + SMg(X1, Y1)− SMh(X1, Y1)]

= 4Var[A1 +A2 +A3]

= 4

3∑

i,j=1

Cov(Ai, Aj).

We will show that ∀i, j ∈ {1, 2, 3}2, we have

∣∣∣∣∣Cov(Ai, Aj)− ǫij

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dxdy

)2
]∣∣∣∣∣

≤ γ [‖SMf − f‖2 + ‖SMg − g‖2] (A2)

where ǫij = −1 if i = 3 or j = 3 and i 6= j and ǫij = 1 otherwise, and where γ depends
only on ‖f‖∞, ‖η‖∞ and ∆Y .
We shall give the details only for the case i = j = 3 since the calculations are similar for
the other configurations. We have

Var(A3) =

∫∫
S2
M [h(x, y)]f(x, y)dxdy −

(∫∫
SM [h(x, y)]f(x, y)dxdy

)2

We first study the quantity

∣∣∣∣
∫∫

S2
M [h(x, y)]f(x, y)dxdy −

∫∫
g(x, y)2f(x, y)dxdy

∣∣∣∣ .

It is bounded by prout prout prout prout prout prout prout prout prout prout

∫∫ ∣∣S2
M [h(x, y)]f(x, y) − S2

M [g(x, y)]f(x, y)
∣∣ dxdy

+

∫∫ ∣∣S2
M [g(x, y)]f(x, y) − g(x, y)2f(x, y)

∣∣ dxdy

≤ ‖f‖∞‖SMh+ SMg‖2‖SMh− SMg‖2 + ‖f‖∞‖SMg + g‖2‖SMg − g‖2.
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Using the fact that SM is a projection, this sum is bounded by

‖f‖∞‖h+ g‖2‖h− g‖2 + 2‖f‖∞‖g‖2‖SMg − g‖2
≤ ‖f‖∞(‖h‖2 + ‖g‖2)‖h− g‖2 + 2‖f‖∞‖g‖2‖SMg − g‖2.

We saw previously that ‖g‖2 ≤ ∆Y ‖f‖1/2∞ ‖η‖∞ and ‖h‖2 ≤ ∆Y ‖f‖1/2∞ ‖η‖∞. The sum is
then bounded by

2∆Y ‖f‖3/2∞ ‖η‖∞‖h− g‖2 + 2∆Y ‖f‖3/2∞ ‖η‖∞‖SMg − g‖2

We now have to deal with ‖h− g‖2:

‖h− g‖22 =

∫∫ (∫
(SMf(x, u)− f(x, u)) η(x, u, y)du

)2

dxdy

≤
∫∫ (∫

(SMf(x, u)− f(x, u))2du

)(∫
η(x, u, y)2du

)
dxdy

≤ ∆2
Y ‖η‖2∞‖SMf − f‖22.

Finally, the sum is bounded by

2∆Y ‖f‖3/2∞ ‖η‖∞ (∆Y ‖η‖∞‖SMf − f‖2 + ‖SMg − g‖2) .

Let us now study the second quantity

∣∣∣∣∣

(∫∫
SM [h(x, y)]f(x, y)dxdy

)2

−
(∫∫

g(x, y)f(x, y)dxdy

)2
∣∣∣∣∣ .

It is equal to

∣∣∣∣
(∫∫

(SM [h(x, y)] + g(x, y))f(x, y)dxdy

)

(∫∫
(SM [h(x, y)] − g(x, y))f(x, y)dxdy

)∣∣∣∣ .

By using the Cauchy-Schwarz inequality, it is bounded by

‖f‖2‖SMh+ g‖2‖f‖2‖SMh− g‖2
≤ ‖f‖22(‖h‖2 + ‖g‖2)(‖SMh− SMg‖2 + ‖SMg − g‖2)
≤ 2∆Y ‖f‖3/2∞ ‖η‖∞(‖h− g‖2 + ‖SMg − g‖2)
≤ 2∆Y ‖f‖3/2∞ ‖η‖∞ (∆Y ‖η‖∞‖SMf − f‖2 + ‖SMg − g‖2)

by using the previous calculations. Collecting the two inequalities gives (A2) for i = j = 3.
Finally, since by assumption ∀t ∈ L2(dµ), ‖SM t − t‖2 → 0 when n → ∞, a direct
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consequence of (A2) is that

lim
n→∞

Var(L(X1, Y1))

= 4

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dxdy

)2
]

= Λ(f, η).

We then conclude by noting that Var(
√
n(PnL)) = Var(L(X1, Y1)). �

We can now study the convergence of
√
n(PnL), which is given in the following lemma:

Lemma A.8: Assuming the hypotheses of Theorem 3.2 hold, we have

√
nPnL

L→ N (0,Λ(f, η)).

Proof : We first note that

√
n

(
Pn(2g) − 2

∫∫
g(x, y)f(x, y)dxdy

)
→ N (0,Λ(f, η))

where g(x, y) =

∫
η(x, y, u)f(x, u)du.

It is then sufficient to show that the expectation of the square of

R =
√
n

[
PnL−

(
Pn(2g) − 2

∫∫
g(x, y)f(x, y)dxdy

)]

converges to 0. We have

E(R2) = Var(R)

= nVar(PnL) + nVar(Pn(2g)) − 2nCov(PnL,Pn(2g))

We know that nVar(Pn(2g)) → Λ(f, η) and Lemma A.7 shows that nVar(PnL) → Λ(f, η).
Then, we just have to prove that

lim
n→∞

nCov(PnL,Pn(2g)) = Λ(f, η).

We have

nCov(PnL,Pn(2g)) = E(2L(X1, Y1)g(X1, Y1))

because L is centered. Since

L(X1, Y1) = 2h(X1, Y1) + 2SMg(X1, Y1)− 2SMh(X1, Y1)− 4A′B + 2A′CA,
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we get

nCov(PnL,Pn(2g)) = 4

∫∫
h(x, y)g(x, y)f(x, y)dxdy

+4

∫∫
SMg(x, y)g(x, y)f(x, y)dxdy

−4

∫∫
SMh(x, y)g(x, y)f(x, y)dxdy − 8

∑

i

aibi

∫∫
g(x, y)f(x, y)dxdy

+4A′CA

∫∫
g(x, y)f(x, y)dxdy

which converges to 4

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dudxdy

)2
]
which is

equal to Λ(f, η). We finally deduce that

√
nPnL→ N (0,Λ(f, η))

in distribution. �

In order to prove the asymptotic normality of θ̂n, the last step is to control the re-
mainder term in the Hoeffding’s decomposition:

Lemma A.9: Assuming the hypotheses of Theorem 3.2 hold, we have

√
n(2A′B −A′CA− θ) → 0.

Proof :
√
n(2A′B −A′CA− θ) → 0 is equal to

√
n

[
2

∫∫
g(x, y)SMf(x, y)dxdy

−
∫∫∫

SMf(x, y1)SMf(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

f(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

]
.

By replacing g we get

√
n

[
2

∫∫∫
SMf(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

SMf(x, y1)SMf(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

f(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

]
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With integral manipulation, we show it is also equal to

√
n

[∫∫∫
SMf(x, y1)(f(x, y2)− SMf(x, y2))η(x, y1, y2)dxdy1dy2

−
∫∫∫

f(x, y2)(SMf(x, y1)− f(x, y1))η(x, y1, y2)dxdy1dy2

]

≤ √
n∆Y ‖η‖∞ (‖SMf‖2‖SMf − f‖2 + ‖f‖2‖SMf − f‖2)

≤ 2
√
n∆Y ‖f‖2‖‖η‖∞‖SMf − f‖2

≤ 2
√
n∆Y ‖f‖2‖‖η‖∞

(
sup
i/∈M

|ci|2
)1/2

≈ 2∆Y ‖f‖2‖‖η‖∞
√
m

n
,

which converges to 0 when n→ ∞ since m/n→ 0. �

Collecting now the results of Lemmas A.6, A.7 and A.9 we get (8) since

√
n
(
θ̂n − θ

)
→ N (0,Λ(f, η))

in distribution. We finally have to prove (9). Remark that

nE
(
θ̂n − θ

)2
= nBias2(θ̂n) + nVar(θ̂n)

= nBias2(θ̂n) + nVar(UnK) + nVar(PnL)

We previously proved that

nBias2(θ̂n) ≤ λ∆2
Y ‖η‖2∞

m

n
for some λ ∈ R,

nVar(UnK) ≤ µ∆2
Y ‖f‖2∞‖η‖2∞

m

n
for some µ ∈ R.

Moreover, (A2) imply

|nVar(PnL)− Λ(f, η)| ≤ γ [‖SMf − f‖2 + ‖SMg − g‖2] ,

where γ is a increasing function of ‖f‖∞,‖η‖∞ and ∆Y . We then deduce (9) which ends
the proof of Theorem 3.2.

A.3. Proof of Theorem 3.3

To prove the inequality we will use the work of Ibragimov and Khasḿinskii (1991) (see
also chapter 25 of Van Der Vaart (1998)) on efficient estimation. The first step is the
computation of the Fréchet derivative of θ(f) at a point f0. Straightforward calculations
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show that

θ(f)− θ(f0) =

∫∫ [
2

∫
ψ(x, y, z)f0(x, z)dz

]
(f(x, y)− f0(x, y)) dxdy

+ O

(∫∫
(f(x, y)− f0(x, y))

2dxdy

)

from which we deduce that the Fréchet derivative of θ(f) at f0 is

θ′(f0) · u =

〈
2

∫
ψ(x, y, z)f0(x, z)dz, u

〉
(u ∈ L2(dxdy)),

where 〈·, ·〉 is the scalar product in L2(dxdy). We can now use the re-
sults of Ibragimov and Khasḿinskii (1991). Denote H(f0) = H(f0) ={
u ∈ L2(dxdy),

∫∫
u(x, y)

√
f0(x, y)dxdy = 0

}
the set of functions in L2(dxdy) orthogo-

nal to
√
f0, ProjH(f0) the projection on H(f0), An(t) = (

√
f0)t/

√
n and P

(n)
f0

the joint

distribution of (X1, . . . ,Xn) under f0. Since here X1, . . . ,Xn are i.i.d.,
{
P

(n)
f , f ∈ E

}
is

locally asymptotically normal at all points f0 ∈ E in the direction H(f0) with normal-
izing factor An(f0). Ibragimov and Khas’minskii result say that under these conditions,
denoting Kn = Bnθ

′(f0)AnProjH(f0) with Bn(u) =
√
nu, if Kn → K weakly and if

K(u) = 〈t, u〉, then for every estimator θ̂n of θ(f) and every family V(f0) of vicinities of
f0, we have

inf
{V(f0)}

lim inf
n→∞

sup
f∈V(f0)

nE(θ̂n − θ(f0))
2 ≥ ‖t‖2L2(dxdy).

Here,

Kn(u) =
√
nθ′(f0) ·

1√
n

√
f0ProjH(f0)(u) = θ′(f0) ·

(√
f0

(
u−

√
f0

∫
u
√
f0

))

does not depend on n and

K(u) =

∫∫ [
2

∫
ψ(x, y, z)f0(x, z)dz

]√
f0(x, y)

(
u(x, y)−

√
f0(x, y)

∫
u
√
f0

)
dxdy

=

∫∫ [
2

∫
ψ(x, y, z)f0(x, z)dz

]√
f0(x, y)u(x, y)dxdy

−
∫∫ [

2

∫
ψ(x, y, z)f0(x, z)dz

]
f0(x, y)dxdy

∫
u
√
f0

= 〈t, u〉
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where

t(x, y) =

[
2

∫
ψ(x, y, z)f0(x, z)dz

]√
f0(x, y)

−
(∫∫ [

2

∫
ψ(x, y, z)f0(x, z)dz

]
f0(x, y)dxdy

)√
f0(x, y).

The semiparametric Cramér-Rao bound for our problem is ‖t‖2L2(dxdy) :

‖t‖2L2(dxdy) = 4

∫∫ [∫
ψ(x, y, z)f0(x, z)dz

]2
f0(x, y)dxdy

−4

(∫∫ [∫
ψ(x, y, z)f0(x, z)dz

]
f0(x, y)dxdy

)2

= 4

∫∫
g0(x, y)

2f0(x, y)dxdy − 4

(∫∫
g0(x, y)f0(x, y)

)2

where g0(x, y) =

∫
ψ(x, y, z)f0(x, z)dz. Finally, we recognize the expression of Λ(f0, ψ)

given in Theorem 3.2.

A.4. Proof of Theorem 3.4

We will first control the remainder term Γn :

Γn =
1

6
F ′′′(ξ)(1 − ξ)3.

Let us recall that

F ′′′(ξ) =

∫∫∫∫
(∫

f̂(x, y)dy
)2

(∫
ξf(x, y) + (1− ξ)f̂(x, y)dy

)5

[(
m̂(x)− ϕ(y)

)(
m̂(x)− ϕ(z)

)(
m̂(x)− ϕ(t)

)
(∫

f̂(x, y)dy

)
...
ψ (r̂(ξ, x))− 3

(
m̂(x)− ϕ(y)

)(
m̂(x)− ϕ(z)

)

(∫
[ξf(x, y) + (1− ξ)f̂(x, y)]dy

)
ψ̈ (r̂(ξ, x))

]

(
f(x, y)− f̂(x, y)

)(
f(x, z)− f̂(x, z)

)

(
f(x, t)− f̂(x, t)

)
dxdydzdt
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Assumptions A2 and A3 ensure that the first part of the integrand is bounded by a
constant µ :

Γn ≤ 1

6
µ

∫∫∫∫
|f(x, y)− f̂(x, y)||f(x, z) − f̂(x, z)|

|f(x, t)− f̂(x, t)|dxdydzdt

≤ 1

6
µ

∫ (∫
|f(x, y)− f̂(x, y)|dy

)3

dx

≤ 1

6
µ∆2

Y

∫∫
|f(x, y)− f̂(x, y)|3dxdy

by the Hölder inequality. Then E(Γ2
n) = O(E[(

∫
|f − f̂ |3)2]) = O(E[‖f − f̂‖63]). Since f̂

verifies assumption A2, this quantity has order O(n−6λ
1 ). If we further assume that n1 ≈

n/ log(n) and λ > 1/6, we get E(Γ2
n) = o( 1n), which proves that the remainder term Γn

is negligible. We will now show that
√
n
(
T̂n − T (f)

)
and Zn = 1

n2

∑n2

j=1H(f,Xj , Yj)−∫∫
H(f, x, y)f(x, y)dxdy have the same asymptotic behavior. The idea is that we can

easily get a central limit theorem for Zn with asymptotic variance

C(f) =

∫∫
H(f, x, y)2f(x, y)dxdy −

(∫∫
H(f, x, y)f(x, y)dxdy

)2

,

which imply both (10) and (11) (we will show at the end of the proof that C(f) can be

expressed such as in the theorem). In order to show that
√
n
(
T̂n − T (f)

)
and Zn have

the same asymptotic behavior, we will prove that

R =
√
n


T̂n − T (f)−


 1

n2

n2∑

j=1

H(f,Xj , Yj)−
∫∫

H(f, x, y)f(x, y)dxdy






has a second-order moment converging to 0. Let us note that R = R1 +R2 where

R1 =
√
n
[
T̂n − T (f)

−


 1

n2

n2∑

j=1

H(f̂ ,Xj , Yj)−
∫∫

H(f̂ , x, y)f(x, y)dxdy




 ,

R2 =
√
n


 1

n2

n2∑

j=1

(
H(f̂ ,Xj , Yj)−

∫∫
H(f̂ , x, y)f(x, y)dxdy

)


−√
n


 1

n2

n2∑

j=1

(
H(f,Xj , Yj)−

∫∫
H(f, x, y)f(x, y)dxdy

)
 .
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We propose to show that both E(R2
1) and E(R2

2) converge to 0. We can write R1 as
follows :

R1 = −√
n
[
Q̂′ −Q′ + Γn

]

where

Q′ =

∫∫∫
K(f̂ , x, y, z)f(x, y)f(x, z),

K(f̂ , x, y, z) =
1

2

ψ̈(m̂(x))(∫
f̂(x, y)dy

)
(
m̂(x)− ϕ(y)

)(
m̂(x)− ϕ(z)

)

and Q̂′ is the corresponding estimator. Since E
(
Γ2
n

)
= o(1/n), we just have to control

the expectation of the square of
√
n
[
Q̂′ −Q′

]
:

Lemma A.10: Assuming the hypotheses of Theorem 3.4 hold, we have

lim
n→∞

nE
(
Q̂′ −Q′

)2
= 0.

Proof : The bound given in (9) states that if |Mn|/n→ 0 we have

∣∣∣∣nE
[(
Q̂′ −Q′

)2
|f̂
]

−4

[∫∫
ĝ(x, y)2f(x, y)dxdy −

(∫∫
ĝ(x, y)f(x, y)dxdy

)2
]∣∣∣∣∣

≤ γ1(‖f‖∞, ‖ψ‖∞,∆Y )

[ |Mn|
n

+ ‖SMf − f‖2 + ‖SM ĝ − ĝ‖2
]

where ĝ(x, y) =

∫
K(f̂ , x, y, z)f(x, z)dz. By deconditioning, we get

∣∣∣∣nE
[(
Q̂′ −Q′

)2]

−4E

[∫∫
ĝ(x, y)2f(x, y)dxdy −

(∫∫
ĝ(x, y)f(x, y)dxdy

)2
]∣∣∣∣∣

≤ γ1(‖f‖∞, ‖ψ‖∞,∆Y )

[ |Mn|
n

+ ‖SMf − f‖2 + E (‖SM ĝ − ĝ‖2)
]
.

Note that

E (‖SM ĝ − ĝ‖2) ≤ E (‖SM ĝ − SMg‖2) + E (‖SMg − g‖2)
≤ E (‖ĝ − g‖2) + E (‖SMg − g‖2)
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where g(x, y) =

∫
K(f, x, y, z)f(x, z)dz. The second term converges to 0 since g ∈

L2(dxdy) and ∀t ∈ L2(dxdy),
∫
(SM t− t)2dµ→ 0. Moreover

‖ĝ − g‖22 =

∫∫
[ĝ(x, y)− g(x, y)]2 f(x, y)dxdy

=

∫∫ [∫ (
K(f̂ , x, y, z) −K(f, x, y, z)

)
f(x, z)dz

]2
f(x, y)dxdy

≤
∫∫ [∫ (

K(f̂ , x, y, z) −K(f, x, y, z)
)2
dz

]

[∫
f(x, z)2dz

]
f(x, y)dxdy

≤ ∆2
Y ‖f‖3∞

∫∫∫ (
K(f̂ , x, y, z) −K(f, x, y, z)

)2
dxdz

≤ δ∆3
Y ‖f‖3∞

∫∫
(f(x, y)− f̂(x, y))2dxdy

for some constant δ by applying the mean value theorem to K(f, x, y, z)−K(f̂ , x, y, z).
Of course, the bound δ is obtained here by considering assumptions A1, A2 and A3.
Since E(‖f − f̂‖2) → 0, we get E (‖ĝ − g‖2) → 0. Let us now show that the expectation
of

∫∫
ĝ(x, y)2f(x, y)dxdy −

(∫∫
ĝ(x, y)f(x, y)dxdy

)2

converges to 0. We will only develop the proof for the first term :

∣∣∣∣
∫∫

ĝ(x, y)2f(x, y)dxdy −
∫∫

g(x, y)2f(x, y)dxdy

∣∣∣∣

≤
∫∫ ∣∣ĝ(x, y)2 − g(x, y)2

∣∣ f(x, y)dxdy

≤ λ

∫∫
(ĝ(x, y)− g(x, y))2 dxdy

≤ λ‖ĝ − g‖22

for some constant λ. By taking the expectation of both sides, we see it is enough to show
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that E
(
‖ĝ − g‖22

)
→ 0, which is done exactly as above. Besides, we can verify that

g(x, y) =

∫
K(f, x, y, z)f(x, z)dz

=
1

2

ψ̈(m(x))(∫
f(x, y)dy

)(m(x)− ϕ(y)
)

(
m(x)

∫
f(x, z)dz −

∫
ϕ(z)f(x, z)dz

)

= 0,

which proves that the expectation of

∫∫
ĝ(x, y)2f(x, y)dxdy converges to 0. Similar con-

siderations show that the expectation of the second term

(∫∫
ĝ(x, y)f(x, y)dxdy

)2

also

converges to 0. We finally have

lim
n→∞

nE
(
Q̂′ −Q′

)2
= 0.

�

Lemma A.10 imply that E(R2
1) → 0. We will now prove that E(R2

2) → 0 :

E(R2
2) =

n

n2
E

[∫∫ (
H(f, x, y)−H(f̂ , x, y)

)2
f(x, y)dxdy

]

− n

n2
E

[∫∫
H(f, x, y)f(x, y)dxdy −

∫∫
H(f̂ , x, y)f(x, y)dxdy

]2
.

The same arguments as before (mean value theorem and assumptions A2 and A3) show
that E(R2

2) → 0. At last, we can give another expression for the asymptotic variance :

C(f) =

∫∫
H(f, x, y)2f(x, y)dxdy −

(∫∫
H(f, x, y)f(x, y)dxdy

)2

.

We will prove that

C(f) = E

(
Var(ϕ(Y )|X)

[
ψ̇ (E(Y |X))

]2)
+Var (ψ (E(ϕ(Y )|X))) .
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Remark that

∫∫
H(f, x, y)f(x, y)dxdy =

∫∫ (
[ϕ(y)−m(x)] ψ̇(m(x)) + ψ(m(x))

)
f(x, y)dxdy

=

∫∫
m(x)ψ̇(m(x))f(x, y)dxdy −

∫∫
m(x)ψ̇(m(x))f(x, y)dxdy

+

∫∫
ψ(m(x))f(x, y)dxdy

= E (ψ (E(ϕ(Y )|X))) . (A3)

Moreover,

H(f, x, y)2 = [ϕ(y)−m(x)]2 ψ̇(m(x))2 + ψ(m(x))2 + 2 [ϕ(y) −m(x)] ψ̇(m(x))ψ(m(x))

= ϕ(y)2ψ̇(m(x))2 +m(x)2ψ̇(m(x))2 − 2ϕ(y)m(x)ψ̇(m(x))2

+ψ(m(x))2 + 2 [ϕ(y)−m(x)] ψ̇(m(x))ψ(m(x)).

We can then rewrite

∫∫
H(f, x, y)2f(x, y)dxdy as:

∫∫
ϕ(y)2ψ̇(m(x))2f(x, y)dxdy +

∫∫
m(x)2ψ̇(m(x))2f(x, y)dxdy

−2

∫∫
ϕ(y)m(x)ψ̇(m(x))2f(x, y)dxdy +

∫∫
ψ(m(x))2f(x, y)dxdy

+2

∫∫
ϕ(y)ψ̇(m(x))ψ(m(x))f(x, y)dxdy − 2

∫∫
m(x)ψ̇(m(x))ψ(m(x))f(x, y)dxdy

=

∫∫
v(x)ψ̇(m(x))2f(x, y)dxdy −

∫∫
m(x)2ψ̇(m(x))f(x, y)dxdy +

∫∫
ψ(m(x))2f(x, y)dxdy

=

∫∫ ([
v(x)−m(x)2

]
ψ̇(m(x))2 + ψ(m(x))2

)
f(x, y)dxdy

= E

([
v(X)−m(X)2

]
ψ̇(m(X))2

)
+ E

(
ψ(m(X))2

)

= E

([
E(ϕ(Y )2|X)− E(ϕ(Y )|X)2

] [
ψ̇(E(ϕ(Y )|X))

]2)
+ E

(
ψ(E(ϕ(Y )|X))2

)

= E

(
Var(ϕ(Y )|X)

[
ψ̇ (E(Y |X))

]2)
+ E

(
ψ(E(ϕ(Y )|X))2

)

where we have set v(x) =
∫
ϕ(y)2f(x, y)dy/

∫
f(x, y)dy. This result and (A3) give the

desired form for C(f) which ends the proof of Theorem 3.4.
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A.5. Proof of Theorem 3.5

We follow the proof of Theorem 3.3. Assumptions A2 and A3 imply that

T (f)− T (f0) =

∫∫ ([
ϕ(y)−m0(x)

]
ψ̇(m0(x)) + ψ(m0(x))

)

(
f(x, y)− f0(x, y)

)
dxdy +O

(∫
(f − f0)

2

)

where m0(x) =
∫
ϕ(y)f0(x, y)dy/

∫
f0(x, y)dy. This result shows that the Fréchet deriva-

tive of T (f) at f0 is T ′(f0) · h = 〈H(f0, ·), h〉 where

H(f0, x, y) =
([
ϕ(y)−m0(x)

]
ψ̇(m0(x)) + ψ(m0(x))

)
.

We then deduce that

K(h) = T ′(f0) ·
(√

f0

(
h−

√
f0

∫
h
√
f0

))

=

∫
H(f0, ·)

√
f0h−

∫
H(f0, ·)

√
f0

∫
h
√
f0

= 〈t, h〉

with

t = H(f0, ·)
√
f0 −

(∫
H(f0, ·)f0

)√
f0.

The semiparametric Cramér-Rao bound for this problem is thus

‖t‖2L2(dxdy) =

∫
H(f0, ·)2f0 −

(∫
H(f0, ·)f0

)2

= C(f0)

where we recognize the expression of C(f0) in Theorem 3.5.


