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EFFICIENT ESTIMATION OF NONLINEAR

CONDITIONAL FUNCTIONALS OF A DENSITY

By Sébastien Da Veiga

IFP-Lyon, France and Institut de Mathématiques, Toulouse, France
and

By Fabrice Gamboa

Institut de Mathématiques, Toulouse, France

In this paper we address the problem of estimating functional
integrals of conditional moments of the form E(ψ(E(ϕ(Y )|X))) where
(X,Y ) is a random vector with joint density f and ψ and ϕ are
functions that are differentiable enough. This problem is motivated
by the asymptotically efficient estimation of Sobol sensitivity indices.

1. Introduction. In many applied fields, physicists and engineers are
faced with the problem of estimating some sensitivity indices. These indices
quantify the impact of some input variables on an output. The general sit-
uation may be formalized as follows.
The output Y is a nonlinear regression of input variables τ = (τ1, . . . , τl)
(l ≥ 1 is generally large). This means that Y and τ satisfy the input-output
relationship

(1) Y = Φ(τ )

where Φ is a known nonlinear function. Usually, Φ is complicated and has
not a closed form, but it may be computed through a computer code ([13]).
The estimation of some sensitivity indices occurs for example in chemistry
([2], [15]), space science ([1]), etc. In general, the input τ is modelled by
a random vector, so that Y is also a random variable. A common way to
quantify the impact of input variables is to use the so-called Sobol sensitivity
indices ([14]). Assuming that all the random variables are square integrable,
the Sobol index for the input τj (j = 1, . . . , l) is

(2) Σj =
Var(E(Y |τj))

Var(Y )
.
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Observing an i.i.d. sample (Y1, τ
(1)), . . . , (Yn, τ

(n)) (with Yi = Φ(τ (i)), i =
1, . . . , n), an interesting statistical problem is then to estimate Σj (j =
1, . . . , l). Many past and recent works deal with this problem, see [2], [14],
[12], [13] or [3]. In these papers the approach is generally empirical in the
sense that no proof of convergence for the studied estimators is given (except
in [3]).
Obviously, (2) may be rewritten as

Σj =
E(E(Y |τj)2) − E(Y )2

Var(Y )
.

Thus, in order to estimate Σj , the hard part is E(E(Y |τj)2). In this paper
we will provide an asymptotically efficient estimate for this kind of quan-
tity. More precisely we will tackle the problem of asymptotically efficient
estimation of some general nonlinear functional. This functional is built on
a density of a pair. Our approach follows the works of Laurent ([8], [9])
where the author was interested in the estimation of less complicated func-
tionals. We also refer to [10] and [7] for general results on nonlinear func-
tionals estimation. Let us specify the functionals we are interested in. Let
(Y1, X1), . . . , (Yn, Xn) be a sample of i.i.d. random vectors of R

2 having a
regular density f (see Section 2 for the precise frame). We will study the
estimation of the nonlinear functional

T (f) = E

(
ψ
(
E(ϕ(Y )|X)

))

=

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy

where ψ and ϕ are regular functions. Hence, the Sobol indices are the par-
ticular case obtained with ψ(ξ) = ξ2 and ϕ(ξ) = ξ.
The method developed in order to obtain an asymptotically efficient esti-
mate for T (f) is the same as the one developed by Laurent ([8]). Roughly
speaking, it involves a preliminary estimate f̂ of f built on a small part of
the sample. This preliminary estimate is used in a Taylor expansion of T (f)
up to the second order in a neighbourhood of f̂ . This expansion allows to
remove the bias that occurs when using a direct plug-in method. Hence, the
bias correction involves a quadratic functional of f . Due to the form of T ,
this quadratic functional of f may be written as

θ(f) =

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2.

This kind of functional does not fall in the frame treated in [8] and have
not been studied to the best of our knowledge. We study this problem in
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Section 3 where we build an asymptotically efficient estimate for θ. In order
to show that our estimates of T (f) and θ(f) are asymptotically efficient,
we calculate the semiparametric Cramér-Rao lower bound using the general
frame of Ibragimov and Khas’minskii ([6]).
The paper is organized as follows. In the next section, we precisely give the
frame and our assumptions. We then begin to build an estimate for T (f).
This first path leads to the problem of estimating θ(f), which is completely
tackled in Section 3. The second path for estimating T (f) is performed
in Section 4 where the main theorem (Theorem 3) gives the asymptotic
behavior of our estimate. In Section 5 we focus on the particular case where
we wish to estimate Sobol indices, which was our first motivation. We also
study some numerical examples showing the good behavior of the estimate.
Section 6 is a conclusion, we discuss here some possible extensions of the
technique. All proofs are postponed in Section 7.

2. Model frame and method. Let a < b and c < d, L
2(dxdy) will

denote the set of square integrable functions on [a, b]× [c, d]. Further, L
2(dx)

(resp. L
2(dy)) will denote the set of square integrable functions on [a, b]

(resp. [c, d]). For sake of simplicity, we work in the whole paper with the
Lebesgue measure as reference measure. Nevertheless, most of the results
presented can be obtained for a general reference measure on [a, b] × [c, d].
Let (αiα(x))iα∈D1

(resp. (βiβ (y))iβ∈D2
) be a countable orthonormal basis of

L
2(dx) (resp. of L

2(dy)). We set pi(x, y) = αiα(x)βiβ (y) with i = (iα, iβ) ∈
D := D1 ×D2. Obviously (pi(x, y))i∈D is a countable orthonormal (tensor)
basis of L

2(dxdy). We will also use the following subset of L
2(dxdy) :

E =

{
∑

i∈D

eipi : (ei)i∈D is a sequence with
∑

i∈D

∣∣∣∣
ei
ci

∣∣∣∣
2

≤ 1

}

,

here (ci)i∈D is a given fixed positive sequence.
Let (X,Y ) having a bounded joint density f on [a, b]× [c, d] from which we
have a sample (Xi, Yi)i=1,...,n. We will also assume that f lies in the ellipsoid
E . Recall that we wish to estimate a conditional functional

E

(
ψ
(
E(ϕ(Y )|X)

))

where ϕ is a measurable bounded function with χ1 ≤ ϕ ≤ χ2 and ψ ∈
C3([χ1, χ2]) the set of thrice continuously differentiable functions on [χ1, χ2].
This last quantity can be expressed in terms of an integral depending on the
joint density f :

(3) T (f) =

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy.
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To build our estimator, we propose here to follow the work of Laurent ([8])
on the asymptotically efficient estimation of integral functionals of a density.
Denoting by (Zi)i=1,...,n a sample of size n of a d-dimensional random vector
Z with density s ∈ L

2(Rd), Laurent gives in her article an asymptotically
efficient estimator of

T̃ (s) =

∫

Rd
φ(s(x),x)dx

where φ is a given regular function. Under specific assumptions, her key idea
is to use first a preliminary estimator ŝ(x) computed with a small part of
the sample (Zi)i=1,...,n, for example the n1 last observations (n1 < n). In
a second step φ is expanded in a neighborhood of (ŝ(x),x) using a Taylor
expansion :

T̃ (s) =

∫
φ(ŝ(x),x)dx +

∫
φ′1(ŝ(x),x)(s− ŝ)(x)dx

+
1

2

∫
φ′′1(ŝ(x),x)(s− ŝ)2(x)dx + Γn

where φ′1 =
∂φ

∂u
(u, v), φ′′1 =

∂2φ

∂u2
(u, v) and Γn is a remainder term that is

shown to be negligible if ŝ is close enough to s. This expansion can be
rewritten as

(4) T̃ (s) =

∫
G̃(ŝ, ·) +

∫
H̃(ŝ, ·)s+

∫
K̃(ŝ, ·)s2 + Γn

where

G̃(ŝ, ·) = φ(ŝ, ·) − φ′1(ŝ, ·)ŝ+
1

2
φ′′1(ŝ, ·)ŝ2,

H̃(ŝ, ·) = φ′1(ŝ, ·) − ŝφ′′1(ŝ, ·),
K̃(ŝ, ·) =

1

2
φ′′1(ŝ, ·).

Further the linear functional

∫
H̃(ŝ, ·)s is classically estimated by the em-

pirical mean
1

n2

n2∑

j=1

H̃(ŝ, ·)(Zj) where n2 = n − n1 denotes the number of

remaining observations. Concerning the quadratic functional

∫
K̃(ŝ, ·)s2,

the construction of an asymptotically efficient estimator is more difficult
and relies on a preliminary work concerning the asymptotically efficient es-

timation of quadratic functionals of the type

∫
η(x)s(x)2dx. The reader is
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referred to [8] for more details. Now if we envisage to apply the method of
Laurent to our problem, we would have to set

φ(f(x, y), (x, y)) = ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
.

Here it is not possible to write a direct Taylor expansion of the function
u → φ(u, v). Indeed, some integral operators appear in the function ψ.
Hence, we propose in our work an extension of the work of Laurent to very
general functionals.

Let us come back to the definition (3) of the quantity we are interested
in. We write it

T (f) =

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy =

∫∫
ψ(m(x))f(x, y)dxdy

where m(x) =
∫
ϕ(y)f(x, y)dy/

∫
f(x, y)dy is the conditional expectation of

ϕ(Y ) given (X = x). As before, we suggest as a first step to consider a
preliminary estimator f̂ of f , and to expand T (f) in a neighborhood of f̂ .
To achieve this goal we first define F : [0, 1] → R :

F (u) = T (uf + (1 − u)f̂) (u ∈ [0, 1]).

The Taylor expansion of F between 0 and 1 up to the third order is

(5) F (1) = F (0) + F ′(0) +
1

2
F ′′(0) +

1

6
F ′′′(ξ)(1 − ξ)3

for some ξ ∈]0, 1[. Here, we have

F (1) = T (f)

and

F (0) = T (f̂) =

∫∫
ψ

(∫
ϕ(y)f̂(x, y)dy
∫
f̂(x, y)dy

)

f̂(x, y)dxdy

=

∫∫
ψ(m̂(x))f̂(x, y)dxdy

where m̂(x) =
∫
ϕ(y)f̂(x, y)dy/

∫
f̂(x, y)dy. Straightforward calculations also
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give higher-order derivatives of F :

F ′(0) =

∫∫ ([
ϕ(y) − m̂(x)

]
ψ̇(m̂(x)) + ψ(m̂(x))

)

(
f(x, y) − f̂(x, y)

)
dxdy

F ′′(0) =

∫∫∫
ψ̈(m̂(x))(∫
f̂(x, y)dy

)
(
m̂(x) − ϕ(y)

)(
m̂(x) − ϕ(z)

)

(
f(x, y) − f̂(x, y)

)(
f(x, z) − f̂(x, z)

)
dxdydz

F ′′′(ξ) =

∫∫∫∫
(∫

f̂(x, y)dy
)2

(∫
ξf(x, y) + (1 − ξ)f̂(x, y)dy

)5

[(
m̂(x) − ϕ(y)

)(
m̂(x) − ϕ(z)

)(
m̂(x) − ϕ(t)

)
(∫

f̂(x, y)dy

) ...
ψ (r̂(ξ, x)) − 3

(
m̂(x) − ϕ(y)

)(
m̂(x) − ϕ(z)

)

(∫
[ξf(x, y) + (1 − ξ)f̂(x, y)]dy

)
ψ̈ (r̂(ξ, x))

]

(
f(x, y) − f̂(x, y)

)(
f(x, z) − f̂(x, z)

)

(
f(x, t) − f̂(x, t)

)
dxdydzdt

where r̂(ξ, x) =

∫
ϕ(y)[ξf(x, y) + (1 − ξ)f̂(x, y)]dy
∫
[ξf(x, y) + (1 − ξ)f̂(x, y)]dy

and ψ̇, ψ̈ and
...
ψ denote

the three first derivative of ψ.

Plugging these expressions into (5) leads to the following expansion for
T (f) :

T (f) =

∫∫
H(f̂ , x, y)f(x, y)dxdy

+

∫∫∫
K(f̂ , x, y, z)f(x, y)f(x, z)dxdydz + Γn(6)

where

H(f̂ , x, y) =
[
ϕ(y) − m̂(x)

]
ψ̇(m̂(x)) + ψ(m̂(x)),

K(f̂ , x, y, z) =
1

2

ψ̈(m̂(x))(∫
f̂(x, y)dy

)
(
m̂(x) − ϕ(y)

)(
m̂(x) − ϕ(z)

)
,

Γn =
1

6
F ′′′(ξ)(1 − ξ)3



ESTIMATION OF NONLINEAR CONDITIONAL FUNCTIONALS 7

for some ξ ∈]0, 1[. Let us now compare the expansions (4) and (6). Notice
that the first term is still a linear functional of the density f . We will estimate
it with

1

n2

n2∑

j=1

H(f̂ , Xj , Yj).

The second one is however different from that in (4). Indeed we have to deal
here with a complicated crossed term:

(7)

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2

where η : R
3 → R is a bounded function verifying η(x, y1, y2) = η(x, y2, y1)

for all (x, y1, y2) ∈ R
3.

In the next section we focus on the asymptotically efficient estimation of
such crossed quadratic functionals. In Section 4, these results are then used
to propose an asymptotically efficient estimator for T (f).

3. Efficient estimation of quadratic functionals. In this section,
our aim is to build an asymptotically efficient estimate for

θ =

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2.

We denote ai =
∫
fpi the scalar product of f with pi. We will first build a

projection estimator achieving a bias equal to

−
∫∫∫

[SMf(x, y1) − f(x, y1)] [SMf(x, y2) − f(x, y2)] η(x, y1, y2)dxdy1dy2

where SMf =
∑

i∈M aipi and M is a subset of D. Thus, the bias would only
be due to projection. Developing the previous expression leads to a goal bias
equal to

2

∫∫∫
SMf(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

SMf(x, y1)SMf(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

f(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2.(8)
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Consider now the estimator θ̂n defined by

θ̂n =
2

n(n− 1)

∑

i∈M

n∑

j 6=k=1

pi(Xj , Yj)

∫
pi(Xk, u)η(Xk, u, Yk)du

− 1

n(n− 1)

∑

i,i′∈M

n∑

j 6=k=1

pi(Xj , Yj)pi′(Xk, Yk)

∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2.(9)

This estimator achieves the desired bias :

Lemma 1 (Bias of θ̂n). The estimator θ̂n defined in (9) estimates θ with
bias equal to

−
∫∫∫

[SMf(x, y1) − f(x, y1)][SMf(x, y2) − f(x, y2)]η(x, y1, y2)dxdy1dy2.

Since we will carry out an asymptotic analysis, we will work with a se-
quence (Mn)n≥1 of subsets of D. We will need an extra assumption concern-
ing this sequence:

A1. For all n ≥ 1, we can find a subsetMn ⊂ D such that
(
supi/∈Mn

|ci|2
)2 ≈

|Mn|
n2 (An ≈ Bn means λ1 ≤ An/Bn ≤ λ2 for some positive constants

λ1 and λ2). Furthermore, ∀t ∈ L
2(dxdy),

∫
(SMnt− t)2dxdy → 0 when

n→ ∞.

The following theorem gives the most important properties of our estimate
θ̂n :

Theorem 1. Assume A1 hold. Then θ̂n has the following properties:

(i) If |Mn|/n→ 0 when n→ ∞, then

(10)
√
n
(
θ̂n − θ

)
→ N (0,Λ(f, η)) ,

(11)∣∣∣∣E
(
θ̂n − θ

)2
− Λ(f, η)

∣∣∣∣ ≤ γ1

[ |Mn|
n

+ ‖SMnf − f‖2 + ‖SMng − g‖2

]
,

where g(x, y) :=

∫
f(x, u)η(x, y, u)du and

Λ(f, η) = 4

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dxdy

)2
]

.
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(ii) Otherwise

E

(
θ̂n − θ

)2
≤ γ2

|Mn|
n

,

where γ1 and γ2 are constants depending only on ‖f‖∞, ‖η‖∞ and ∆Y (with
∆Y = d − c). Moreover, these constants are increasing functions of these
quantities.

Remark 1. Since in our main result (to be given in the next section)
η will depend on n through the preliminary estimator f̂ , we need in (11) a
bound that depends explicitly on n. Note however that (11) implies

lim
n→∞

nE

(
θ̂n − θ

)2
= Λ(f, η).

The asymptotic properties of θ̂n are of particular importance, in the sense
that they are optimal as stated in the following theorem.

Theorem 2 (Semiparametric Cramér-Rao bound). Consider the esti-
mation of

θ = θ(f) =

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2.

Let f0 ∈ E. Then, for all estimator θ̂n of θ(f) and every family V(f0) of
vicinities of f0, we have

inf
{V(f0)}

lim inf
n→∞

sup
f∈V(f0)

nE(θ̂n − θ(f0))
2 ≥ Λ(f0, η).

Remark 2. In other words, the optimal asymptotic variance for the
estimation of θ is Λ(f0, η). As our estimator defined in (9) achieves this
variance, it is therefore asymptotically efficient.

4. Main Theorem. In this section we come back to our main problem
of the asymptotically efficient estimation of

T (f) =

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy.

Recall that we have derived in (6) an expansion for T (f) :

T (f) =

∫∫
H(f̂ , x, y)f(x, y)dxdy

+

∫∫∫
K(f̂ , x, y, z)f(x, y)f(x, z)dxdydz + Γn
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where

H(f̂ , x, y) =
[
ϕ(y) − m̂(x)

]
ψ̇(m̂(x)) + ψ(m̂(x)),

K(f̂ , x, y, z) =
1

2

ψ̈(m̂(x))

(
∫
f̂(x, y)dy)

(
m̂(x) − ϕ(y)

)(
m̂(x) − ϕ(z)

)
,

Γn =
1

6
F ′′′(ξ)(1 − ξ)3

for some ξ ∈]0, 1[ and a preliminary estimator f̂ of f .
The key idea is to use here the previous results on the estimation of crossed
quadratic functionals. Indeed we have provided an asymptotically efficient
estimator for the second term of this expansion, conditionally on f̂ . A natural
and straightforward estimator for T (f) is then

T̂n =
1

n2

n2∑

j=1

H(f̂ , Xj , Yj)

+
2

n2(n2 − 1)

∑

i∈M

n2∑

j 6=k=1

pi(Xj , Yj)

∫
pi(Xk, u)K(f̂ , Xk, u, Yk)du

− 1

n2(n2 − 1)

∑

i,i′∈M

n2∑

j 6=k=1

pi(Xj , Yj)pi′(Xk, Yk)

∫
pi(x, y1)pi′(x, y2)K(f̂ , x, y1, y2)dxdy1dy2.

In the above expression, one can note that the remainder Γn does not ap-
pear : we will see in the proof of the following theorem that it is negligible
comparing to the two first terms.

In order to study the asymptotic properties of T̂n, some assumptions are
required concerning the behavior of the joint density f and its preliminary
estimator f̂ :

A2. suppf ⊂ [a, b] × [c, d] and ∀(x, y) ∈ suppf , 0 < α ≤ f(x, y) ≤ β with
α, β ∈ R

A3. One can find an estimator f̂ of f built with n1 ≈ n/ log(n) observa-
tions, such that

∀(x, y) ∈ suppf, 0 < α− ǫ ≤ f̂(x, y) ≤ β + ǫ.

Moreover,

∀2 ≤ q < +∞, ∀l ∈ N
∗, Ef‖f̂ − f‖l

q ≤ C(q, l)n−lλ
1
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for some λ > 1/6 and some constant C(q, l) not depending on f be-
longing to the ellipsoid E .

Here suppf denotes the set where f is different from 0. Assumption A2 is
restrictive in the sense that only densities with compact support can be con-
sidered, excluding for example a Gaussian joint distribution.
Assumption A3 imposes to the estimator f̂ a convergence fast enough to-
wards f . We will use this result to control the remainder term Γn.

We can now state the main theorem of the paper. It investigates the
asymptotic properties of T̂n under assumptions A1, A2 and A3.

Theorem 3. Assume that A1, A2 and A3 hold. Then T̂n has the fol-

lowing properties if
|Mn|
n

→ 0:

(12)
√
n
(
T̂n − T (f)

)
→ N (0, C(f)),

(13) lim
n→∞

nE

(
T̂n − T (f)

)2
= C(f),

where C(f) = E

(
Var(ϕ(Y )|X)

[
ψ̇
(
E(Y |X)

)]2)
+ Var

(
ψ
(
E(ϕ(Y )|X)

))
.

We can also compute as in the previous section the semiparametric Cramér-
Rao bound for this problem.

Theorem 4 (Semiparametric Cramér-Rao bound). Consider the esti-
mation of

T (f) =

∫∫
ψ

(∫
ϕ(y)f(x, y)dy∫
f(x, y)dy

)
f(x, y)dxdy = E

(
ψ
(
E(ϕ(Y )|X)

))

for a random vector (X,Y ) with joint density f ∈ E. Let f0 ∈ E be a density
verifying the assumptions of Theorem 3. Then, for all estimator T̂n of T (f)
and every family V(f0) of vicinities of f0, we have

inf
{V(f0)}

lim inf
n→∞

sup
f∈V(f0)

nE(T̂n − T (f0))
2 ≥ C(f0).

Corollary 1. T̂n is asymptotically efficient.
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5. Application to the estimation of sensitivity indices. Now that
we have built an asymptotically efficient estimate for T (f), we can apply it
to the particular case we were initially interested it: the estimation of Sobol
sensitivity indices. Let us then come back to model (1) :

Y = Φ(τ )

where we wish to estimate (2):

Σj =
Var(E(Y |τj))

Var(Y )
=

E(E(Y |τj)2) − E(Y )2

Var(Y )
j = 1, . . . , l.

To do so, we have an i.i.d. sample (Y1, τ
(1)), . . . , (Yn, τ

(n)). We will only give
here the procedure for the estimation of Σ1 since it will be the same for the
other sensitivity indices. Denoting X := τ1, this problem is equivalent to es-
timating E(E(Y |X)2) with an i.i.d. sample (Y1, X1), . . . , (Yn, Xn) with joint
density f . Note that we only take into account the sample (Xi)i=1,...,n :=

(τ
(i)
1 )i=1,...,n to estimate Σj (and thus discard the observations of the other

covariates τj for j 6= 1): we will discuss and justify this method later.
We can hence apply the estimate we developed previously by letting ψ(ξ) =
ξ2 and ϕ(ξ) = ξ:

T (f) = E(E(Y |X)2)

=

∫∫ (∫
yf(x, y)dy∫
f(x, y)dy

)2

f(x, y)dxdy.

The Taylor expansion in this case becomes

T (f) =

∫∫
H(f̂ , x, y)f(x, y)dxdy

+

∫∫∫
K(f̂ , x, y, z)f(x, y)f(x, z)dxdydz + Γn

where

H(f̂ , x, y) = 2ym̂(x) − m̂(x)2,

K(f̂ , x, y, z) =
1(∫

f̂(x, y)dy
)
(
m̂(x) − y

)(
m̂(x) − z

)
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and the corresponding estimator is

T̂n =
1

n2

n2∑

j=1

H(f̂ , Xj , Yj)

+
2

n2(n2 − 1)

∑

i∈M

n2∑

j 6=k=1

pi(Xj , Yj)

∫
pi(Xk, u)K(f̂ , Xk, u, Yk)du

− 1

n2(n2 − 1)

∑

i,i′∈M

n2∑

j 6=k=1

pi(Xj , Yj)pi′(Xk, Yk)

∫
pi(x, y1)pi′(x, y2)K(f̂ , x, y1, y2)dxdy1dy2.

for some preliminary estimator f̂ of f , an orthonormal basis (pi)i∈D of
L

2(dxdy) and a subset M ⊂ D verifying the hypotheses of Theorem 3.

We propose now to investigate the practical behavior of this estimator on
two analytical models. In both models, the preliminary estimator f̂ will be a
kernel density estimator with bounded support (MATLAB Statistics Tool-
box routine ‘ksdensity’ for example) built on n1 = [log(n)/n] observations.
Moreover, we choose the Legendre polynomials on [a, b] and [c, d] to build
the orthonormal basis (pi)i∈D and we will take |M | =

√
n. Finally, the inte-

grals in T̂n are computed with an adaptive Simpson quadrature (MATLAB
routine ‘quad’).
The first model we investigate is

(14) Y = τ1 + τ4
2

where three configurations are considered (τ1 and τ2 being independent):

(a) τj ∼ U(0, 1), j = 1, 2;
(b) τj ∼ U(0, 3), j = 1, 2;
(c) τj ∼ U(0, 5), j = 1, 2.

The results obtained with n = 100 and n = 10000 are given in Table 1.
The asymptotically efficient estimator T̂n gives a very accurate approxi-

mation of sensitivity indices when n = 10000. But surprisingly, it also gives
a reasonably accurate estimate when n only equals 100, whereas it has been
built to achieve the best asymptotic rate of convergence. It is then interest-
ing to compare it with other estimators, more precisely two nonparametric
estimators that have been specifically built to give an accurate approxima-
tion of sensitivity indices when n is not large: that of [13] and that of [3].
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Inputs E(E(Y |τj)
2) T̂n T̂n

n = 100 n = 10000

Configuration (a)
τ1 0.5733 0.5894 0.5729
τ2 0.5611 0.5468 0.5611

Configuration (b)
τ1 314.04 305.98 318.27
τ2 779.85 814.04 787.82

Configuration (c)
τ1 16258 18414 16897
τ2 44034 47667 44473

Table 1
Conditional moments for analytical model (14).

We have decided to make such a comparison on the following model :

Y = 0.2 exp(τ1 − 3) + 2.2|τ2| + 1.3τ6
2 − 2τ2

2 − 0.5τ4
2 − 0.5τ4

1

+2.5τ2
1 + 0.7τ3

1 +
3

(8τ1 − 2)2 + (5τ2 − 3)2 + 1
+ sin(5τ1) cos(3τ2

1 )(15)

where τ1 and τ2 are independent and uniformly distributed on [−1, 1]. This
nonlinear function is interesting since it presents a peak and valleys. We
estimate the sensitivity indices with a sample of size n = 100, the results
are given in Table 2.

True value Oakley-O’Hagan Local polynomials T̂n

Var(E(Y |X1)) 1.0932 1.0539 1.0643 1.1701
Var(E(Y |X2)) 0.0729 0.1121 0.0527 0.0939

Table 2
Comparison between efficient estimation and nonparametric estimates on analytical

model (15).

Globally, the best estimates are given by the local polynomials technique.
However, the accuracy of the asymptotically efficient estimator T̂n is com-
parable to that of the nonparametric ones. These results confirm that T̂n is
a valuable estimator even with a rather complex model and a small sample
size (recall that here n = 100).

Let us now end this section by discussing the voluntary choice to dis-

card the observations (Yi, τ
(i)
∼1)i=1,...,n (where τ∼1 denotes the vector of all

the random variables τj with j 6= 1) when estimating E(E(Y |τ1)2). The
fundamental question is then the following: does observing other covariates
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τj for j 6= 1 helps to better estimate E(E(Y |τ1)2) ? To answer it, we will
place ourselves again in the semiparametric setting: we will compute the
semiparametric Cramér-Rao bound associated to the problem of estimat-
ing E(E(Y |X)2) from an i.i.d. sample (Xi,Zi, Yi)i=1,...,n with joint density
f(x, z, y) ∈ L

2(Ω) and Ω an hypercube of L
2(Rd+1). Obviously, X stands

here for τ1 and Z for τ∼1. The lower bound is given in the following theorem:

Theorem 5 (Semiparametric Cramér-Rao bound). Consider the esti-
mation of

T (f) =

∫∫ (∫
yf(x, z, y)dzdy∫
f(x, z, y)dzdy

)2

f(x, z, y)dxdzdy = E(E(Y |X)2)

for a random vector (X,Z, Y ) with joint density f ∈ E. Let f0 ∈ E be a
density verifying the assumptions of Theorem 3. Then, for all estimator T̂n

of T (f) and every family V(f0) of vicinities of f0, we have

inf
{V(f0)}

lim inf
n→∞

sup
f∈V(f0)

nE(T̂n − T (f0))
2 ≥ C(f0)

In other words, the optimal asymptotic variance for the estimation of T (f)
is C(f0).

The previous theorem perfectly answers our question. Indeed, the Cramér-
Rao bound with a vector (X,Z, Y ) is the same as with a pair (X,Y ).
Note that the estimator T̂n we built in the previous section asymptotically
reaches this bound: it is therefore the best estimate for T (f) (in the asymp-
totic efficiency sense). Hence, taking into account the observations of an
extra-covariates vector Z does not asymptotically improve the estimation
of E(E(Y |X)2) (may Z be independent of X or not). This result thus jus-
tifies the fact to work only with a sample (Yi, Xi)i=1,...,n as we did in our
examples. Finally, let us precise we shall qualify this last statement, since it
only relies on asymptotic considerations. In practice, using observations of
Z may improve the estimation. However, we are not currently able to give
a theoretical result for the finite sample size case.

6. Discussion and conclusions. In this paper, we have shown that it
is possible to build an asymptotically efficient estimate for nonlinear condi-
tional functionals. The estimators are both practically computable and have
optimal asymptotic properties. Hence, they could be used by practioners to
estimate for example the Sobol indices. Interested readers can obtain the
Matlab code for computing the estimator of Sobol indices by asking the au-
thors.
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The methodology developed here will be extended to other problems in forth-
coming work. Firstly, conditional functionals such as Cramér Von Mises may
be used to perform goodness-of-fit tests for conditional distributions (see [4]).
Secondly, the estimation of conditional covariance matrices in the Sliced In-
verse Regression setting ([11]) will also be treated. Finally, a very attractive
extension is the construction of an adaptive procedure to calibrate the size
of Mn as done in [9] for the L

2 norm. Nevertheless, this problem seems to be
a very difficult one since it would involve treating complicated inequalities
on U-statistics such as presented in [5].

7. Proofs of Theorems.

7.1. Proof of Lemma 1. Let θ̂n = θ̂1
n − θ̂2

n where

θ̂1
n =

2

n(n− 1)

∑

i∈M

n∑

j 6=k=1

pi(Xj , Yj)

∫
pi(Xk, u)η(Xk, u, Yk)du

and

θ̂2
n =

1

n(n− 1)

∑

i,i′∈M

n∑

j 6=k=1

pi(Xj , Yj)pi′(Xk, Yk)

∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2.

Let us first compute E(θ̂1
n) :

E(θ̂1
n) = 2

∑

i∈M

∫∫
pi(x, y)f(x, y)dxdy

∫∫∫
pi(x, y)η(x, u, y)f(x, y)dxdydu

= 2
∑

i∈M

ai

∫∫∫
pi(x, y)η(x, u, y)f(x, y)dxdydu

= 2

∫∫∫ (∑

i∈M

aipi(x, y)

)

η(x, u, y)f(x, y)dxdydu

= 2

∫∫∫
SMf(x, y)η(x, u, y)f(x, y)dxdydu.
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Furthermore,

E(θ̂2
n) =

∑

i,i′∈M

∫∫
pi(x, y)f(x, y)dxdy

∫∫
pi′(x, y)f(x, y)dxdy

∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2

=
∑

i,i′∈M

aiai′

∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2

=

∫ (∑

i∈M

aipi(x, y1)

)


∑

i′∈M

ai′pi′(x, y2)



 η(x, y1, y2)dxdy1dy2

=

∫
SMf(x, y1)SMf(x, y2)η(x, y1, y2)dxdy1dy2.

Finally, E(θ̂n)− θ = E(θ̂1
n)−E(θ̂2

n)− θ and we get the desired bias with (8).

7.2. Proof of Theorem 1. We will write M instead of Mn for readability
and denote m = |M |. We want to bound the precision of θ̂n. We first write

E

(
θ̂n −

∫∫∫
η(x, y1, y2)f(x, y1)f(x, y2)dxdy1dy2

)2

= Bias2(θ̂n) + Var(θ̂n).

The first term of this decomposition can be easily bounded, since θ̂n has
been built to achieve a bias equal to

Bias(θ̂n) = −
∫∫∫

[SMf(x, y1) − f(x, y1)][SMf(x, y2) − f(x, y2)]

η(x, y1, y2)dxdy1dy2.

We then get the following lemma :

Lemma 2 (Bound for Bias(θ̂n)). Assuming the hypotheses of Theorem 1
hold, we have

|Bias(θ̂n)| ≤ ∆Y ‖η‖∞ sup
i/∈M

|ci|2.
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Proof.

|Bias(θ̂n)| ≤ ‖η‖∞
∫ (∫

|SMf(x, y1) − f(x, y1)|dy1

)

(∫
|SMf(x, y2) − f(x, y2)|dy2

)
dx

≤ ‖η‖∞
∫ (∫

|SMf(x, y) − f(x, y)|dy
)2

dx

≤ ∆Y ‖η‖∞
∫∫

(SMf(x, y) − f(x, y))2dxdy

≤ ∆Y ‖η‖∞
∑

i/∈M

|ai|2 ≤ ∆Y ‖η‖∞ sup
i/∈M

|ci|2.

Indeed, f ∈ E and the last inequality follows from Hölder inequality.

Bounding the variance of θ̂n is however less straightforward. Let A and
B be the m× 1 vectors with components

ai :=

∫∫
f(x, y)pi(x, y)dxdy i = 1, . . . ,m

bi :=

∫∫∫
pi(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

=

∫∫
g(x, y)pi(x, y)dxdy i = 1, . . . ,m

where g(x, y) =

∫
f(x, u)η(x, y, u)du for each i ∈ M . ai et bi are the com-

ponents of f and g onto the ith component of the basis. Let Q and R
be the m × 1 vectors of the centered functions qi(x, y) = pi(x, y) − ai

and ri(x, y) =

∫
pi(x, u)η(x, u, y)du− bi for i = 1, . . . ,m. Let C be the

m×m matrix of constants cii′ =

∫∫∫
pi(x, y1)pi′(x, y2)η(x, y1, y2)dxdy1dy2

for i, i′ = 1, . . . ,m. Take care that here cii′ is double subscript unlike in the
(ci) sequence appearing in the definition of the ellipsoid E . We denote by

Un the process Unh =
1

n(n− 1)

n∑

j 6=k=1

h(Xj , Yj , Xk, Yk) and by Pn the em-

pirical measure Pnf =
1

n

n∑

j=1

f(Xj , Yj). With the previous notation, θ̂n has

the following Hoeffding’s decomposition (see chapter 11 of [16]):

(16) θ̂n = UnK + PnL+ 2tAB − tACA
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where

K(x1, y1, x2, y2) = 2tQ(x1, y1)R(x2, y2) − tQ(x1, y1)CQ(x2, y2),

L(x1, y1) = 2tAR(x1, y1) + 2tBQ(x1, y1) − 2tACQ(x1, y1).

Then Var(θ̂n) = Var(UnK) + Var(PnL) + 2 Cov(UnK,PnL). We have to
get bounds for each of these terms : they are given in the three following
lemmas.

Lemma 3 (Bound for Var(UnK)). Assuming the hypotheses of Theorem
1 hold, we have

Var(UnK) ≤ 20

n(n− 1)
‖η‖2

∞‖f‖2
∞∆2

Y (m+ 1).

Proof. Since UnK is centered, Var(UnK) equals

E



 1

(n(n− 1))2

n∑

j 6=k=1

n∑

j′ 6=k′=1

K(Xj , Yj , Xk, Yk)K(Xj′ , Yj′ , Xk′ , Yk′)





=
1

n(n− 1)
E(K2(X1, Y1, X2, Y2) +K(X1, Y1, X2, Y2)K(X2, Y2, X1, Y1)).

By the Cauchy-Schwarz inequality,

Var(UnK) ≤ 2

n(n− 1)
E(K2(X1, Y1, X2, Y2)).

Moreover, the inequality 2|E(XY )| ≤ E(X2) + E(Y 2) leads to

E(K2(X1, Y1, X2, Y2)) ≤ 2
[
E

(
(2Q′(X1, Y1)R(X2, Y2))

2
)

+E

(
(Q′(X1, Y1)CQ(X2, Y2))

2
)]
.

We have to bound these two terms. The first one is

E

(
(2Q′(X1, Y1)R(X2, Y2))

2
)

= 4(W1 −W2 −W3 +W4)
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where

W1 =

∫∫∫∫∫∫ ∑

i,i′

pi(x, y)pi′(x, y)pi(x
′, u)pi′(x

′, vη(x′, u, y′)η(x′, v, y′)

f(x, y)f(x′, y′)dudvdxdydx′dy′

W2 =

∫∫ ∑

i,i′

bibi′pi(x, y)pi′(x, y)f(x, y)dxdy

W3 =

∫∫∫∫ ∑

i,i′

aiai′pi(x, u)pi′(x, v)η(x, u, y)η(x, v, y)f(x, y)dxdy

W4 =
∑

i,i′

aiai′bibi′ .

Straightforward manipulations show that W2 ≥ 0 and W3 ≥ 0. This implies
that

E

(
(2Q′(X1, Y1)R(X2, Y2))

2
)
≤ 4(W1 +W4).

On the one hand,

W1 =

∫∫∫∫ ∑

i,i′

pi(x, y)pi′(x, y)

∫
pi(x

′, u)η(x′, u, y′)du

∫
pi′(x

′, v)η(x′, v, y′)dvf(x, y)f(x′, y′)dxdydx′dy′

≤
∫∫∫∫ (∑

i

pi(x, y)

∫
pi(x

′, u)η(x′, u, y′)du

)2

f(x, y)f(x′, y′)dxdydx′dy′

≤ ‖f‖2
∞

∫∫∫∫ (∑

i

pi(x, y)

∫
pi(x

′, u)η(x′, u, y′)du

)2

dxdydx′dy′

≤ ‖f‖2
∞

∫∫∫∫ ∑

i,i′

pi(x, y)pi′(x, y)

∫
pi(x

′, u)η(x′, u, y′)du

∫
pi′(x

′, v)η(x′, v, y′)dvdxdydx′dy′

≤ ‖f‖2
∞

∑

i,i′

∫∫
pi(x, y)pi′(x, y)dxdy

∫∫ (∫
pi(x

′, u)η(x′, u, y′)du

)

(∫
pi′(x

′, v)η(x′, v, y′)dv

)
dx′dy′

≤ ‖f‖2
∞

∑

i

∫∫ (∫
pi(x

′, u)η(x′, u, y′)du

)2

dx′dy′
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since the pi are orthonormal. Moreover,

(∫
pi(x

′, u)η(x′, u, y′)du

)2

≤
(∫

pi(x
′, u)2du

)(∫
η(x′, u, y′)2du

)

≤ ‖η‖2
∞∆Y

∫
pi(x

′, u)2du,

and then

∫∫ (∫
pi(x

′, u)η(x′, u, y′)du

)2

dx′dy′ ≤ ‖η‖2
∞∆2

Y

∫∫
pi(x

′, u)2dudx′

‖η‖2
∞∆2

Y .

Finally,
W1 ≤ ‖η‖2

∞‖f‖2
∞∆2

Ym.

On the other hand,

W4 =

(
∑

i

aibi

)2

≤
∑

i

a2
i

∑

i

b2i ≤ ‖f‖2
2‖g‖2

2 ≤ ‖f‖∞‖g‖2
2.

By the Cauchy-Scharwz inequality we have ‖g‖2
2 ≤ ‖η‖2

∞‖f‖∞∆2
Y and then

W4 ≤ ‖η‖2
∞‖f‖2

∞∆2
Y

which leads to

E

(
(2Q′(X1, Y1)R(X2, Y2))

2
)
≤ 4‖η‖2

∞‖f‖2
∞∆2

Y (m+ 1).

Let us bound now the second term E
(
(Q′(X1, Y1)CQ(X2, Y2))

2
)

= W5 −
2W6 +W7 where

W5 =

∫∫∫∫ ∑

i,i′

∑

i1,i′
1

cii′ci1i′
1
pi(x, y)pi1(x, y)pi′(x

′, y′)pi′
1
(x′, y′)

f(x, y)f(x′, y′)dxdydx′dy′

W6 =
∑

i,i′

∑

i1,i′
1

∫∫
cii′ci1i′

1
aiai1pi′(x, y)pi′

1
(x, y)f(x, y)dxdy

W7 =
∑

i,i′

∑

i1,i′
1

cii′ci1i′
1
aiai1ai′ai′

1
.

Following the previous manipulations, we show that W6 ≥ 0. Thus,

E

(
(Q′(X1, Y1)CQ(X2, Y2))

2
)
≤W5 +W7.
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First, observe that

W5 =

∫∫∫∫ 


∑

i,i′

cii′pi(x, y)pi′(x
′, y′)




2

f(x, y)f(x′, y′)dxdydx′dy′

≤ ‖f‖2
∞

∫∫∫∫ 


∑

i,i′

cii′pi(x, y)pi′(x
′, y′)




2

dxdydx′dy′

≤ ‖f‖2
∞

∑

i,i′

∑

i1,i′
1

cii′ci1i′
1

∫∫∫∫
pi(x, y)pi1(x, y)

pi′(x
′, y′)pi′

1
(x′, y′)dxdydx′dy′

≤ ‖f‖2
∞

∑

i,i′

c2ii′

since the pi are orthonormal. Besides,

∑

i,i′

c2ii′ =

∫∫ ∑

iα,i′α

αiα(x)αi′α(x)αiα(x′)αi′α(x′)

∑

iβ ,i′
β

(∫∫
βiβ (y1)βi′

β
(y2)η(x, y1, y2)dy1dy2

)

(∫∫
βiβ (y1)βi′

β
(y2)η(x

′, y1, y2)dy1dy2

)
dxdx′

=

∫∫ 


∑

iα

αiα(x)αiα(x′)




2

∑

iβ ,i′
β

(∫∫
βiβ (y1)βi′

β
(y2)η(x, y1, y2)dy1dy2

)

(∫∫
βiβ (y1)βi′

β
(y2)η(x

′, y1, y2)dy1dy2

)
dxdx′.
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But

∑

iβ ,i′
β

(∫∫
βiβ (y1)βi′

β
(y2)η(x, y1, y2)dy1dy2

)

(∫∫
βiβ (y1)βi′

β
(y2)η(x

′, y1, y2)dy1dy2

)

=
∑

iβ ,i′
β

∫∫∫∫
βiβ (y1)βi′

β
(y2)η(x, y1, y2)βiβ (y′1)βi′

β
(y′2)

η(x′, y′1, y
′
2)dy1dy2dy

′
1dy

′
2

=

∫∫ ∑

iβ

(∫
βiβ (y1)η(x, y1, y2)dy1

)
βiβ (y′1)

∑

i′
β

(∫
βi′

β
(y′2)η(x

′, y′1, y
′
2)dy

′
2

)
βi′

β
(y2)dy

′
1dy2

=

∫∫
η(x, y′1, y2)η(x

′, y′1, y2)dy
′
1dy2

≤ ∆2
Y ‖η‖2

∞

using the fact that (βi) is an orthonormal basis. We then get

∑

i,i′

c2ii′ ≤ ∆2
Y ‖η‖2

∞

∫∫ 


∑

iα

αiα(x)αiα(x′)




2

dxdx′

≤ ∆2
Y ‖η‖2

∞

∫∫ ∑

iα,i′α

αiα(x)αi′α(x)αiα(x′)αi′α(x′)dxdx′

≤ ∆2
Y ‖η‖2

∞

∑

iα,i′α

(∫
αiα(x)αi′α(x)dx

)2

≤ ∆2
Y ‖η‖2

∞

∑

iα

(∫
αiα(x)2dx

)2

≤ ∆2
Y ‖η‖2

∞m

since the αi are orthonormal. Finally,

W5 ≤ ‖η‖2
∞‖f‖2

∞∆2
Ym.

Besides,

W7 =




∑

i,i′

cii′aiai′




2
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with
∣∣∣∣∣∣

∑

i,i′

cii′aiai′

∣∣∣∣∣∣
≤ ‖η‖∞

∫∫∫
|SMf(x, y1)SMf(x, y2)|dxdy1dy2

≤ ‖η‖∞
∫∫ (∫

|SMf(x, y1)SMf(x, y2)|dx
)
dy1dy2.

By using the Cauchy-Schwarz inequality twice, we get




∑

i,i′

cii′aiai′




2

≤ ∆2
Y ‖η‖2

∞

∫∫ (∫
|SMf(x, y1)SMf(x, y2)|dx

)2

dy1dy2

≤ ∆2
Y ‖η‖2

∞

∫∫ (∫
SMf(u, y1)

2du

)

(∫
SMf(v, y2)

2dv

)
dy1dy2

≤ ∆2
Y ‖η‖2

∞

∫∫∫∫
SMf(u, y1)

2SMf(v, y2)
2dudvdy1dy2

≤ ∆2
Y ‖η‖2

∞

(∫∫
SMf(x, y)2dxdy

)2

≤ ∆2
Y ‖η‖2

∞‖f‖2
∞.

Finally,

E

(
(Q′(X1, Y1)CQ(X2, Y2))

2
)
≤ ‖η‖2

∞‖f‖2
∞∆2

Y (m+ 1).

Collecting this inequalities, we obtain

Var(UnK) ≤ 20

n(n− 1)
‖η‖2

∞‖f‖2
∞∆2

Y (m+ 1)

which concludes the proof of Lemma 3.

Let us now deal with the second term of the Hoeffding’s decomposition
of θ̂n :

Lemma 4 (Bound for Var(PnL)). Assuming the hypotheses of Theorem
1 hold, we have

Var(PnL) ≤ 36

n
∆2

Y ‖f‖2
∞‖η‖2

∞.
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Proof. First note that

Var(PnL) =
1

n
Var(L(X1, Y1)).

We can write L(X1, Y1) as

L(X1, Y1) = 2A′R(X1, Y1) + 2B′Q(X1, Y1) − 2A′CQ(X1, Y1)

= 2
∑

i

ai

(∫
pi(X1, u)η(X1, u, Y1)du− bi

)

+2
∑

i

bi(pi(X1, Y1) − ai) − 2
∑

i,i′

cii′ai′(pi(X1, Y1) − ai)

= 2

∫ ∑

i

aipi(X1, u)η(X1, u, Y1)du+ 2
∑

i

bipi(X1, Y1)

−2
∑

i,i′

cii′ai′pi(X1, Y1) − 4A′B + 2A′CA

= 2

∫
SMf(X1, u)η(X1, u, Y1)du+ 2SMg(X1, Y1)

−2
∑

i,i′

cii′ai′pi(X1, Y1) − 4A′B + 2A′CA.

Let h(x, y) =

∫
SMf(x, u)η(x, u, y)du, we have

SMh(z, t) =
∑

i

(∫∫
h(x, y)pi(x, y)dxdy

)
pi(z, t)

=
∑

i

(∫∫∫
SMf(x, u)η(x, u, y)pi(x, y)dudxdy

)
pi(z, t)

=
∑

i,i′

(∫∫∫
ai′pi′(x, u)η(x, u, y)pi(x, y)dudxdy

)
pi(z, t)

=
∑

i,i′

cii′ai′pi(z, t)

and we can write

L(X1, Y1) = 2h(X1, Y1) + 2SMg(X1, Y1) − 2SMh(X1, Y1) − 4A′B + 2A′CA.

Thus,

Var(L(X1, Y1)) = 4Var[h(X1, Y1) + SMg(X1, Y1) − SMh(X1, Y1)]

≤ 4E[(h(X1, Y1) + SMg(X1, Y1) − SMh(X1, Y1))
2]

≤ 12E[(h(X1, Y1))
2 + (SMg(X1, Y1))

2 + (SMh(X1, Y1))
2].
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Each of these three terms has to be bounded :

E((h(X1, Y1))
2) =

∫∫ (∫
SMf(x, u)η(x, u, y)du

)2

f(x, y)dxdy

≤ ∆Y

∫∫∫
SMf(x, u)2η(x, u, y)2f(x, y)dxdydu

≤ ∆2
Y ‖f‖∞‖η‖2

∞

∫∫
SMf(x, u)2dxdu

≤ ∆2
Y ‖f‖∞‖η‖2

∞‖SMf‖2
2

≤ ∆2
Y ‖f‖∞‖η‖2

∞‖f‖2
2

≤ ∆2
Y ‖f‖2

∞‖η‖2
∞

E((SMg(X1, Y1))
2) ≤ ‖f‖∞‖SMg‖2

2 ≤ ‖f‖∞‖g‖2
2 ≤ ∆2

Y ‖f‖2
∞‖η‖2

∞

E((SMh(X1, Y1))
2) ≤ ‖f‖∞‖SMh‖2

2 ≤ ‖f‖∞‖h‖2
2 ≤ ∆2

Y ‖f‖2
∞‖η‖2

∞

from previous calculations. Finally,

Var(L(X1, Y1)) ≤ 36∆2
Y ‖f‖2

∞‖η‖2
∞.

The last term of the Hoeffding’s decomposition can also be controled :

Lemma 5 (Computation of Cov(UnK,PnL)). Assuming the hypotheses
of Theorem 1 hold, we have

Cov(UnK,PnL) = 0.

Proof. Since UnK et PnL are centered, we have

Cov(UnK,PnL) = E(UnKPnL)

= E



 1

n2(n− 1)

n∑

j 6=k=1

K(Xj , Yj , Xk, Yk)
n∑

i=1

L(Xi, Yi)





=
1

n
E(K(X1, Y1, X2, Y2)(L(X1, Y1) + L(X2, Y2)))

= 0

since K, L, Q and R are centered.

The four previous lemmas give the expected result on the precision of θ̂n

:



ESTIMATION OF NONLINEAR CONDITIONAL FUNCTIONALS 27

Lemma 6 (Bound for E(θ̂n − θ)2). Assuming the hypotheses of Theorem
1 hold, we have :

• If m/n→ 0,

E(θ̂n − θ)2 = O

(
1

n

)
,

• Otherwise,
E(θ̂n − θ)2 ≤ γ2(m/n

2)

where γ2 only depends on ‖f‖∞, ‖η‖∞ and ∆Y .

Proof. Lemmas 3, 4 and 5 imply

Var(θ̂n) ≤ 20

n(n− 1)
∆2

Y ‖f‖2
∞‖η‖2

∞(m+ 1) +
36

n
∆2

Y ‖f‖2
∞‖η‖2

∞.

Finally, for n large enough and a constant γ ∈ R,

Var(θ̂n) ≤ γ∆2
Y ‖f‖2

∞‖η‖2
∞

(
m

n2
+

1

n

)
.

Lemma 2 gives

Bias2(θ̂n) ≤ ∆2
Y ‖η‖2

∞

(

sup
i/∈M

|ci|2
)2

and by assumption
(
supi/∈M |ci|2

)2 ≈ m/n2. If m/n→ 0, then E(θ̂n − θ)2 =

O( 1
n). Otherwise E(θ̂n − θ)2 ≤ γ2(m/n

2) where γ2 only depends on ‖f‖∞,
‖η‖∞ and ∆Y .

The lemma we just proved gives the result of Theorem 1 when m/n does
not converge to 0. Let us now study more precisely the semiparametric case,
that is when E(θ̂n−θ)2 = O( 1

n), to prove the asymptotic normality (10) and
the bound in (11). We have

√
n
(
θ̂n − θ

)
=

√
n(UnK) +

√
n(PnL) +

√
n(2A′B −A′CA).

We will study the asymptotic behavior of each of these three terms. The
first one is easily treated :

Lemma 7 (Asymptotics for
√
n(UnK)). Assuming the hypotheses of

Theorem 1 hold, we have √
nUnK → 0

in probability when n→ ∞ if m/n→ 0.
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Proof. Since Var(
√
nUnK) ≤ 20

(n− 1)
‖η‖2

∞‖f‖2
∞∆2

Y (m+ 1),
√
nUnK con-

verges to 0 in probability when n→ ∞ if m/n→ 0.

The random variable PnL will be the most important term for the cen-
tral limit theorem. Before studying its asymptotic normality, we need the
following lemma concerning the asymptotic variance of

√
n(PnL) :

Lemma 8 (Asymptotic variance of
√
n(PnL)). Assuming the hypotheses

of Theorem 1 hold, we have

nVar(PnL) → Λ(f, η)

where

Λ(f, η) = 4

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dxdy

)2
]

.

Proof. We proved in Lemma 4 that

Var(L(X1, Y1)) = 4Var[h(X1, Y1) + SMg(X1, Y1) − SMh(X1, Y1)]

= 4Var[A1 +A2 +A3]

= 4
3∑

i,j=1

Cov(Ai, Aj).

We will show that ∀i, j ∈ {1, 2, 3}2, we have

∣∣∣∣∣Cov(Ai, Aj) − ǫij

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dxdy

)2
]∣∣∣∣∣

≤ γ [‖SMf − f‖2 + ‖SMg − g‖2](17)

where ǫij = −1 if i = 3 or j = 3 and i 6= j and ǫij = 1 otherwise, and where
γ depends only on ‖f‖∞, ‖η‖∞ and ∆Y .
We shall give the details only for the case i = j = 3 since the calculations
are similar for the other configurations. We have

Var(A3) =

∫∫
S2

M [h(x, y)]f(x, y)dxdy −
(∫∫

SM [h(x, y)]f(x, y)dxdy

)2

We first study the quantity
∣∣∣∣
∫∫

S2
M [h(x, y)]f(x, y)dxdy −

∫∫
g(x, y)2f(x, y)dxdy

∣∣∣∣ .
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It is bounded by prout prout prout prout prout prout prout prout prout
prout

∫∫ ∣∣∣S2
M [h(x, y)]f(x, y) − S2

M [g(x, y)]f(x, y)
∣∣∣ dxdy

+

∫∫ ∣∣∣S2
M [g(x, y)]f(x, y) − g(x, y)2f(x, y)

∣∣∣ dxdy

≤ ‖f‖∞‖SMh+ SMg‖2‖SMh− SMg‖2 + ‖f‖∞‖SMg + g‖2‖SMg − g‖2.

Using the fact that SM is a projection, this sum is bounded by

‖f‖∞‖h+ g‖2‖h− g‖2 + 2‖f‖∞‖g‖2‖SMg − g‖2

≤ ‖f‖∞(‖h‖2 + ‖g‖2)‖h− g‖2 + 2‖f‖∞‖g‖2‖SMg − g‖2.

We saw previously that ‖g‖2 ≤ ∆Y ‖f‖1/2
∞ ‖η‖∞ and ‖h‖2 ≤ ∆Y ‖f‖1/2

∞ ‖η‖∞.
The sum is then bounded by

2∆Y ‖f‖3/2
∞ ‖η‖∞‖h− g‖2 + 2∆Y ‖f‖3/2

∞ ‖η‖∞‖SMg − g‖2

We now have to deal with ‖h− g‖2:

‖h− g‖2
2 =

∫∫ (∫
(SMf(x, u) − f(x, u)) η(x, u, y)du

)2

dxdy

≤
∫∫ (∫

(SMf(x, u) − f(x, u))2du

)(∫
η(x, u, y)2du

)
dxdy

≤ ∆2
Y ‖η‖2

∞‖SMf − f‖2
2.

Finally, the sum is bounded by

2∆Y ‖f‖3/2
∞ ‖η‖∞ (∆Y ‖η‖∞‖SMf − f‖2 + ‖SMg − g‖2) .

Let us now study the second quantity

∣∣∣∣∣

(∫∫
SM [h(x, y)]f(x, y)dxdy

)2

−
(∫∫

g(x, y)f(x, y)dxdy

)2
∣∣∣∣∣ .

It is equal to

∣∣∣∣

(∫∫
(SM [h(x, y)] + g(x, y))f(x, y)dxdy

)

(∫∫
(SM [h(x, y)] − g(x, y))f(x, y)dxdy

)∣∣∣∣ .
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By using the Cauchy-Schwarz inequality, it is bounded by

‖f‖2‖SMh+ g‖2‖f‖2‖SMh− g‖2

≤ ‖f‖2
2(‖h‖2 + ‖g‖2)(‖SMh− SMg‖2 + ‖SMg − g‖2)

≤ 2∆Y ‖f‖3/2
∞ ‖η‖∞(‖h− g‖2 + ‖SMg − g‖2)

≤ 2∆Y ‖f‖3/2
∞ ‖η‖∞ (∆Y ‖η‖∞‖SMf − f‖2 + ‖SMg − g‖2)

by using the previous calculations. Collecting the two inequalities gives (17)
for i = j = 3.
Finally, since by assumption ∀t ∈ L

2(dµ), ‖SM t− t‖2 → 0 when n → ∞, a
direct consequence of (17) is that

lim
n→∞

Var(L(X1, Y1))

= 4

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dxdy

)2
]

= Λ(f, η).

We then conclude by noting that Var(
√
n(PnL)) = Var(L(X1, Y1)).

We can now study the convergence of
√
n(PnL), which is given in the

following lemma:

Lemma 9 (Asymptotic normality of
√
n(PnL)). Assuming the hypothe-

ses of Theorem 1 hold, we have

√
nPnL

L→ N (0,Λ(f, η)).

Proof. We first note that

√
n

(
Pn(2g) − 2

∫∫
g(x, y)f(x, y)dxdy

)
→ N (0,Λ(f, η))

where g(x, y) =

∫
η(x, y, u)f(x, u)du.

It is then sufficient to show that the expectation of the square of

R =
√
n

[
PnL−

(
Pn(2g) − 2

∫∫
g(x, y)f(x, y)dxdy

)]

converges to 0. We have

E(R2) = Var(R)

= nVar(PnL) + nVar(Pn(2g)) − 2nCov(PnL,Pn(2g))
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We know that nVar(Pn(2g)) → Λ(f, η) and Lemma 8 shows that nVar(PnL) →
Λ(f, η). Then, we just have to prove that

lim
n→∞

nCov(PnL,Pn(2g)) = Λ(f, η).

We have
nCov(PnL,Pn(2g)) = E(2L(X1, Y1)g(X1, Y1))

because L is centered. Since

L(X1, Y1) = 2h(X1, Y1) + 2SMg(X1, Y1) − 2SMh(X1, Y1) − 4A′B + 2A′CA,

we get

nCov(PnL,Pn(2g)) = 4

∫∫
h(x, y)g(x, y)f(x, y)dxdy

+4

∫∫
SMg(x, y)g(x, y)f(x, y)dxdy

−4

∫∫
SMh(x, y)g(x, y)f(x, y)dxdy − 8

∑

i

aibi

∫∫
g(x, y)f(x, y)dxdy

+4A′CA

∫∫
g(x, y)f(x, y)dxdy

which converges to 4

[∫∫
g(x, y)2f(x, y)dxdy −

(∫∫
g(x, y)f(x, y)dudxdy

)2
]

which is equal to Λ(f, η). We finally deduce that
√
nPnL→ N (0,Λ(f, η))

in distribution.

In order to prove the asymptotic normality of θ̂n, the last step is to control
the remainder term in the Hoeffding’s decomposition:

Lemma 10 (Asymptotics for
√
n(2A′B−A′CA)). Assuming the hypothe-

ses of Theorem 1 hold, we have
√
n(2A′B −A′CA− θ) → 0.

Proof.
√
n(2A′B −A′CA− θ) → 0 is equal to

√
n

[
2

∫∫
g(x, y)SMf(x, y)dxdy

−
∫∫∫

SMf(x, y1)SMf(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

f(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

]
.
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By replacing g we get

√
n

[
2

∫∫∫
SMf(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

SMf(x, y1)SMf(x, y2)η(x, y1, y2)dxdy1dy2

−
∫∫∫

f(x, y1)f(x, y2)η(x, y1, y2)dxdy1dy2

]

With integral manipulation, we show it is also equal to

√
n

[∫∫∫
SMf(x, y1)(f(x, y2) − SMf(x, y2))η(x, y1, y2)dxdy1dy2

−
∫∫∫

f(x, y2)(SMf(x, y1) − f(x, y1))η(x, y1, y2)dxdy1dy2

]

≤ √
n∆Y ‖η‖∞ (‖SMf‖2‖SMf − f‖2 + ‖f‖2‖SMf − f‖2)

≤ 2
√
n∆Y ‖f‖2‖‖η‖∞‖SMf − f‖2

≤ 2
√
n∆Y ‖f‖2‖‖η‖∞

(

sup
i/∈M

|ci|2
)1/2

≈ 2∆Y ‖f‖2‖‖η‖∞
√
m

n
,

which converges to 0 when n→ ∞ since m/n→ 0.

Collecting now the results of Lemmas 7, 8 and 10 we get (10) since
√
n
(
θ̂n − θ

)
→ N (0,Λ(f, η))

in distribution. We finally have to prove (11). Remark that

nE

(
θ̂n − θ

)2
= nBias2(θ̂n) + nVar(θ̂n)

= nBias2(θ̂n) + nVar(UnK) + nVar(PnL)

We previously proved that

nBias2(θ̂n) ≤ λ∆2
Y ‖η‖2

∞

m

n
for some λ ∈ R,

nVar(UnK) ≤ µ∆2
Y ‖f‖2

∞‖η‖2
∞

m

n
for some µ ∈ R.

Moreover, (17) imply

|nVar(PnL) − Λ(f, η)| ≤ γ [‖SMf − f‖2 + ‖SMg − g‖2] ,

where γ is a increasing function of ‖f‖∞,‖η‖∞ and ∆Y . We then deduce
(11) which ends the proof of Theorem 1.
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7.3. Proof of Theorem 2. To prove the inequality we will use the work of
[6] (see also chapter 25 of [16]) on efficient estimation. The first step is the
computation of the Fréchet derivative of θ(f) at a point f0. Straightforward
calculations show that

θ(f) − θ(f0) =

∫∫ [
2

∫
ψ(x, y, z)f0(x, z)dz

]
(f(x, y) − f0(x, y)) dxdy

+ O

(∫∫
(f(x, y) − f0(x, y))

2dxdy

)

from which we deduce that the Fréchet derivative of θ(f) at f0 is

θ′(f0) · u =

〈
2

∫
ψ(x, y, z)f0(x, z)dz, u

〉
(u ∈ L

2(dxdy)),

where 〈·, ·〉 is the scalar product in L
2(dxdy). We can now use the results of

[6]. Denote H(f0) = H(f0) =
{
u ∈ L

2(dxdy),
∫∫
u(x, y)

√
f0(x, y)dxdy = 0

}

the set of functions in L
2(dxdy) orthogonal to

√
f0, ProjH(f0) the pro-

jection on H(f0), An(t) = (
√
f0)t/

√
n and P

(n)
f0

the joint distribution of

(X1, . . . , Xn) under f0. Since here X1, . . . , Xn are i.i.d.,
{
P

(n)
f , f ∈ E

}
is lo-

cally asymptotically normal at all points f0 ∈ E in the direction H(f0) with
normalizing factor An(f0). Ibragimov and Khas’minskii result say that under
these conditions, denoting Kn = Bnθ

′(f0)AnProjH(f0) with Bn(u) =
√
nu,

if Kn → K weakly and if K(u) = 〈t, u〉, then for every estimator θ̂n of θ(f)
and every family V(f0) of vicinities of f0, we have

inf
{V(f0)}

lim inf
n→∞

sup
f∈V(f0)

nE(θ̂n − θ(f0))
2 ≥ ‖t‖2

L2(dxdy).

Here,

Kn(u) =
√
nθ′(f0)·

1√
n

√
f0ProjH(f0)(u) = θ′(f0)·

(√
f0

(
u−

√
f0

∫
u
√
f0

))

does not depend on n and

K(u) =

∫∫ [
2

∫
ψ(x, y, z)f0(x, z)dz

]√
f0(x, y)

(
u(x, y) −

√
f0(x, y)

∫
u
√
f0

)
dxdy

=

∫∫ [
2

∫
ψ(x, y, z)f0(x, z)dz

]√
f0(x, y)u(x, y)dxdy

−
∫∫ [

2

∫
ψ(x, y, z)f0(x, z)dz

]
f0(x, y)dxdy

∫
u
√
f0

= 〈t, u〉
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where

t(x, y) =

[
2

∫
ψ(x, y, z)f0(x, z)dz

]√
f0(x, y)

−
(∫∫ [

2

∫
ψ(x, y, z)f0(x, z)dz

]
f0(x, y)dxdy

)√
f0(x, y).

The semiparametric Cramér-Rao bound for our problem is ‖t‖2
L2(dxdy) :

‖t‖2
L2(dxdy) = 4

∫∫ [∫
ψ(x, y, z)f0(x, z)dz

]2
f0(x, y)dxdy

−4

(∫∫ [∫
ψ(x, y, z)f0(x, z)dz

]
f0(x, y)dxdy

)2

= 4

∫∫
g0(x, y)

2f0(x, y)dxdy − 4

(∫∫
g0(x, y)f0(x, y)

)2

where g0(x, y) =

∫
ψ(x, y, z)f0(x, z)dz. Finally, we recognize the expression

of Λ(f0, ψ) given in Theorem 1.

7.4. Proof of Theorem 3. We will first control the remainder term Γn :

Γn =
1

6
F ′′′(ξ)(1 − ξ)3.

Let us recall that

F ′′′(ξ) =

∫∫∫∫
(∫

f̂(x, y)dy
)2

(∫
ξf(x, y) + (1 − ξ)f̂(x, y)dy

)5

[(
m̂(x) − ϕ(y)

)(
m̂(x) − ϕ(z)

)(
m̂(x) − ϕ(t)

)
(∫

f̂(x, y)dy

) ...
ψ (r̂(ξ, x)) − 3

(
m̂(x) − ϕ(y)

)(
m̂(x) − ϕ(z)

)

(∫
[ξf(x, y) + (1 − ξ)f̂(x, y)]dy

)
ψ̈ (r̂(ξ, x))

]

(
f(x, y) − f̂(x, y)

)(
f(x, z) − f̂(x, z)

)

(
f(x, t) − f̂(x, t)

)
dxdydzdt
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Assumptions A2 and A3 ensure that the first part of the integrand is bounded
by a constant µ :

Γn ≤ 1

6
µ

∫∫∫∫
|f(x, y) − f̂(x, y)||f(x, z) − f̂(x, z)|

|f(x, t) − f̂(x, t)|dxdydzdt

≤ 1

6
µ

∫ (∫
|f(x, y) − f̂(x, y)|dy

)3

dx

≤ 1

6
µ∆2

Y

∫∫
|f(x, y) − f̂(x, y)|3dxdy

by the Hölder inequality. Then E(Γ2
n) = O(E[(

∫ |f−f̂ |3)2]) = O(E[‖f−f̂‖6
3]).

Since f̂ verifies assumption A2, this quantity has orderO(n−6λ
1 ). If we further

assume that n1 ≈ n/ log(n) and λ > 1/6, we get E(Γ2
n) = o( 1

n), which
proves that the remainder term Γn is negligible. We will now show that√
n
(
T̂n − T (f)

)
and Zn = 1

n2

∑n2

j=1H(f,Xj , Yj) −
∫∫
H(f, x, y)f(x, y)dxdy

have the same asymptotic behavior. The idea is that we can easily get a
central limit theorem for Zn with asymptotic variance

C(f) =

∫∫
H(f, x, y)2f(x, y)dxdy −

(∫∫
H(f, x, y)f(x, y)dxdy

)2

,

which imply both (12) and (13) (we will show at the end of the proof
that C(f) can be expressed such as in the theorem). In order to show that√
n
(
T̂n − T (f)

)
and Zn have the same asymptotic behavior, we will prove

that

R =
√
n



T̂n − T (f) −


 1

n2

n2∑

j=1

H(f,Xj , Yj) −
∫∫

H(f, x, y)f(x, y)dxdy









has a second-order moment converging to 0. Let us note that R = R1 +R2

where

R1 =
√
n
[
T̂n − T (f)

−


 1

n2

n2∑

j=1

H(f̂ , Xj , Yj) −
∫∫

H(f̂ , x, y)f(x, y)dxdy







 ,

R2 =
√
n



 1

n2

n2∑

j=1

(
H(f̂ , Xj , Yj) −

∫∫
H(f̂ , x, y)f(x, y)dxdy

)



−√
n



 1

n2

n2∑

j=1

(
H(f,Xj , Yj) −

∫∫
H(f, x, y)f(x, y)dxdy

)

 .
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We propose to show that both E(R2
1) and E(R2

2) converge to 0. We can write
R1 as follows :

R1 = −√
n
[
Q̂′ −Q′ + Γn

]

where

Q′ =

∫∫∫
K(f̂ , x, y, z)f(x, y)f(x, z),

K(f̂ , x, y, z) =
1

2

ψ̈(m̂(x))(∫
f̂(x, y)dy

)
(
m̂(x) − ϕ(y)

)(
m̂(x) − ϕ(z)

)

and Q̂′ is the corresponding estimator. Since E
(
Γ2

n

)
= o(1/n), we just have

to control the expectation of the square of
√
n
[
Q̂′ −Q′

]
:

Lemma 11 (Asymptotics for
√
n
(
Q̂′ −Q′

)
). Assuming the hypotheses

of Theorem 3 hold, we have

lim
n→∞

nE

(
Q̂′ −Q′

)2
= 0.

Proof. The bound given in (11) states that if |Mn|/n→ 0 we have
∣∣∣∣nE

[(
Q̂′ −Q′

)2
|f̂
]

−4

[∫∫
ĝ(x, y)2f(x, y)dxdy −

(∫∫
ĝ(x, y)f(x, y)dxdy

)2
]∣∣∣∣∣

≤ γ1(‖f‖∞, ‖ψ‖∞,∆Y )

[ |Mn|
n

+ ‖SMf − f‖2 + ‖SM ĝ − ĝ‖2

]

where ĝ(x, y) =

∫
K(f̂ , x, y, z)f(x, z)dz. By deconditioning, we get

∣∣∣∣nE

[(
Q̂′ −Q′

)2
]

−4E

[∫∫
ĝ(x, y)2f(x, y)dxdy −

(∫∫
ĝ(x, y)f(x, y)dxdy

)2
]∣∣∣∣∣

≤ γ1(‖f‖∞, ‖ψ‖∞,∆Y )

[ |Mn|
n

+ ‖SMf − f‖2 + E (‖SM ĝ − ĝ‖2)

]
.

Note that

E (‖SM ĝ − ĝ‖2) ≤ E (‖SM ĝ − SMg‖2) + E (‖SMg − g‖2)

≤ E (‖ĝ − g‖2) + E (‖SMg − g‖2)
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where g(x, y) =

∫
K(f, x, y, z)f(x, z)dz. The second term converges to 0

since g ∈ L
2(dxdy) and ∀t ∈ L

2(dxdy),
∫
(SM t− t)2dµ→ 0. Moreover

‖ĝ − g‖2
2 =

∫∫
[ĝ(x, y) − g(x, y)]2 f(x, y)dxdy

=

∫∫ [∫ (
K(f̂ , x, y, z) −K(f, x, y, z)

)
f(x, z)dz

]2
f(x, y)dxdy

≤
∫∫ [∫ (

K(f̂ , x, y, z) −K(f, x, y, z)
)2
dz

]

[∫
f(x, z)2dz

]
f(x, y)dxdy

≤ ∆2
Y ‖f‖3

∞

∫∫∫ (
K(f̂ , x, y, z) −K(f, x, y, z)

)2
dxdz

≤ δ∆3
Y ‖f‖3

∞

∫∫
(f(x, y) − f̂(x, y))2dxdy

for some constant δ by applying the mean value theorem to K(f, x, y, z) −
K(f̂ , x, y, z). Of course, the bound δ is obtained here by considering assump-
tions A1, A2 and A3. Since E(‖f − f̂‖2) → 0, we get E (‖ĝ − g‖2) → 0. Let
us now show that the expectation of

∫∫
ĝ(x, y)2f(x, y)dxdy −

(∫∫
ĝ(x, y)f(x, y)dxdy

)2

converges to 0. We will only develop the proof for the first term :
∣∣∣∣
∫∫

ĝ(x, y)2f(x, y)dxdy −
∫∫

g(x, y)2f(x, y)dxdy

∣∣∣∣

≤
∫∫ ∣∣∣ĝ(x, y)2 − g(x, y)2

∣∣∣ f(x, y)dxdy

≤ λ

∫∫
(ĝ(x, y) − g(x, y))2 dxdy

≤ λ‖ĝ − g‖2
2

for some constant λ. By taking the expectation of both sides, we see it is
enough to show that E

(‖ĝ − g‖2
2

) → 0, which is done exactly as above.
Besides, we can verify that

g(x, y) =

∫
K(f, x, y, z)f(x, z)dz

=
1

2

ψ̈(m(x))

(
∫
f(x, y)dy)

(
m(x) − ϕ(y)

)

(
m(x)

∫
f(x, z)dz −

∫
ϕ(z)f(x, z)dz

)

= 0,
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which proves that the expectation of

∫∫
ĝ(x, y)2f(x, y)dxdy converges to

0. Similar considerations show that the expectation of the second term(∫∫
ĝ(x, y)f(x, y)dxdy

)2

also converges to 0. We finally have

lim
n→∞

nE

(
Q̂′ −Q′

)2
= 0.

Lemma 11 imply that E(R2
1) → 0. We will now prove that E(R2

2) → 0 :

E(R2
2) =

n

n2
E

[∫∫ (
H(f, x, y) −H(f̂ , x, y)

)2
f(x, y)dxdy

]

− n

n2
E

[∫∫
H(f, x, y)f(x, y)dxdy −

∫∫
H(f̂ , x, y)f(x, y)dxdy

]2
.

The same arguments as before (mean value theorem and assumptions A2
and A3) show that E(R2

2) → 0. At last, we can give another expression for
the asymptotic variance :

C(f) =

∫∫
H(f, x, y)2f(x, y)dxdy −

(∫∫
H(f, x, y)f(x, y)dxdy

)2

.

We will prove that

C(f) = E

(
Var(ϕ(Y )|X)

[
ψ̇ (E(Y |X))

]2)
+ Var (ψ (E(ϕ(Y )|X))) .

Remark that∫∫
H(f, x, y)f(x, y)dxdy =

∫∫ (
[ϕ(y) −m(x)] ψ̇(m(x)) + ψ(m(x))

)

f(x, y)dxdy

=

∫∫
m(x)ψ̇(m(x))f(x, y)dxdy

−
∫∫

m(x)ψ̇(m(x))f(x, y)dxdy

+

∫∫
ψ(m(x))f(x, y)dxdy

= E (ψ (E(ϕ(Y )|X))) .(18)

Moreover,

H(f, x, y)2 = [ϕ(y) −m(x)]2 ψ̇(m(x))2 + ψ(m(x))2

+2 [ϕ(y) −m(x)] ψ̇(m(x))ψ(m(x))

= ϕ(y)2ψ̇(m(x))2 +m(x)2ψ̇(m(x))2 − 2ϕ(y)m(x)ψ̇(m(x))2

+ψ(m(x))2 + 2 [ϕ(y) −m(x)] ψ̇(m(x))ψ(m(x)).



ESTIMATION OF NONLINEAR CONDITIONAL FUNCTIONALS 39

We can then rewrite

∫∫
H(f, x, y)2f(x, y)dxdy as:

∫∫
ϕ(y)2ψ̇(m(x))2f(x, y)dxdy +

∫∫
m(x)2ψ̇(m(x))2f(x, y)dxdy

−2

∫∫
ϕ(y)m(x)ψ̇(m(x))2f(x, y)dxdy +

∫∫
ψ(m(x))2f(x, y)dxdy

+2

∫∫
ϕ(y)ψ̇(m(x))ψ(m(x))f(x, y)dxdy

−2

∫∫
m(x)ψ̇(m(x))ψ(m(x))f(x, y)dxdy

=

∫∫
v(x)ψ̇(m(x))2f(x, y)dxdy −

∫∫
m(x)2ψ̇(m(x))f(x, y)dxdy

+

∫∫
ψ(m(x))2f(x, y)dxdy

=

∫∫ ([
v(x) −m(x)2

]
ψ̇(m(x))2 + ψ(m(x))2

)
f(x, y)dxdy

= E

([
v(X) −m(X)2

]
ψ̇(m(X))2

)
+ E

(
ψ(m(X))2

)

= E

([
E(ϕ(Y )2|X) − E(ϕ(Y )|X)2

] [
ψ̇(E(ϕ(Y )|X))

]2)

+E

(
ψ(E(ϕ(Y )|X))2

)

= E

(
Var(ϕ(Y )|X)

[
ψ̇ (E(Y |X))

]2)
+ E

(
ψ(E(ϕ(Y )|X))2

)

where we have set v(x) =
∫
ϕ(y)2f(x, y)dy/

∫
f(x, y)dy. This result and (18)

give the desired form for C(f) which ends the proof of Theorem 3.

7.5. Proof of Theorem 4. We follow the proof of Theorem 2. Assumptions
A2 and A3 imply that

T (f) − T (f0) =

∫∫ ([
ϕ(y) −m0(x)

]
ψ̇(m0(x)) + ψ(m0(x))

)

(
f(x, y) − f0(x, y)

)
dxdy +O

(∫
(f − f0)

2
)

where m0(x) =
∫
ϕ(y)f0(x, y)dy/

∫
f0(x, y)dy. This result shows that the

Fréchet derivative of T (f) at f0 is T ′(f0) · h = 〈H(f0, ·), h〉 where

H(f0, x, y) =
([
ϕ(y) −m0(x)

]
ψ̇(m0(x)) + ψ(m0(x))

)
.
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We then deduce that

K(h) = T ′(f0) ·
(√

f0

(
h−

√
f0

∫
h
√
f0

))

=

∫
H(f0, ·)

√
f0h−

∫
H(f0, ·)

√
f0

∫
h
√
f0

= 〈t, h〉

with

t = H(f0, ·)
√
f0 −

(∫
H(f0, ·)f0

)√
f0.

The semiparametric Cramér-Rao bound for this problem is thus

‖t‖2
L2(dxdy) =

∫
H(f0, ·)2f0 −

(∫
H(f0, ·)f0

)2

= C(f0)

where we recognize the expression of C(f0) in Theorem 4.

7.6. Proof of Theorem 5. We follow the proof of Theorem 4. We write
T (f) − T (f0) as

∫∫
1

(
∫
f0(x, z, y)dzdy)2

[
2y

∫
yf0(x, z, y)dzdy

∫
f0(x, z, y)dzdy

−
(∫

yf0(x, z, y)dzdy

)2
]

(f(x, z, y) − f(x, z, y))dxdzdy

+O

(∫∫∫
(f(x, z, y) − f0(x, z, y))

2dxdzdy

)
.

The Fréchet derivative of T (f) at f0 is then given by

T ′(f0) · h = 〈H(f0, ·), h〉

where H(f0, x, z, y) equals

2y
∫
yf0(x, z, y)dzdy

∫
f0(x, z, y)dzdy − (

∫
yf0(x, z, y)dzdy)

2

(
∫
f0(x, z, y)dzdy)2

.

Note that H(f0, x, z, y) does not depend on z. Using the identities

∫
f0(x, z, y)dzdy =

∫
f(x, y)dy,

∫
yf0(x, z, y)dzdy =

∫
yf(x, y)dy,
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where f(x, y) is the density of (X,Y ), H can be written as:

H(f0, x, z, y) =
2y
∫
yf0(x, y)dy

∫
f0(x, y)dy − (

∫
yf0(x, y)dy)

2

(
∫
f0(x, y)dy)2

.

We hence remark that H(f0, x, z, y) equals H(f0, x, y), the function appear-
ing in the derivative of T (f) when we only consider the pair (X,Y ) to esti-
mate T (f). Thus, the semiparametric Cramér-Rao bound equals the bound
C(f0) computed in Theorem 4.
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