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Abstract

Sensitivity indices when the inputs of a model are not independent are estimated by local polynomial techniques. Two original

estimators based on local polynomial smoothers are proposed. Both have good theoretical properties which are exhibited and

also illustrated through analytical examples. They are used to carry out a sensitivity analysis on a real case of a kinetic model

with correlated parameters.

KEY WORDS: Nonparametric regression; Global sensitivity indices; Conditional moments estimation.

Achieving better knowledge of refining processes usually re-
quires to build a kinetic model predicting the output compo-
nents produced in a unit given the input components intro-
duced (the “feed”) and the operating conditions. Such a model
is based on the choice of a reaction mechanism depending on
various parameters (e.g. kinetic constants). But the complexity
of the mechanism, the variability of the behavior of catalysts
when they are used and the difficulty of observations and exper-
iments imply that most often these parameters cannot be in-
ferred from theoretical considerations and need to be estimated
through practical experiments. This estimation procedure leads
to consider them uncertain and this uncertainty spreads on the
model predictions. This can be highly problematic in real sit-
uations. It is then essential to quantify this uncertainty and
to study the influence of parameters variations on the model
outputs through uncertainty and sensitivity analysis.

During the last decades much effort in mathematical analy-
sis of physical processes has focused on modeling and reasoning
with uncertainty and sensitivity. Model calibration and vali-
dation are examples where sensitivity and uncertainty analysis
have become essential investigative scientific tools. Roughly
speaking, uncertainty analysis refers to the inherent variations
of a model (e.g. a modeled physical process) and is helpful
in finding the relation between some variability or probability
distribution on input parameters and the variability and prob-
ability distribution of outputs, while sensitivity analysis inves-
tigates the effects of varying a model input on the outputs and
ascertains how much a model depends on each or some of its
inputs.

Over the years several mathematical and computer-assisted
methods have been developed to carry out global sensitivity
analysis and the reader may refer to the book of Saltelli, Chan
& Scott (2000) for a wide and thorough review. Amongst these
methods a particular popular class is the one composed by
“variance-based” methods which is detailed below. Let us con-

sider a mathematical model given by

Y = η(X) (1)

where η : R
d → R is the modeling function, Y ∈ R represents

the output or prediction of the model and X = (X1, ..., Xd) is
the d-dimensional real vector of the input factors or parame-
ters. The vector of input parameters is treated as a random
vector, which implies that the output is also a random variable.
In variance-based methods, we are interested in explaining the
variance Var(Y ) through the variations of the Xi, i = 1, ..., d

and we decompose Var(Y ) as follows :

Var(Y ) = Var(E(Y |Xi)) + E(Var(Y |Xi))

for all i = 1, ..., d where E(Y |Xi) and Var(Y |Xi) are respec-
tively the conditional expectation and variance of Y given Xi.
The importance of Xi on the variance of Y is linked to how
well E(Y |Xi) fits Y and can then be measured by the first or-
der sensitivity index

Si =
Var(E(Y |Xi))

Var(Y )

also called correlation ratio. We can also introduce sensitivity
indices of higher orders to take into account input interactions.
For example, the second order sensitivity index for Xi and Xj

is

Sij =
Var(E(Y |Xi, Xj))−Var(E(Y |Xi))−Var(E(Y |Xj))

Var(Y )
,

and so on for other orders, see Saltelli et al. (2000) for details.
In the case of independent inputs, two techniques, Sobol

(Sobol’ 1993) and FAST (Cukier, Fortuin, Shuler, Petschek &
Schaibly 1973) are the most popular methods for estimating
the Si indices. Although powerful and computationally effi-
cient, these methods rely on the assumption of independent
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inputs which is hard to hold in many practical cases for ki-
netic models. Nevertheless, three original methods, originated
by Ratto, Tarantola & Saltelli (2001), Jacques, Lavergne & De-
victor (2004) and Oakley & O’Hagan (2004), try to deal with
this problem. The first one sets out to calculate the sensitivity
indices by using a replicated latin hypercube sampling, but this
approach requires a large amount of model evaluations to reach
an acceptable precision. The second one is based on the idea
of building new sensitivity indices which generalize the orig-
inal ones by taking into account block of correlations among
the inputs. This method is however useless when many input
factors are correlated. The last approach is that of Oakley &
O’Hagan (2004) and rely upon the idea of approximating the
function η in model (1) by a so-called ’kriging’ response surface
(Santner, Williams & Notz 2003) and of computing analyti-
cal expressions of the sensitivity indices based on the results of
the kriging approximation. However appealing and accurate,
these analytical expressions involve multidimensional integrals
that are only tractable when the conditional densities of the
input factors are known and easy to integrate. If this is not
the case the multidimensional integrals must be approximated
numerically, but at high computational cost. We then propose
a new way of estimating sensitivity indices through an interme-
diate technique in the sense that it is based on a sample from
the joint density of the inputs and the output like Ratto et al.
(2001) but also on a nonparametric regression model like Oak-
ley & O’Hagan (2004). This approach does not require as many
model evaluations as Ratto et al. (2001) and does not require to
approximate multidimensional integrals as Oakley & O’Hagan
(2004) in the general case.

In this paper to deal with correlated inputs we consider a
new method based on local polynomial approximations for con-
ditional moments (see the work of Fan & Gijbels (1996) and
Fan, Gijbels, Hu & Huang (1996) on conditional expectation
and the papers of Fan & Yao (1998) and Ruppert, Wand, Holst
& Hˆssjer (1997) on the conditional variance). Given the form
of the sensitivity indices, local polynomial regression can be
used to estimate them. This approach not only allows to com-
pute a sensitivity index through an easy black-box procedure
but also reaches a good precision.

The paper is organized as follows. In Section 1 we review
the methods of Ratto et al. (2001), Jacques et al. (2004) and
Oakley & O’Hagan (2004) and discuss their merits and draw-
backs. In Section 2 we propose and study two new estimators
for sensitivity indices relying on local polynomial methods. In
Section 3 we present both analytical and practical examples.
In Section 4 we finally give some conclusions and directions for
future research.

1. MODELS WITH CORRELATED INPUTS

When the inputs are independent, Sobol showed that the sum
of the sensitivity indices of all orders is equal to 1, due to an or-
thogonal decomposition of the function η (Sobol’ 1993). Indeed
sensitivity indices naturally arise from this functional ANOVA
decomposition. Nevertheless, when the inputs are correlated,
this property does not hold anymore because such a decompo-
sition can not be done without taking into account the joint
distribution of the inputs. If one decides to estimate sensitivity

indices under the independence hypothesis although it does not
hold, results and consequently interpretation can be higly mis-
leading, see the first example of Section 3.1. But we can still
consider the initial ANOVA decomposition and work with the
original sensitivity indices without ignoring the correlation, and
when quantifying the first order sensitivity index of a particular
input factor a part of the sensitivity of all the other input fac-
tors correlated with it is also taken into account. Thus the same
information is considered several times. Interpretation of sen-
sitivity indices when the inputs are not independent becomes
problematic. However, the input factors being independent or
not, the first-order sensitivity index still points out which factor
(if fixed) will mostly reduce the variance of the output. Thus,
if the goal of the practitioner is to conduct a ’Factors Priori-
tisation’ (Saltelli, Tarantola, Campolongo & Ratto 2004), i.e.
identifying the factor that one should fix to achieve the greatest
reduction in the uncertainty of the output, first-order sensitivity
indices remain the measure of importance to study, see Saltelli
et al. (2004). Considering that this goal is common for prac-
titioners, being able to compute first-order sensitivity indices
when the inputs are no longer independent is an interesting
challenge.

Beyond this problem of interpretation, correlation also
makes the computational methods FAST and Sobol unusable
as they have been designed for the independent case. To get
over these difficulties, it is first possible to build ’new’ sensitivity
indices that would generalize the original ones and match their
properties, allowing interpretation. This is the idea of multidi-
mensional sensitivity analysis of Jacques (Jacques et al. 2004)
detailed in the next section. Secondly, Ratto et al. (2001) tried
to continue on working with the original sensitivity indices and
to compute them as described in Section 1.3, even if they do not
give clues for interpretation. The authors generate replicated
latin hypercube samples to approximate conditional densities.
Finally, Oakley & O’Hagan (2004) suggest to approach the
function η in model (1) by a kriging response surface which al-
lows to get analytical expressions of sensitivity indices through
multidimensional integrals.

1.1 Multidimensional Sensitivity Analysis

To define multidimensional sensitivity indices, Jacques et al.
(2004) suggest to split X into p vectors Uj , j = 1, ..., p, each
of size kj such that Uj is independent from Ul for 1 ≤ j, l ≤ p,
j 6= l :

X = (X1, ..., Xd) = (X1, ..., Xk1

︸ ︷︷ ︸

U1

, Xk1+1, ..., Xk1+k2

︸ ︷︷ ︸

U2

, ...

..., Xk1+k2+...+kp−1+1, ..., Xk1+k2+...+kp
︸ ︷︷ ︸

Up

)

where k1 + k2 + .... + kp = d. For example, if X = (X1, X2, X3)
where X1 is independent of X2 and X3 but X2 and X3 are
correlated, we set U1 = X1 and U2 = (X2, X3).

Thus they build first order multidimensional sensitivity in-
dices using the Uj vectors :
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Sj =
Var(E(Y |Uj))

Var(Y )

=
Var(E(Y |Xk1+k2+...+kj−1+1, ..., Xk1+k2+...+kj

))

Var(Y )

for j = 1, ..., p. Remark that if the inputs are independent,
these sensitivity indices have the same expression as in classi-
cal sensitivity analysis. Finally, it is possible to compute these
indices by Monte-Carlo estimations.

Nevertheless, this method has a main drawback hard to
overcome. If all the inputs are correlated, the Uj vectors cannot
be defined (except the trivial case U1 = X) and interpretation
is not possible. The problem remains the same if too many
inputs are dependent because this situation leads to consider
very few multidimensional indices. Moreover, identifying a set
of correlated variables Uj with high sensitivity index does not
allow to point up whether this is due to one particular input of
the set as we cannot differentiate among them. We will illus-
trate this phenomenon in the second example of Section 3.1.

1.2 Correlation-Ratios With Known Conditional Density
Functions

The estimator introduced by Ratto et al. (2001) was first dis-
cussed in McKay (1996) and is based on samples from the con-
ditional density functions of Y given Xi, i = 1, ..., d.

Let (Xj)j=1,...,n be an i.i.d sample of size n from the distri-

bution of the vector X. (Xj
i )j=1,...,n is then an i.i.d. sample of

size n from the distribution of the input factor Xi. For each
realization X

j
i of this sample, let (Y jk

i )k=1,...,r be an i.i.d. sam-
ple of size r from the conditional density function of Y given
Xi = X

j
i and define the sample means

Y
j

i =
1

r

r∑

k=1

Y
jk
i Y i =

1

n

n∑

j=1

Y
j

i .

Note that Y
j

i and 1
r

∑r
k=1(Y

jk
i − Y

j

i )
2 respectively estimate

the conditional expectation E(Y |Xi = X
j
i ) and the conditional

variance Var(Y |Xi = X
j
i ), while Y i estimates E(Y ).

Using these moments estimators the numerator of the first
order sensitivity index Si, Var(E(Y |Xi)), can be estimated by
the empirical estimator

1

n

n∑

j=1

(Y
j

i − Y i)
2.

Similarly the denominator of Si, Var(Y ), is estimated by

1

n

n∑

j=1

1

r

r∑

k=1

(Y jk
i − Y i)

2.

The estimator of the first order sensitivity index Si of the input
factor Xi, i = 1, ..., d is then defined as

Ŝi =
SSB

SST

where

SSB = r

n∑

j=1

(Y
j

i − Y i)
2

and

SST =

n∑

j=1

r∑

k=1

(Y jk
i − Y i)

2.

To compute these indices and to generate the samples needed,
Ratto uses two different methods : pure Monte-Carlo sampling
and a single replicated Latin HyperCube (r-LHS) sampling.

It is crucial to note, however, that these two methods require
a huge amount of model evaluations to reach a good precision
and can only be used for cases where model runs have very low
computational cost.

1.3 Bayesian Sensitivity Analysis

The idea of Oakley & O’Hagan (2004) is to see the function η(·)
as an unknown smooth function and to formulate a prior dis-
tribution for it. More precisely, it is modeled as the realization
of a Gaussian stationary random field with given mean and co-
variance functions. Then, given a set of of values yi = η(xi), we
can derive the posterior distribution of η(·) by classical Bayesian
considerations. The prior distribution of η(x) is a Gaussian sta-
tionary field :

η(x) = h(x)
t
β + Z(x)

conditionally on β and σ2, where h(·) is a vector of q known
regression functions and Z(X) is a Gaussian stationary random
field with zero mean and covariance function σ2c(x,x′). The
vector h(·) and the correlation function c(·, ·) are to be chosen
in order to incorporate some information about how the output
responds to the inputs and about the amount of smoothness
we require on the output respectively. We refer the reader to
Santner et al. (2003) and to Kennedy & O’Hagan (2001) for
a detailed discussion on these choices. The second stage prior
concerns the conjugate prior form for β and σ2, which is chosen
to be a normal inverse gamma distribution. Now assuming we
observe a set y of n values of yi = η(xi), we can derive that
the posterior distribution of η(·) given these data is a Student
distribution, see Oakley & O’Hagan (2004) for details.
Using this posterior distribution, sensitivity indices can be com-
puted analytically through multidimensional integrals involving
functions of the observations and the conditional distributions
of the input factors only. The main advantage of this Bayesian
approach is that the model is only evaluated to calculate the
quantities above, i.e. to ’fit’ the response surface. Once this
is done the estimation of sensitivity indices just involves the
conditional distributions of the input factors. When the num-
ber of model runs is fixed, this method clearly reduces the
standard errors of the estimated sensitivity indices obtained by
Monte-Carlo methods such as Sobol (when the input factors
are independent) and can still be used when the input factors
are not independent.

However, the multidimensional integrals leading to the com-
putation of the sensitivity indices, if not tractable analytically,
need to be estimated. Let us describe more particularly one
of the estimators proposed in Oakley & O’Hagan (2004). We
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keep the authors notations and denote by E
∗ the expectations

defined with respect to the posterior distribution of η(·). The
numerator of the first-order sensitivity index of Y with respect
to X1 is estimated by

E
∗(Var(E(Y |X1))) = E

∗(E(E(Y |X1)
2))− E

∗(E(Y )2)

and one of the quantities involved in the computation of
E
∗(E(E(Y |X1)

2)) is for example

U1 =

∫

Rd−1

∫

Rd−1

∫

R

c(x,x∗) dF−1|1(x−1|x1)

dF−1|1(x
′
−1|x1) dF1(x1)

where F−1|1 is the marginal distribution of X−1 (subvector
of X containing all elements except X1) given X1, F1 is the
marginal distribution of X1 and x∗ denotes the vector with ele-
ments made up of x1 and x′

−1 in the same way as x is composed
of x1 and x−1. If the conditional distribution F−1|1 is not an-
alytically known, we first need to estimate it with a sample of
the joint distribution F . Many methods have been developed to
do so, let us just mention for example kernel techniques. But in
general in high dimension the data is very sparsely distributed
and it is difficult to get an accurate approximation of condi-
tional distributions since the so-called curse of dimensionality
arises. For instance the best possible MSE rate with kernel
techniques is n−4/(4+d) which becomes worse as d gets larger.
Moreover, even if we could get a good approximation of F−1|1,
still remains the problem of evaluating the multidimensional
integrals. Indeed the dimensionality of these integrals can
reach 2d − 1 as in the expression of U1 above. Since these
integrals can not in general be separated into unidimensional
integrals, approximating them with a sufficent accuracy is not
an obvious mathematical problem. Deterministic schemes can
not reasonably be considered, and with Monte-Carlo or quasi
Monte-Carlo sampling (Owen 2005) thousands (or millions) of
draws are required to get a reasonable accuracy.

With unknown densities, even if conceptually, sampling
rather than analytical integration in the Oakley and O’Hagan
approach seems reasonable, the results could be highly af-
fected by the curse of dimensionality. Let us mention that Pr.
O’Hagan has public domain software carrying out this analysis.
However it does not yet allow to consider dependent inputs.

2. NEW ESTIMATION METHODOLOGY

Our approach is to estimate the conditional moments E(Y |Xi =
X

j
i ) and Var(Y |Xi = X

j
i ) with an intermediate method be-

tween the one of Ratto et al. (2001) and Oakley & O’Hagan
(2004). We first use a sample (Xi, Yi) to estimate the condi-
tional moments with nonparametric tools (provided they are
smooth functions of the input factors). Then, we compute
sensitivity indices by using another sample of the input factors
only (and thus no more model runs are needed). While Oakley
& O’Hagan (2004) approximate the function η(X) in R

d, we
approximate it marginally, i.e. we approximate the conditional
expectations E(η(X)|Xi) in R. This approach allows to over-
come the multidimensional integration problem of the Bayesian

sensitivity analysis.

To simplify the notations, until Section 2.4 (X, Y ) will
stand for a bivariate random vector (i.e. X is unidimen-
sional). As the variance may be decomposed as Var(Y ) =
Var(E(Y |X)) + E(Var(Y |X)), the index we wish to estimate
can be written

S =
Var(E(Y |X))

Var(Y )
or S = 1− E(Var(Y |X))

Var(Y )
. (2)

These expressions clearly give two ways of estimating S : the
issue is to be able to estimate Var(E(Y |X)) or alternatively
E(Var(Y |X)), obviously by estimating first the conditional mo-
ments E(Y |X = x) and Var(Y |X = x) (x ∈ R). In both cases
the denominator term Var(Y ) can be easily estimated. To ap-
proximate the conditional moments, we propose to use local
polynomial regression. This highly statistical efficient tool is
easy to apprehend as it is close to the weighted least-squares
approach in regression problems. Only basic results will be pre-
sented here, for a detailed picture of the subject the interested
reader is referred to Fan & Gijbels (1996).

2.1 Formulation of the Estimators

Let (Xi, Yi)i=1,...,n be a two-dimensional i.i.d. sample of a real
random vector (X, Y ). Assuming that X and Y are square in-
tegrable we may write an heteroskedastic regression model of
Yi on Xi, exhibiting the conditional expectation and variance,
as

Yi = m(Xi) + σ(Xi)ǫi, i = 1, . . . , n

where m(x) = E(Y |X = x) and σ2(x) = Var(Y |X = x)
(x ∈ R) are the conditional moments and the errors ǫ1, . . . , ǫn

are independent random variables satisfying E(ǫi|Xi) = 0 and
Var(ǫi|Xi) = 1. Usually ǫi and Xi are assumed to be inde-
pendent although this is not the case in our work. Note that
results for correlated errors have been recently developed (Vilar-
Fernández & Francisco-Fernández (2002) for the autoregressive
case for example). Local polynomial fitting consists in approx-
imating locally the regression function m by a p-th order poly-
nomial

m(z) ≈
p

∑

j=0

βj(z − x)j

for z in a neighborhood of x. This polynomial is then fitted to
the observations (Xi, Yi) by solving the weighted least-squares
problem

min
β

n∑

i=1

(

Yi −
p

∑

j=0

βj(Xi − x)j
)2

K1

(Xi − x

h1

)

(3)

where K1(.) denotes a kernel function and h1 is a smooth-

ing parameter (or bandwidth). In this case, if β̂(x) =

(β̂0(x), ..., β̂p(x))T denotes the minimizer of (3) we have

m̂(x) = β̂0(x),

while the ν-th derivative of m(x) is estimated via the relation

β̂ν(x) =
m̂(ν)(x)

ν!
,
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see Fan & Gijbels (1996) for more details. As it will be dis-
cussed later, the smoothing parameter h1 is chosen to balance
bias and variance of the estimator. Finally, remark that the
particular case p = 0 (constant fit) leads to the well-known
Nadaraya-Watson estimator m̂NW (x) of the conditional expec-
tation, given explicitly by

m̂NW (x) =

n∑

i=1

YiK
(Xi − x

h

)

n∑

i=1

K
(Xi − x

h

)
,

see Wand & Jones (1994).
Estimation of the conditional variance is less straightfor-

ward. If the regression function m was known, the prob-
lem of estimating σ2(.) would be regarded as a local poly-
nomial regression of r2

i on Xi with r2
i = (Yi − m(Xi))

2, as
E(r2|X = x) = σ2(x) with r2 = (Y −m(X))2. But in practice,
m is unknown. A natural approach is to substitute m(.) by
its estimate m̂(.) defined as above and to get the the residual-
based estimator σ̂2(x) by solving as previously the weighted
least-squares problem

min
γ

n∑

i=1

(

r̂2
i −

q
∑

j=1

γj(Xi − x)j
)2

K2

(Xi − x

h2

)

(4)

where r̂2
i = (Yi−m̂(Xi))

2, K2(.) is a kernel and h2 a smoothing
parameter. Note that the kernel K2(.) is not necessarily chosen
to be equal to the kernel K1(.). Then

σ̂2(x) = γ̂0(x)

where γ̂(x) = (γ̂0(x), ..., γ̂q(x)) is the minimizer of (4). As pre-
viously, the smoothing parameter h2 has to be chosen to balance
bias and variance of the estimator, see Fan & Yao (1998).

Going back over the equalities in (2), the last step is to es-
timate the quantities Var(E(Y |X)) and E(Var(Y |X)) by using
the local polynomial estimators for the conditional moments
defined right above. To do this let us assume we have an-
other i.i.d. sample (X̃j)j=1,...,n′ with same distribution as X .
If the functions m(.) and σ2(.) were known, we could estimate
Var(E(Y |X)) = Var(m(X)) and E(Var(Y |X)) = E(σ2(X))
with the classical empirical moments

1

n′ − 1

n′

∑

j=1

(

m(X̃j)− m̄
)2

and
1

n′

n′

∑

j=1

σ2(X̃j)

where m̄ =
1

n′

n′

∑

j=1

m(X̃j). As m(.) and σ2(.) are unknown, the

main idea is to replace them by their local polynomial estima-
tors which leads to consider

T̂1 =
1

n′ − 1

n′

∑

j=1

(

m̂(X̃j)− ˆ̄m
)2

and T̂2 =
1

n′

n′

∑

j=1

σ̂2(X̃j)

where ˆ̄m =
1

n′

n′

∑

j=1

m̂(X̃j) and m̂(.) and σ̂2(.) are the local poly-

nomial estimators of m(.) and σ2(.) introduced above. It is

important to note that we need two samples, the first one
(Xi, Yi)i=1,...,n to compute m̂(.) and σ̂2(.) and the second one

(X̃j)j=1,...,n′ to finally compute the empirical estimators T̂1 and

T̂2.

2.2 Bandwidth and Orders Selection

The selection of the smoothing parameters h1 and h2 and to a
lesser extent of the polynomials orders p and q can be crucial
to get the least mean squared error (MSE) of the estimators
T̂1 and T̂2. Classically the MSE consists of a bias term plus
a variance term and so is minimized by finding a compromise
between bias and variance.

Concerning this choice, the reader is referred to Fan et al.
(1996), Fan & Yao (1998) or Ruppert (1997). Most of the meth-
ods suggested by these authors rely upon asymptotic arguments
and their efficiency for finite sample cases is not clear. In prac-
tice cross-validation methods can be used for the finite sample
case (Jones, Marron & Sheather 1996), but in the examples
of Section 3 we will use the empirical-bias bandwidth selector
(EBBS) of Ruppert which appears to be efficient on simulated
data. EBBS is based on estimating the MSE empirically and
not with an asymptotic expression. The choice of the polyno-
mials orders is more subjective. Concerning the estimation of
the conditional expectation, Fan & Gijbels (1996) recommend
to use a ν + 1 or ν + 3th-order polynomial to estimate the νth-
derivative of m(x), following theoretical considerations on the
asymptotic bias of m̂(x) on the boundary. We would then be
lead to take p = 1 or p = 3 to estimate the 0th-derivative m(x).
But Ruppert, Wand & Carroll (2003) suggest that this conclu-
sion should be balanced by simulation studies and stress that
p = 2 often outperforms p = 1 and p = 3. The only common
conclusion is that local linear regression (p = 1) is usually supe-
rior to kernel regression (Nadaraya-Watson estimator obtained
with p = 0). This is the reason why we will only consider and
study local linear regression for m(x) in the next theoretical and
practical sections. The choice is still difficult when estimating
the conditional variance as we have to choose p and q simul-
taneously. One more time, the authors are not unanimous :
Fan & Yao (1998) recommend the case p = 1, q = 1 whereas
Ruppert et al. (1997) suggest p = 2, q = 1 or p = 3, q = 1.
However on the simulations we have carried out, the choice of
p = 1, q = 1 is adequate and satisfactory in terms of precision.
This is the reason why we have decided to consider only the
case p = 1, q = 1 for both theoretical and practical results.

2.3 Theoretical Properties of the Estimators

The properties of T̂1 and T̂2 strongly depend on the asymp-
totic results on the bias and variance of the local linear esti-
mators m̂(.) and σ̂2(.). We only give here two main results, all
assumptions (A0, ..., A4, B0, ..., B4, C0) and proofs are given in
appendix for readability. EX and VarX stand for the conditional
expectation and variance given the predictors X = (X1, ..., Xn).
The expression oP (ϕ(h)) is equal to ϕ(h)oP (1) for a given func-
tion ϕ. Here oP (1) is the standard notation for a sequence of
random variables that converges to zero in probability.
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Theorem 1 Under assumptions (A0)-(A4) and (C0), the es-
timator T̂1 is asymptotically unbiased. More precisely

EX(T̂1) = Var(E(Y |X)) + M1h
2
1 +

M2

nh1
+ oP (h2

1).

where M1 and M2 are constants given in appendix.

Remark 1. It would be interesting to calculate the variance
of this estimator, but it would require the expressions of the
third and fourth moments of the local linear estimator m̂(.)
(see the appendix). This is not an obvious problem and to the
best of our knowledge it has not been addressed in the liter-
ature. It is beyond the scope of the present paper but it is
an interesting problem for future research. Nevertheless, the
variance can be estimated on practical cases through bootstrap
methods for example (Efron & Tibshirani 1994).

Theorem 2 Under assumptions (B0)-(B4) and (C0), the es-
timator T̂2 is consistent. More precisely

EX(T̂2) = E(Var(Y |X)) + V1h
2
2 + oP (h2

1 + h2
2)

and

VarX(T̂2) =
1

n′

{

E(Var(Y |X)2) + V2h
2
2 + V3h

2
1 +

V4

nh2

+ oP

(

h2
1 + h2

2 +
1√
nh2

)}

where V1, V2, V3 and V4 are constants given in appendix.

2.4 Application to Sensitivity Analysis

Let us come back to the model (1), where X is multidimen-
sional. The goal is to get an estimate of Si for i = 1, . . . , d by
using one of the two estimators T̂1 and T̂2. We need two samples
to compute each of them, i.e. a sample (Xk

i , Y k)k=1,...,n to esti-

mate m̂(.) and σ̂2(.) and a sample (X̃ l
i)l=1,...,n′ to get T̂1 and T̂2

where (Xk
i )k=1,...,n and (X̃ l

i)l=1,...,n′ are samples from the joint
distribution of the d-dimensional input factors X = (Xi)i=1,...,d

and (Y k)k=1,...,n a sample of the output Y . Note that the model
is run just for the first sample and not for the second one. Three
situations can arise :

1. Sampling from the joint distribution of X has low
computational cost and running the model to compute
(Y k)k=1,...,n is cheap. This is the ideal situation. In-
deed in this case the two samples (Xk

i , Y k)k=1,...,n and

(X̃ l
i)l=1,...,n′ can be generated independently and be as

large as required ;

2. Sampling from the joint distribution of X has low com-
putational cost but model evaluations have not. In this
case (also pointed out by Oakley & O’Hagan (2004)) a
moderate-sized sample (Xk

i , Y k)k=1,...,n is used in order

to fit the conditional moments. However to compute T̂1

and T̂2 we can then use a sample (X̃ l
i)l=1,...,n′ of large

size ;

3. Sampling from the joint distribution of X has high compu-
tational cost. This case can arise in practice for example
when the input factors are obtained through a procedure
based on experimental data and optimization routines.
We then have an initial sample (Xj)j=1,...,N of limited
size N that we wish to use for the two steps of the esti-
mation. The first idea is to split it and to use the first part
to get the sample (Xk

i , Y k)k=1,...,n and the second one to

get (X̃ l
i)l=1,...,n′ . The drawback of this method clearly

arises if N is very small. Another way to tackle the prob-
lem is to use the well-known leave-one-out idea procedure
which gives better approximation than data splitting.
As suggested by the Associate Editor another possible
method could be to use the sample of size N to esti-
mate the conditional moments and to estimate also the
marginal densities of each input using for instance a non-
parametric density estimator. One could then use these
density estimates to get the sample (X̃ l

i)l=1,...,n′ . The
clear disadvantage of this procedure is that it may bias
the final estimators. Some simulation runs not reported
here for lack of space show that such a procedure leads
to less efficient estimates probably due to the large bias
produced by nonparametric methods.

The last situation obviously leads to the less accurate ap-
proximations of first-order sensitivity indices. However in gen-
eral, litterature and results on sensitivity analysis assume that,
if not analytically known, the joint distribution of the input fac-
tors can at least be generated at low computational cost. This
is the reason why we will only describe here the procedure for
estimating first-order sensitivity indices in case 1 or 2. We now
assume that we have two samples (Xk

i )k=1,...,n and (X̃ l
i)l=1,...,n′

obtained by one of the methods described right above.

The estimation procedure for Si =
Var(E(Y |Xi))

Var(Y )
is the follow-

ing :

Step 1 : Compute the output sample (Y k)k=1,...,n by run-
ning the model at (Xk)k=1,...,n

Step 2 : Compute σ̂2
Y , the classical unbiased estimator of

the variance Var(Y )

σ̂2
Y =

1

n− 1

n∑

k=1

(
Y k − Ȳ

)2

Step 3 : Use the sample (Xk
i , Y k)k=1,...,n to obtain m̂(X̃ l

i)
for l = 1, . . . , n′ and m̂(Xk

i ) for k = 1, . . . , n using the smooth-
ing parameter h1 given by EBBS

Step 4 : Compute squared residuals r̂k = (Y k−m̂(Xk
i ))2 for

k = 1, . . . , n and apply the smoothing parameter h2 obtained
by EBBS to compute σ̂2(X̃ l

i) for l = 1, . . . , n′

Step 5 : Compute T̂1 with m̂(X̃ l
i) for l = 1, . . . , n′ from Step

3 and compute T̂2 with σ̂2(X̃ l
i) for l = 1, . . . , n′ from Step 4

Step 6 : The estimates of Si are then
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Ŝ
(1)
i =

T̂1

σ̂2
Y

and Ŝ
(2)
i = 1− T̂2

σ̂2
Y

. (5)

To obtain all the first-order sensitivity indices, repeat the
procedure from Step 3 to Step 6 for i = 1, ..., d.

Remark 2. Given the theoretical properties of T̂1 and T̂2

and more precisely their non-parametric convergence rate, we
can also expect a nonparametric convergence rate for Ŝ(1) and
Ŝ(2).

Remark 3. In practice, our simulations show that n of the
order of 100 and n′ around 2000 are enough for accurate esti-
mation of the sensitivity indices.

3. EXAMPLES

In all the following examples we use the two estimators Ŝ(1)

and Ŝ(2) defined in (5). As mentioned in Section 2.2, the condi-
tional expectation is estimated here with local linear regression
(p = 1) and the conditional variance with p = 1 and q = 1,
the bandwidths being selected by the estimated-bias method of
Ruppert (1997).

3.1 Analytical Examples

In this section, we carry out two different comparisons in order
to study our two estimators from a numerical point of view.
The first model has been chosen to underline their precision in
correlated cases when FAST and Sobol methods are no longer
efficient and when Jacques’ approach for multidimensional sen-
sitivity analysis is limited. We also show how interpretation
with sensitivity indices obtained by neglecting correlation can
be false. The second one is an example illustrating the perfor-
mance of our estimators with respect to the method of Oakley
and O’Hagan in a two-dimensional setting.

In the first analytical example, we study the model

Y = X1 + X2 + X3

where (X1, X2, X3) is a three-dimensional normal vector with
mean 0 and covariance matrix

Γ =





1 0 0
0 1 ρσ

0 ρσ σ2





where ρ is the correlation of X2 and X3 and σ > 0 is the stan-
dard deviation of X3. The first order sensitivity indices can be
evaluated analytically :

S1 =
1

2 + σ2 + 2ρσ

S2 =
(1 + ρσ)2

2 + σ2 + 2ρσ

S3 =
(σ + ρ)2

2 + σ2 + 2ρσ

The first crucial remark to be done in this case is that we must
take into account correlations to estimate sensitivity indices if

we want a serious investigation of this model. Indeed, let us
consider the case where σ = 1.2 and ρ = −0.8. We then have

S1 = 0.6579, S2 = 0.0011, S3 = 0.1053,

indicating that X1 should be the input to be fixed to reach the
higher variance reduction on Y . But if one neglects the corre-
lation, by computing for instance these indices with the FAST
method, i.e. working with a three-dimensional normal vector
with mean 0 and covariance matrix I instead of Γ, one would
estimate

S0
1 = 0.2907, S0

2 = 0.2907, S0
3 = 0.4186

where S0 stands for the sensitivity indices when ρ = 0. These
results indicate that X3 should be fixed to mostly reduce the
variance of Y , which is absolutely wrong as the calculations
above have shown. This simple example highlights the dan-
ger of neglecting the correlations between the inputs and the
importance to take them into consideration when computing
sensitivity indices.

Otherwise, applying Jacques’ idea to X1 and the couple
(X2, X3), we also get the expression of the first order multi-
dimensional sensitivity index

S{2,3} =
1 + σ2 + 2ρσ

2 + σ2 + 2ρσ

Choosing ρ = −0.2 and σ = 0.4, we have

S1 = S{2,3} = 0.5, S2 = 0.4232, S3 = 0.02

If we interpret these indices as suggested by Jacques’ multidi-
mensional sensitivity analysis, the only conclusion we can give
is that the couple (X2, X3) has the same importance as X1.
Indeed S{2,3} = S1. But actually the high value of S{2,3} comes
from X2 as shown by the exact calculations above, which im-
plies that the information on S{2,3} alone is not sufficient. But
with our method, we can estimate all the first order sensitivity
indices :

Ŝ
(1)
1 = 0.4895, Ŝ

(1)
2 = 0.4250, Ŝ

(1)
3 = 0.0234

Ŝ
(2)
1 = 0.5081, Ŝ

(2)
2 = 0.4368, Ŝ

(2)
3 = 0.0361

for an average upon 100 simulations with n = 50 and n′ = 1000.
We display in Figure 1 the boxplots corresponding to the distri-
bution of the sensitivity indices on these 100 simulations with
the estimator T̂2. Because of the mathematical complexity men-
tioned before for the computation of the variance of T̂1, we are
not able to recommend one estimator over the other one from
a theoretical point of view. But in practice, we have observed
that the variance of T̂2 is at least comparable to the variance
of T̂1, and sometimes lower. Nervertheless, the computation of
T̂2 is more difficult as illustrated in Section 2.4.
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Figure 1. Boxplot of the estimated sensitivity indices (Ŝ(2)) for the

three-factor additive model, 100 simulations. Dot lines are the true

values.

Computing S2 and S3 with our method, even if both of
them take into account correlations, allows to confirm the ex-
pected result : all the variability comes from X2, and not from
X3. This simple example then brings out the limitation of the
multidimensional approach.

In the second analytical example we consider the model

Y = 0.2 exp(X1 − 3) + 2.2|X2|+ 1.3X6
2 − 2X2

2

−0.5X4
2 − 0.5X4

1 + 2.5X2
1 + 0.7X3

1

+
3

(8X1 − 2)2 + (5X2 − 3)2 + 1
+ sin(5X1) cos(3X2

1 )

where X1 and X2 are independent random variables uniformly
distributed on [−1, 1]. Such a model is routinely used at Insti-
tut Francais du Petrole to compare different response surface
methodologies as it presents a peak and valleys. The function
is plotted in Figure 2.

Figure 2. Function proposed in model 2 .

In this case, the sensitivity indices are

S1 = 0.9375 and S2 = 0.0625

We considered a 6 × 6 regular grid on [0, 1]2 and used it
to estimate the posterior distribution in the method of Oakley

and O’Hagan and to estimate the conditional moments in our
method. Then, we calculated analytically the multidimensional
integrals in the Bayesian approach while using a sample of size

5000 to compute Ŝ
(2)
i for i = 1, 2. The Bayesian approach leads

to

Ŝ1 = 0.9038 and Ŝ2 = 0.0961

while the local polynomial technique gives

Ŝ
(2)
1 = 0.9127 and Ŝ

(2)
2 = 0.0452.

We can see on this example that the results obtained with both
methods are comparable. However on this simple case the mul-
tidimensional integrals were analytically computed, which could
not be the case in a non-independent setting. If not, a numerical
integration, if feasible, would lead to less accurate approxima-
tions as discussed in Section 1.3.

3.2 Practical Example from Chemical Field : Isomerization of
the Normal Butane

The isomerization of the normal butane, i.e. molecules with
four carbon atoms, is a chemical process aiming at transforming
normal butane (nC4) into iso-butane (iC4) in order to obtain
a higher octane number, favored by iC. A simplified reaction
mechanism has been used :

nC4←→ iC4 (1)

2 iC4 −→ C3+C5 (3)

nC4 + iC4 −→ C3+C5 (4)

where reaction (1) is the main reversible reaction converting the
normal butane into iso-butane. Reactions (3) and (4) are sec-
ondary and irreversible reactions which produce propane (C3)
and a lump of normal and iso-pentane (C5), paraffins with three
and five carbon atoms. The model linked to this process can
be written as

Y = η(c, θ)

where

- Y is the 3-dimensional result vector (mole fractions of the
components nC4, iC4, C3 and C5 ; note that their sum is 1),

- c is the vector containing the operating conditions (pres-
sure, temperature,...) and the mole fraction of the input com-
ponents (nC4 and iC4, this is called the feed),

- θ = (θi)i=1,...,8 is the 8-dimensional random vector of the
parameters of the reactions (pre-exponential factors, activation
energies, adsorption constants,...),

- f is the function modeling the chemical reactor in which
the reaction takes place. It is evaluated through the resolution
of an ordinary differential equations system which can not be
analytically solved and is calculated numerically.

The first step here is to get the distribution of θ which is
unknown. However, it is possible to use the experience and the

8



knowledge of chemical engineers to suggest a reasonable approx-
imation of this distribution. Classically, we assume that θ has
a multivariate Gaussian distribution with mean zero (once the
parameters are centered). Concerning the correlation matrix, it
is built with experts and with the help of bootstrap simulations
and is given by :

Γ =














1 0.43 0.09 0.29 0.55 0.66 0.10 −0.01

0.43 1 −0.54 0.11 0.37 0.25 0.51 −0.48

0.09 −0.54 1 −0.02 0.20 0.02 −0.40 0.73

0.29 0.11 −0.02 1 −0.41 −0.07 −0.22 0.01

0.55 0.37 0.20 −0.41 1 0.43 0.31 0

0.66 0.25 0.02 −0.07 0.43 1 0.17 −0.11

0.10 0.51 −0.40 −0.22 0.31 0.17 1 −0.61

−0.01 −0.48 0.73 0.01 0 −0.11 −0.61 1














In order to compute sensitivity indices, we generate a sample
of size n = 5000 from this distribution.
Here we wish to estimate, for a given operating conditions and
feed vector c, the sensitivity indices of the outputs with respect
to the input factors in θ, i.e.

S
j
i =

Var(E(Yj |θi))

Var(Yj)

for j = 1, ..., 3 and i = 1, ..., 8. Actually, our goal is to identify
on which factor we should make the effort of reducing the un-
certainty, by carrying out new experiments. This factor should
be chosen in order to reduce as much as possible the uncertainty
of the outputs.
We consider two particular vectors c1 and c2 containing the
same operating conditions but a different feed (c1 : nC4=1
and iC4=0, c2 : iC4=1 and nC4=0). We have drawn for each
vector ci, i = 1, 2 a sample of size n from Y by Monte-Carlo
simulations, i.e. by computing Yj = η(ci, θj) for j = 1, ..., n.
Thus we have a sample from (Y, θ) for each particular c1 and
c2. For instance, the estimates of the sensitivity indices of the
third output C3+C5 with the T̂1 estimator are given in Figure
4. Filled bars correspond to c1 and empty bars to c2.

Note that the estimates given by the T̂2 estimator are simi-
lar. These results highlight the behavior of the C3+C5 output
when the feed changes. Indeed when we only use nC4 in the
feed (c1) the production of C3+C5 is mainly linked to the
production of iC4 by reaction (1). This is confirmed by the
importance of parameters 1 and 6 in Figure 4 which are the
parameters involved in reaction (1). When the feed only con-
tains iC4 (c2), the first reaction is no longer dominating for
the production of C3+C5, now mainly linked to reaction (3).
Parameters 4 and 2 that are the most important in Figure 4
for c2 are connected to reaction (3). We can thus conclude that
the results confirm the expected behavior of the C3+C5 output.
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Figure 4. Sensitivity indices of the C3+C5 output in the isomer-

ization model for the particular conditions c1 (filled bars) and c2

(empty bars).

We could obviously study the sensitivity indices for the other
outputs, and for other operating conditions. Such a study has
been carried out and showed that the most influent parameters
depend on the operating conditions and the feed. But it also
underlined that each parameter of the model has an influence
on at least one output for at least one operating condition. In
this case these sensitivity indices estimates enlighten the fact
that all the parameters are potentially important. A discussion
with chemical engineers would then be necessary in order to
identify which outputs are most critical for their goals (control-
ling for instance the first output iC4 which is strongly linked to
the octane rate) and would thus help us to choose which input
parameters deserve most attention.

4. DISCUSSION AND CONCLUSION

The estimation method proposed in this paper is an efficient
way to carry out sensitivity analysis by computing first order
sensitivity indices when the inputs are not independent. The
use of local polynomial estimators is the key point of the es-
timation procedure. It guarantees some interesting theoretical
properties and ensures good qualities to the estimators we have
introduced. Beyond these theoretical results, practical exam-
ples also show a good precision for a rather low computation
time. Obviously, higher precision requires higher calculation
time and the user has the possibility to adapt the estimators,
by fixing some hyper-parameter values such as polynomials or-
ders.

The main advantage of our estimators is obviously that they
only make the assumption that the marginals are smooth and
then require less model runs than classical sampling methods.
Comparing with the Bayesian approach of Oakley & O’Hagan
(2004), our method has the same philosophy as it uses model
runs to fit a response surface under smoothness assumptions,
but we avoid its numerical integration issue in high dimension.
Moreover our approach is appealing for practioners in the sense
that they can see it as a black-box routine, as each step of the
procedure is data-driven once the user has given the two sam-
ples needed for the estimation.
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Finally, we think that a practitioner willing to carry out a
sensitivity analysis should combine different approach to get
the most accurate result, for example computing the indices
with the method we introduce her and the one of Oakley and
O’Hagan. Indeed these two methods are not concurrent but
complementary.

Future work will also be based on building multi-outputs
sensitivity indices through multivariate nonparametric regres-
sion techniques.
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APPENDIX : PROOFS OF THEOREMS

A.1 Assumptions

We list below all the assumptions we use in the development
of our proofs. Note that the bandwidths h1 and h2 are by
definition positive real numbers.

(A0) As n→∞, h1 → 0 and nh1 →∞ ;

(A1) The kernel K(.) is a bounded symmetric and continu-
ous density function with finite 7th moment ;

(A2) fX(x) > 0 and f̈X(.) is bounded in a neighborhood of
x where fX(.) denotes the marginal density function of X ;

(A3)
...
m(.) exists and is continuous in a neighborhood of x ;

(A4) σ2(.) has a bounded third derivative in a neighborhood
of x and m̈(x) 6= 0 ;

(B0) As n→∞, hi → 0 and lim inf nh4
i > 0 for i = 1, 2 ;

(B1) The kernel K(.) is a symmetric density function with
a bounded support in R. Further, |K(x1)−K(x2)| ≤ c|x1−x2|
for x1, x2 ∈ R ;

(B2) The marginal density function fX(.) satisfies fX(x) >

0 and |fX(x1)− fX(x2)| ≤ c|x1 − x2| for x1, x2 ∈ R ;

(B3) E(Y 4) <∞ ;

(B4) σ2(x) > 0 and the function E(Y k|X = .) is continuous
at x for k = 3, 4. Further,

...
m(.) and

...
σ 2(.) are uniformly con-

tinuous on an open set containing the point x ;

(C0) fX(.) has compact support [a, b]

Assumptions (A0) and (B0) are standard ones in kernel esti-
mation theory. Some classical considerations on MSE or MISE
(Mean Integrated Squared Error) lead to theoretical optimal
constant bandwidths of order n−1/5.

Assumptions (A1) and (B1) are directly satisfied by com-
monly used kernel functions. We can note that they require
a kernel with bounded support, but this is only a technical
assumption for brevity of proofs. For example, the Gaussian
kernel can be used.

The assumption fX(x) > 0 in (A2) and (B2) simply ensures
that the experimental design is rich enough. The fact that (A2)
also requires f̈X(.) to be bounded in a neighborhood of x is nat-
ural. The Lipschitz condition on f in (B2) is directly satisfied
if f is sufficiently regular and with compact support.

Assumptions (A3), (A4), (B3) and (B4) are natural and
ensure sufficient regularity to the conditional moments.

Assumption (C0) is made to make the presentation easier.
It can be relaxed by means of the conventional truncation tech-
niques used in real cases (Mack & Silverman (1982)). Never-
theless in practice, the input factors considered in sensitivity
analysis are bounded and so have densities with compact sup-
port.

A.2 Proof of Theorem 1

This theorem is a direct consequence of the asymptotic behavior
of the bias and variance in local linear regression.

Under assumptions (A0)-(A4), Fan et al. (1996) established
that for a given kernel K(.)

EX(m̂(x)) = m(x) +
1

2
µ2m̈(x)h2

1 + oP (h2
1) (6)

and

VarX(m̂(x)) =
ν0σ

2(x)

fX(x)nh1
+ oP (h2

1) (7)

where µk =

∫

ukK(u)du and νk =

∫

ukK2(u)du. Now as the

estimator T̂1 is

T̂1 =
1

n′ − 1

n′

∑

j=1

(

m̂(X̃j)− ˆ̄m
)2

we can write

T̂1 =
1

n′ − 1

n′

∑

j=1

(Zj − Z̄)2

where (Zj)j=1,...,n′ := (m̂(X̃j))j=1,...,n′ and Z̄ =
1

n′

n′

∑

j=1

Zj . By

conditioning on the predictors X, the sample (Zj |X)j=1,...,n′ is
an i.i.d. sample distributed as Z1|X and the conditional bias of
T̂1 can then be obtained through the classical formula for the
empirical estimator of the variance :

EX(T̂1) = VarX(Z1) = EX(Z2
1 )− EX(Z1)

2.

Note that we can also compute its variance

VarX(T̂1) =
1

n′

(

EX((Z1 − EX(Z1))
4)− n′ − 3

n′ − 1
(VarX(Z1))

2

)

even though we do not use this result here (see Remark 1.).
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As X̃ is independent of X and Y , we write

EX(Z2
1 ) =

∫

EX(m̂(x)2)fX̃(x)dx

=

∫
(
VarX(m̂(x)) + EX(m̂(x))2

)
fX(x)dx.

Considering assumptions (A3), (A4) and (C0) we then get us-
ing (6) and (7), in a similar way as for the standard MISE
evaluation,

EX(Z2
1 ) =

∫

m(x)2fX(x)dx +
ν0

nh1

∫

σ2(x)dx

+µ2h
2
1

∫

m(x)m̈(x)fX(x)dx + oP (h2
1)

and by the same arguments we also have

EX(Z1) =

∫

m(x)fX(x)dx +
1

2
µ2h

2
1

∫

m̈(x)fX(x)dx + oP (h2
1),

which finally leads to

EX(T̂1) = EX(Z2
1 )− EX(Z1)

2

= Var(E(Y |X))

+µ2h
2
1

[∫

m(x)m̈(x)fX(x)dx

−
(∫

m(x)fX(x)dx

) (∫

m̈(x)fX(x)dx

)]

+
ν0

nh1

∫

σ2(x)dx + oP (h2
1)

= Var(E(Y |X)) + M1h
2
1 +

M2

nh1
+ oP (h2

1)

where

M1 = µ2

[∫

m(x)m̈(x)fX(x)dx

−
(∫

m(x)fX(x)dx

) (∫

m̈(x)fX(x)dx

)]

and

M2 = ν0

∫

σ2(x)dx.

A.3 Proof of Theorem 2

Similarly we first recall asymptotic results for the residual-based
estimator of the conditional variance.

Under assumptions (B0)-(B4) Fan & Yao (1998) showed
that

EX(σ̂2(x)) = σ2(x) +
1

2
µ2σ̈

2(x)h2
2 + oP (h2

1 + h2
2)

and

VarX(σ̂2(x)) =
ν0σ

4(x)λ2(x)

fX(x)nh2
+ oP

(
1√
nh2

)

where λ2(x) = E((ǫ2−1)2|X = x) and µ2 and ν0 are as defined
above. The estimator T̂2 can be written as

T̂2 =
1

n′

n′

∑

j=1

Uj

where (Uj)j=1,...,n′ := (σ̂2(X̃j))j=1,...,n′ . As in the proof of The-

orem 1, we then get the conditional bias and variance of T̂2 :

EX(T̂2) = EX(U1)

and

VarX(T̂2) =
1

n′
VarX(U1).

As X̃ is independent of X and Y , we have

EX(U1) =

∫

EX(σ̂2(x))fX̃(x)dx.

Considering assumptions (B4) and (C0) as in the proof of The-
orem 1 we then get

EX(T̂2) = E(Var(Y |X)) +
1

2
µ2h

2
2

∫

σ̈2(x)fX(x)dx

+oP (h2
1 + h2

2)

= E(Var(Y |X)) + V1h
2
2 + oP (h2

1 + h2
2)

where

V1 =
1

2
µ2

∫

σ̈2(x)fX(x)dx

and using the same arguments

VarX(T̂2) =
1

n′

{
E(Var(Y |X)2)

+µ2h
2
2

∫

σ2(x)σ̈2(x)fX(x)dx

−µ2h
2
1

(∫

σ̈2(x)fX(x)dx

) (∫

σ2(x)fX(x)dx

)

+
ν0

nh2

∫

σ4(x)λ2(x)dx

+oP

(

h2
1 + h2

2 +
1√
nh2

)}

=
1

n′

{

E(Var(Y |X)2) + V2h
2
2 + V3h

2
1 +

V4

nh2

+oP

(

h2
1 + h2

2 +
1√
nh2

)}

where

V2 = µ2

∫

σ2(x)σ̈2(x)fX(x)dx,

V3 = −µ2

(∫

σ̈2(x)fX(x)dx

) (∫

σ2(x)fX(x)dx

)

,

V4 = ν0

∫

σ4(x)λ2(x)dx.
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