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Abstract. In this article, we prove new rigidity results for compact Riemannian spin manifolds
with boundary whose scalar curvature is bounded from below by a non-positive constant. In
particular, we obtain generalizations of a result of Hang-Wang [14] based on a conjecture of
Schroeder and Strake [24].

1. Introduction

The well-known spinorial proof of the positive mass theorem for asymptotically flat manifolds
given by Witten [26] is based on a subtle use of the Weitzenböck type formula for the hypersur-
face Dirac-type operator. In this setting, asymptotic flatness provides a boundary condition for
the metric at infinity. A corollary of the positive mass theorem is that there is no Riemannian
metric on R

n with nonnegative scalar curvature which is euclidean outside a compact set, except
the Euclidean one. Using Witten’s approach, rigidity results for noncompact manifolds whose
metric behaviour is prescribed at infinity were intensively studied (see for example [1], [8] or [18]).

More recently, rigidity results for compact manifolds with boundary have been proved using
generalizations of Witten’s positive mass theorem (see [17] or [23] for example). In this setting,
the conditions on the metric at infinity are replaced with natural conditions on the metric of the
boundary. The latter are tightly related to the notion of quasi-local mass in General Relativity.

On the other hand, recent papers by Hijazi, Montiel, Roldán and Zhang (see [12], [11] or [9])
emphasize the fact that Spin geometry provides an adaptated framework for the study of hy-
persurfaces. In particular, they show that under intrinsic and extrinsic curvature assumptions
on a Riemannian spin manifold with boundary, there is an isomorphism between the restriction
to the boundary of parallel spinors and extrinsic Killing spinors.

In this paper, we generalize the results of [9]. We prove that, under suitable assumptions, a
solution of the Dirac equation:

DΦ =
n− 1

2
H0Φ, (1)

can be extend to a parallel spinor field on the whole manifold. Here D is the extrinsic Dirac oper-
ator of the boundary (see Section 2) and H0 is a nonnegative (and non identically zero) function
on ∂M . Several rigidity results follow by noting that the existence of a spinor field satisfying
Equation (1) is tightly related to the existence of an isometric immersion of the boundary in a
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manifold carrying a parallel spinor field. One of these applications is given by a generalization
of a theorem in [14] which improves a conjecture of Schroeder and Strake [24] in the spinorial
setting.

In the last part of this paper, we study the hyperbolic version of the results obtained in the
previous paragraph.

Acknowledgements: I would like to thank Oussama Hijazi, Emmanuel Humbert and Julien
Roth for their remarks and suggestions, as well as their support. I am also grateful to the
“Institut de Mathématiques” of the University of Neuchâtel for its financial support. Finally, I
would like to thank the referees for helpful comments.

2. Geometric Preliminaries

Let (Mn, g) be an n-dimensional Riemannian spin manifold. We denote by ΣM the bundle of
complex spinor fields over M and by ∇ the Riemannian and the spin Levi-Civita connections.
The Clifford multiplication, that is the action of the Clifford bundle Cl(M) on the spinor bundle,
will be denoted by:

γ : Cl(M) −→ End (ΣM)

and the natural Hermitian product on ΣM compatible with ∇ and γ by 〈 , 〉. The Dirac
operator is defined by taking the composition of the Clifford multiplication with the spinorial
Levi-Civita connection that is D = γ ◦ ∇. It is an elliptic differential operator of order one
acting on the sections of the spinor bundle and it is locally given by:

D =

n∑

i=1

γ(ei)∇ei
,

where {e1, · · · , en} is a local g-orthonormal frame of TM .
Assume now that M has a smooth boundary ∂M . Since ∂M is an oriented hypersurface of
M , its normal bundle is trivial and thus one can define a spin structure on ∂M . Then we can
build the intrinsic spinor bundle over ∂M denoted by Σ(∂M) which is naturally endowed with
the spin Levi-Civita connection ∇∂M , a Clifford multiplication γ∂M and also the Dirac operator
D∂M , called the intrinsic Dirac operator of ∂M . One can also define (see [3] for example) an
extrinsic spinor bundle over ∂M by putting S := ΣM|∂M . This bundle is also endowed with the

spin Levi-Civita connection ∇S and a Clifford multiplication γS which can be related with these
acting on ΣM by:

∇X = ∇S

X +
1

2
γS

(
A(X)

)
(Spinorial Gauss Formula) (2)

γS(X) = γ(X)γ(ν),

for all X ∈ Γ
(
T (∂M)

)
and where ν is the inward unit vector field normal to ∂M and A is the

(symmetric) Weingarten map given by A(X) = −∇Xν. As for the intrinsic case, one can define
a Dirac operator acting on S by D := γS ◦ ∇S. This operator will be called the extrinsic Dirac
operator of ∂M . A straightforward calculation using the spinorial Gauss formula (2) allows to
obtain a relation between this operator and the Dirac operator of M , namely:

Dψ =
n− 1

2
Hψ − γ(ν)Dψ −∇νψ. (3)

for all ψ ∈ Γ(S) and where H := 1
n−1Trace (A) is the mean curvature of ∂M in M .
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The hypersurface ∂M has thus two spinor bundles which can be identified in a canonical way.
Indeed the extrinsic spinor bundle (S, γS,∇S,D) is isometric to:

(
Σ(∂M), γ∂M ,∇∂M ,D∂M

)
(4)

if n is odd and to:
(
Σ(∂M) ⊕ Σ(∂M), γ∂M ⊕−γ∂M ,∇∂M ⊕∇∂M ,D∂M ⊕−D∂M

)
. (5)

if n is even. For more details on these identifications, we refer to [3], [12] or [19]. On the other
hand, using the relation:

Dγ(ν) = −γ(ν)D (6)

one can easily check that the spectrum of the extrinsic Dirac operator is symmetric with respect
to zero. Using these identifications, O. Hijazi and S. Montiel [9] define the notion of extrinsic
Killing spinor, generalizing Killing spinors to the frame of hypersurfaces. More precisely, a
spinor field ϕ ∈ Γ(S) is an extrinsic Killing spinor if for all X ∈ Γ

(
T (∂M)

)
, we have:

∇S

Xϕ = −αγS(X)ϕ, (7)

where α ∈ R. Under some curvature assumptions, the authors prove that the existence of such
a spinor field on a hypersurface bounding a compact domain implies that the domain carries
a parallel spinor (and hence is Ricci flat) and forces the boundary to be totally umbilical with
constant mean curvature. In this article, we study this question for spinors solutions of the
Dirac equation.

Convention: In the following we assume that if Σn−1 is a compact manifold which is isomet-
rically immersed in two n-dimensional manifolds, then these immersions induce the same spin
structure on Σn−1.

3. Domains with positive scalar curvature

In this section, we consider an n-dimensional compact Riemannian spin manifold (Mn, g) with
nonnegative scalar curvature R. Assume that M has a smooth boundary ∂M which has p
connected components ∂Mj with nonnegative mean curvature H(j) for all 1 ≤ j ≤ p. We first
prove that under suitable assumptions on the mean curvature of the boundary, we can extend a
spinor field satisfying the Dirac equation (1) to a parallel spinor field on M . Then we apply this
result to obtain several rigidity results for compact Riemannian spin manifolds with boundary.
The first result we get is the following:

Theorem 1. Let (Mn, g) be an n-dimensional compact and connected Riemannian spin manifold
with smooth boundary ∂M . Assume that the scalar curvature of M is nonnegative, that the mean
curvature of each connected component ∂Mj of ∂M is nonnegative (and non identically zero).
If there exists a smooth spinor field Φ ∈ Γ(Sj0) satisfying:

DΦ =
n− 1

2
H0Φ, (8)

where H0 is a smooth function on ∂M|j0 such that 0 ≤ H0 ≤ H(j0), then (Mn, g) has a parallel

spinor field, the boundary is connected and H(j0) = H0.

In this theorem, we let Sj0 := ΣM|∂Mj0
. The proof of this result relies on the Schrödinger-

Lichnerowicz formula [16] which gives a relation between the square of the Dirac operator and
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the spin Laplacian. More precisely, we have:

D2 = ∇∗∇ +
R

4
, (9)

and when integrated over M (see [12]) yields to:
∫

M

(
|∇ψ|2 − |Dψ|2 +

1

4
R|ψ|2

)
dv =

∫

∂M

(
〈Dψ,ψ〉 −

n− 1

2
H|ψ|2

)
ds (10)

for all ψ ∈ Γ(ΣM). In comparison with the classical Reilly formula on functions (see [21]),
Formula (10) is called the spinorial Reilly formula. The other key point in the proof of Theorem 1
is an adaptated choice of boundary conditions for the Dirac operator on M . For more details on
this subject, we refer to [7] or [10]. We consider here the MIT condition defined by the pointwise
orthogonal projection:

P± : L2(S) −→ L2(V ±)
ϕ 7−→ 1

2(Id± iγ(ν))ϕ

where V ± is the subbundle of S whose fiber is the eigenspace associated with the eigenvalue ±1
of the involution iγ(ν). One can then check that this map defines an elliptic boundary condition
for the Dirac operator D of M and we can prove (see [13]):

Lemma 2. Let (Mn, g) be an n-dimensional compact Riemannian spin manifold with smooth
boundary ∂M , then the map

D : {ϕ ∈ H2
1 (ΣM) : P±ϕ|∂M = 0} −→ L2(ΣM)

is invertible.

We can now give the proof of our first result.

Proof of Theorem 1: Let Φ ∈ Γ(Sj0) a solution of the Dirac equation (8) and we extend this

spinor field on M by Φ̃ in such a way that it vanishes on the other components of ∂M , that is:

Φ̃j := Φ̃|∂Mj
=

{
Φ if j = j0
0 if j 6= j0.

(11)

Lemma 2 ensures the existence of a unique smooth spinor field Ψ ∈ Γ(ΣM) satisfying the
boundary problem:

{
DΨ = 0 on M

P±Ψ|∂M = P±Φ̃|∂M along ∂M,
(12)

which by (11) gives:




DΨ = 0 on M
P±Ψ|∂Mj0

= P±Φ along ∂Mj0

P±Ψ|∂Mj
= 0 along ∂Mj for j 6= j0.

(13)

In the sequel, we will denote equally a spinor field on M and its restriction on the boundary.
Using the spinorial Reilly formula (10) and since R ≥ 0, we get:

0 ≤

∫

M

(
|∇Ψ|2 +

1

4
R|Ψ|2

)
dv =

p∑

j=1

∫

∂Mj

(
〈DΨ,Ψ〉 −

n− 1

2
H(j)|Ψ|2

)
ds. (14)
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We now prove that the boundary term in the preceding formula is nonpositive. First we observe
that since the spinor Φ satisfies the Dirac equation (8) on ∂Mj0 , we obtain with the help of (6)
that:

D(P±Φ) =
n− 1

2
H0P

∓Φ. (15)

On the other hand, for all ϕ ∈ Γ(S), an integration by parts using the symmetry of the Dirac
operator D and the decomposition ϕ = P+ϕ+ P−ϕ yield:

∫

∂M
〈Dϕ,ϕ〉ds = 2

∫

∂M
Re〈D(P±ϕ), P∓ϕ〉ds.

Now for ϕ = Ψ, we get with (12) and (15):
∫

∂Mj0

〈DΨ,Ψ〉ds = (n− 1)

∫

∂Mj0

H0 Re〈P∓Φ, P∓Ψ〉ds. (16)

Moreover, since |P∓Ψ − P∓Φ|2 ≥ 0, we have:

2Re〈P∓Φ, P∓Ψ〉 ≤ |P∓Ψ|2 + |P∓Φ|2, (17)

which leads to: ∫

∂Mj0

〈DΨ,Ψ〉ds ≤
n− 1

2

∫

∂Mj0

H0

(
|P∓Ψ|2 + |P∓Φ|2

)
ds. (18)

We also remark that the symmetry of D and (15) give:
∫

∂Mj0

H0|P
±Φ|2ds =

∫

∂Mj0

H0|P
∓Φ|2ds.

Using this relation in (18) and since P±Ψ = P±Φ on ∂Mj0 , we get:
∫

∂Mj0

〈DΨ,Ψ〉ds ≤
n− 1

2

∫

∂Mj0

H0|Ψ|2ds

with equality if and only if P∓Ψ = P∓Φ on ∂Mj0 . Since we assumed that 0 ≤ H0 ≤ H(j0):
∫

∂Mj0

(
〈DΨ,Ψ〉 −

n− 1

2
H(j0)|Ψ|2

)
ds ≤ 0. (19)

Now if we look at the boundary term in (14) for j 6= j0, we have:
∫

∂Mj

(
〈DΨ,Ψ〉 −

n− 1

2
H(j)|Ψ|2

)
ds = −

n− 1

2

∫

∂Mj

H(j)|P∓Ψ|2ds

because (11) gives P±Ψ = P±Φ̃j = 0 and so:
∑

j 6=j0

∫

∂Mj

(
〈DΨ,Ψ〉 −

n− 1

2
H(j)|Ψ|2

)
ds ≤ 0 (20)

since H(j) ≥ 0. Moreover, equality occurs in (20) if and only if P∓Ψ = 0 (because H(j) is a
non zero smooth function on ∂Mj). Using (17) and (20), we conclude that the boundary term
in (14) is nonpositive and so we have equality in the spinorial Reilly formula. Finally we have
shown that the spinor field Ψ ∈ Γ(ΣM) satisfies:

∇Ψ = 0 and Ψ|∂M = Φ̃|∂M . (21)

In this case, the boundary has to be connected. Indeed, since the spinor Ψ is parallel, it has
a non zero constant norm on M (since M is connected), hence on every connected component
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of ∂M . However since Φ̃j = 0 for j 6= j0 and Ψ|∂Mj0
= Φ, (21) holds only if the boundary is

connected (otherwise the norm of Ψ is not constant). On the other hand, using the spinorial

Gauss formula (2) and since Ψ is parallel, we easily check that DΨ = n−1
2 H(j0)Ψ and H(j0) = H0

since Ψ satisfies (8) and has no zeros. �

Remark 1. Under the assumptions of Theorem 1, the second fundamental form of (∂M, g) is
completely determined by the spinor field Φ ∈ Γ(S) which satisfies (8) and more precisely by
its energy-momentum tensor TΦ. Indeed, we proved that the spinor Φ is a generalized Killing
spinor field (in the sense of [4]), that is it satisfies:

∇S

XΦ = −
1

2
γS

(
A(X)

)
Φ,

for all X ∈ Γ
(
T (∂M)

)
. Thus we can easily check that (see [19]):

A(X,Y ) := g
(
A(X), Y

)
= 2TΦ(X,Y ),

where TΦ is the energy-momentum tensor associated with Φ defined (on the complement set of
zeros of Φ) by:

TΦ(X,Y ) :=
1

2
Re 〈γ(X)∇S

Y Φ + γ(Y )∇S

XΦ,
Φ

|Φ|2
〉

for X ∈ Γ
(
T (∂M)

)
.

Remark 2. In the 3-dimensional case, one can refine the conclusion of Theorem 1. In fact,
if (M3, g) is a manifold satisfying these assumptions then its Ricci tensor vanishes and we can
conclude that (M3, g) is flat.

Thanks to Theorem 1, we obtain new rigidity results for compact manifolds with boundary
which highlight that the boundary behaviour of the metric has an influence on the metric in
the interior of the manifold. The main argument is to observe that the Dirac equation (8) has
a nice geometric interpretation. Indeed, it is quite easy to show that if (Σn−1, g) is a smooth
oriented hypersurface with mean curvature H0 in a Riemannian spin manifold (Nn, g̃) carrying
a parallel spinor field Φ ∈ Γ(ΣN) then Φ|Σ satisfies the Dirac equation (8). As a consequence
of this remark, we get a counterpart of results of Ros [22] and Hang-Wang [14] in the spinorial
setting:

Theorem 3. Let (Mn, g1) be an n-dimensional complete Riemannian spin manifold with non-
negative scalar curvature and (Σn−1, g) a compact hypersurface endowed with the induced Rie-
mannian and spin structures. Assume that there exists an isometric immersion

F1 : (Σn−1, g) → (Mn, g1)

with mean curvature H1 and such that F1(Σ
n−1) bounds a compact domain Ω in M . Then if

there is another isometric immersion

F2 : (Σn−1, g) → (Nn, g2)

where (Nn, g2) is a Riemannian manifold carrying a parallel spinor and such that the mean
curvature H2 ≥ 0 of F2 satisfies H1 ≥ H2, then the domain (Ω, g1) carries a parallel spinor.

Proof: The restriction of the parallel spinor field by F2 yields a solution of the Dirac equation
(8) with H0 = H2 and thus Theorem 1 allows to conclude. �
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Remark 3. The simply connected manifolds carrying parallel spinor fields are classified in
[25] and thus Theorem 3 can be applied for manifolds with boundary whose boundary can be
isometrically immersed in this class of manifolds.

Remark 4. In the statement of Theorem 3, if we assume that F2 is an isometric immersion
in R

n endowed with its Euclidean metric, one can check that (Ω, g1) is flat. If moreover F2 is
an isometric embedding, an argument similar to Proposition 2 of [14] allows to conclude that
(Ω, g1) is isometric to a domain in R

n.

As a corollary of Theorems 1 and 3, we give a proof of a conjecture by Schroeder and Strake
[24]. More precisely, they prove:

Theorem ([24]) 1. Let (Mn, g) a compact and connected Riemannian manifold with nonneg-
ative Ricci curvature and with convex boundary (that is A ≥ 0). Assume that the sectional
curvature of M vanishes on a neighbourhood of ∂M and that one of the following conditions
holds:

(1) ∂M is simply connected
(2) the dimension of ∂M is even and ∂M is strictly convex at some point p ∈ ∂M .

Then (Mn, g) is flat.

As pointed out in [24], the condition on the sectional curvature is very strong and the authors
conjecture that their results should hold under the weaker condition of vanishing of the sectional
curvature along the boundary. In [14], F. Hang and X. Wang proved the part (1) of this
conjecture. In fact, they observe that it is enough to impose the nonnegativity of the mean
curvature of the boundary and not necessarily its convexity. If the manifold is spin, they can
relax the condition on the Ricci curvature by only assuming the nonnegativity of the scalar
curvature. However, in this case they need the convexity of the boundary. Here the spin
assumption is essentially technical because their proof relies on some positive mass theorems
(see [23]) proved with spinors [26]. We give here a generalization of Hang and Wang’s result and
thus of a part of the Schroeder and Strake’s conjecture. More precisely, we get:

Corollary 4. Let (Mn, g) an n-dimensional compact, connected Riemannian spin manifold with
boundary and with nonnegative scalar curvature. If every component of the boundary of M is
simply connected with nonnegative mean curvature and the sectional curvature vanishes on ∂M ,
then the boundary has only one connected component and (Mn, g) is flat.

Proof: We first remark that since the sectional curvature κM of M is identically zero on ∂M ,
the Weingarten map A satisfies the Gauss and Codazzi equations:

(∇∂M
X A)Y = (∇∂M

Y A)X

R∂M (X,Y )Z = g
(
A(Y ), Z

)
A(X) − g

(
A(X), Z

)
A(Y ),

for X,Y,Z ∈ Γ
(
T (∂M)

)
. On the other hand, the boundary ∂M is simply connected, then

the fundamental theorem for hypersurfaces (see [15] for example) ensures the existence of an
isometric immersion F of (∂M, g) in (Rn, eucl) with Weingarten map given by A. With this

immersion, we get 2[n/2] spinor fields Φi ∈ Γ(S) such that:

∇S

XΦi = −
1

2
γS

(
A(X)

)
Φi

for all X ∈ Γ
(
T (∂M)

)
and thus DΦi = n−1

2 HΦi. These spinor fields are the restriction (by F )

on S of 2[n/2] parallel spinor fields on ΣR
n. Thus the assumptions of Theorem 1 (or Theorem 3)

are fulfilled and one concludes that the boundary is connected and that each spinor field Φi
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comes from a parallel spinor field on M . Finally, we get a maximal number of parallel spinor
fields and thus (Mn, g) is flat. �

Another application of Theorems 1 and 3 is given by a simple proof of a rigidity result for the
unit Euclidean ball. This result has been proved by P. Miao [17] as a consequence of a positive
mass theorem for asymptotically flat manifolds for which the metric is not smooth along a
hypersurface. The proof we give here relies only on Spin Geometry and does not use this strong
but quite technical result. We show:

Corollary 5. Let (Mn, g) be a compact and connected Riemannian spin manifold with smooth
boundary. Assume that the scalar curvature of M is nonnegative and that the boundary is
isometric to the standard sphere S

n−1 with mean curvature satisfying H ≥ 1. Then (Mn, g) is
isometric to the unit ball of R

n.

Proof: From Theorem 1 (or 3), we have a basis of ΣM made of parallel spinor fields whose
restrictions correspond to extrinsic Killing spinors on the boundary (in the sense of [9]). On the
other hand, using the spinorial Gauss formula (2) we see that the boundary has to be totally
umbilical with constant mean curvature. As a conclusion, M is a compact flat Riemannian spin
manifold whose boundary is a totally geodesic round sphere, then (Mn, g) is isometric to the
unit Euclidean ball of (Rn, eucl). �

Remark 5. One can check that the assumptions of Corollary 5 are not covered in the work of
Hijazi and Montiel [9].

Remark 6. It is clear that Corollary 5 holds if the boundary is isometric to the sphere S
n−1(r)

with radius r > 0 and with mean curvature satisfying H ≥ 1/r. In this case, (Mn, g) is isometric
to the Euclidean ball with radius r.

Under the assumptions (and notations) of Theorem 3, one can also ask the following question:
can the domain (Ω, g1) be isometrically immersed in (Nn, g2)? We don’t give an answer to
this question here but give some ideas for further investigations. For this, we assume that the
image of (Σn−1, g) by F2 also bounds a compact domain in (Nn, g2). With the help of Remark
1, one concludes that if Ai denotes the second fundamental form of Σ for Fi with i = 1, 2,
we get A1 = A2. Using the recent work of M.T. Anderson and M. Herzlich [2] on the unique
continuation properties for Einstein manifolds with boundary, we get:

Corollary 6. Let (Ωn, g1) a compact and connected Riemannian spin manifold with nonnegative
scalar curvature. Assume that its boundary Σn−1 with mean curvature H1 can be isometrically
embedded in a Riemannian spin manifold (Nn, g2) carrying a parallel spinor field with mean
curvature less than H1. Then there exists a neighborhood of (Σn−1, g) in (Ωn, g1) which can be
isometrically embedded in (Nn, g2).

4. Domains with negative scalar curvature

In this section, we prove rigidity results similar to Theorems 1 and 3 in the hyperbolic setting.
More precisely, we consider an n-dimensional connected and compact Riemannian spin mani-
fold (Mn, g) with smooth boundary ∂M . We also assume that the scalar curvature of M (for
the metric g) satisfies R ≥ −n(n − 1) and that the mean curvature H of the boundary ∂M is
nonnegative (and non identically zero).
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Here it is important to note that the proof of Theorem 1 lies on two important facts: the
Schrödinger-Lichnerowicz formula and a suitable boundary condition for the Dirac operator of
M . So we first recall the hyperbolic version of the Schrödinger-Lichnerowicz formula where a
proof can be found in [1], [11] or [18]:

∫

M

(
|Pψ|2 +

1

4
R̃|ψ|2 −

n− 1

n
|D̃±ψ|2

)
dv =

∫

∂M

(
〈D̃±ψ,ψ〉 −

n− 1

2
H|ψ|2

)
ds (22)

where R̃ := R + n(n − 1), D̃± := D ∓ n
2 i and D̃± := D ± n−1

2 iγ(ν). The operator P in (22) is
the twistor operator (or Penrose operator) locally given by:

PXψ := ∇Xψ +
1

n
γ(X)Dψ, (23)

for ψ ∈ Γ(ΣM) and X ∈ Γ(TM). A spinor ψ such Pψ = 0 is called a twistor spinor. On

the other hand, one can check that the operator D̃± which appears in the boundary term of
(22) is an elliptic first order self-adjoint differential operator and its spectrum is an unbounded
sequence of real numbers. Observe now that the choice of the boundary condition deeply lies on

its behaviour with respect to the twisted Dirac operator D̃±. The condition used in Section 3 is
not appropriate and that is why we will use another elliptic boundary condition for the Dirac
operator D: the condition associated with a chirality operator. This kind of condition does not
exist on all manifolds since it needs a chirality operator, that is a linear map:

G : Γ(ΣM) −→ Γ(ΣM),

such that:

G2 = Id, 〈Gψ,Gϕ〉 = 〈ψ,ϕ〉 (24)

∇X(Gψ) = G(∇Xψ), γ(X)G(ψ) = −G(γ(X)ψ), (25)

for all X ∈ Γ(TM) and for all spinor fields ψ,ϕ ∈ Γ(ΣM). If we assume the existence of such
an operator, we can define an involution on S by:

γ(ν)G : Γ(S) −→ Γ(S),

which gives a decomposition of the spinor bundle S into the direct sum of two eigensubbundle
associated with the eigenvalues 1 and −1. The pointwise orthogonal projection:

B± :=
1

2
(Id± γ(ν)G)

on the eigensubbundle associated with the eigenvalue ±1 defines an elliptic boundary condition
for the Dirac operator D of M . For more details on this boundary condition, we refer to [10] or
[20] for example.

We can now state the main result of this section which can be seen as a hyperbolic counterpart
of Theorem 1 of Section 3. Indeed, we have:

Theorem 7. Let (Mn, g) a connected and compact Riemannian spin manifold with smooth
boundary equipped with a chirality operator G. Assume that the scalar curvature of M satisfies
R ≥ −n(n − 1) and that every connected component ∂Mj of ∂M in M has nonnegative mean

curvature H(j) ≥ 0. If there exists a smooth spinor field Φ ∈ Γ(Sj0) such that:

D̃±Φ =
n− 1

2
H0Φ, (26)

where H0 is a nonnegative (and non zero) smooth function on ∂M with 0 ≤ H0 ≤ H(j0), the
manifold (Mn, g) carries an imaginary Killing spinor, the boundary is connected and H(j0) = H0.
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In order to prove this result, we first show the following lemma:

Lemma 8. Under the assumptions of Theorem 7, the Dirac operator with domain:

D̃± : {ψ ∈ H2
1 (ΣM) : B±ψ|∂M = 0} −→ L2(ΣM)

is invertible.

Proof: Suppose that there exists a non trivial spinor field ϕ0 ∈ Γ(ΣM) solution of the boundary
value problem: {

D̃+ϕ0 = 0 on M
B±ϕ0 |∂M = 0 along ∂M

that is: {
Dϕ0 = n

2 iϕ0 on M
B±ϕ0 |∂M = 0 along ∂M.

The Green formula gives for all ψ ∈ Γ(ΣM):
∫

M
〈Dψ,ψ〉dv −

∫

M
〈ψ,Dψ〉dv = −

∫

∂M
〈γ(ν)ψ,ψ〉ds (27)

and by sesquilinearity of the Hermitian product on ΣM , we get for ψ = ϕ0:∫

M
|ϕ0|

2dv = 0,

which implies that ϕ0 ≡ 0 on M and so a contradiction with our assumptions. The conclusion
follows from the fact that:

(D̃+)∗ = D̃− =⇒ CoKer (D̃+) ≃ Ker (D̃−) = {0},

where we used (27). �

In the following lemma, we study the behaviour of the twisted Dirac operator D̃+ with respect
to the boundary condition associated with a chirality operator.

Lemma 9. If Φ ∈ Γ(S) is a smooth spinor field satisfying the Dirac equation (26), we have:

(1) D̃+(B±Φ) = n−1
2 H0B

∓Φ

(2)
∫
∂M H0|B

±Φ|2ds =
∫
∂M H0|B

∓Φ|2ds

Proof: For (1), it is sufficient to note that:

D̃+(B±ψ) = B∓(D̃+ψ),

and since Φ is a solution of (26), a simple identification of the components of a spinor field with
respect to the decomposition associated with the orthogonal projections B± gives the result.

Point (2) follows from (1) and from the symmetry of the operator D̃+. �

The proof of Theorem 7 is then similar to the one of Theorem 1. We don’t give the details here
since Lemmas 8 and 9 show that the condition associated with a chirality operator has the same

behaviour with respect to the twisted Dirac operator D̃± as the MIT boundary condition with
respect to the extrinsic Dirac operator D.

As a consequence of Theorem 7, we get rigidity results for manifolds with boundary with scalar
curvature bounded by below by a negative constant. The main geometric result we prove in this
setting is:
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Theorem 10. Let (Mn, g1) be an n-dimensional complete Riemannian spin manifold with scalar
curvature satisfying R ≥ −n(n − 1) and let (Σn−1, g) be a compact hypersurface endowed with
the induced Riemannian and spin structures. Assume that there exists an isometric immersion

F1 : (Σn−1, g) → (Mn, g1)

with mean curvature H1 and such that F1(Σ
n−1) bounds a compact domain Ω in M . Then if

there is another isometric immersion

F2 : (Σn−1, g) → (Nn, g2)

where (Nn, g2) is a Riemannian manifold carrying an imaginary Killing spinor (with constant
∓(i/2)) and such that the mean curvature H2 ≥ 0 of F2 satisfies H1 ≥ H2, then the domain
(Ω, g1) carries an imaginary Killing spinor (with same constant).

Proof: It is sufficient to note that the immersion F2 of (Σn−1, g) in (Nn, g2) yields to the exis-
tence of a smooth spinor field on S satisfying the Dirac equation (26). Moreover the assumptions
on the mean curvatures H1 and H2 enable us to apply Theorem 7 and thus one concludes that
the domain (Ω, g1) carries an imaginary Killing spinor. �

From this result, we obtain a hyperbolic version of Corollary 4 which gives a counterpart of
Schroeder and Strake’s conjecture in this setting. More precisely, we have:

Corollary 11. Let (Mn, g) be a connected and compact Riemannian spin manifold such that
the scalar curvature satisfies R ≥ −n(n−1). If every component of the boundary of M is simply
connected with nonnegative mean curvature and the sectional curvature is −1 on ∂M , then the
boundary has only one connected component and (Mn, g) is hyperbolic.

Proof: Since ∂M is simply connected and the sectional curvature κM of M is −1 on ∂M , the
boundary (∂M, g) can be isometrically immersed in the standard hyperbolic space (Hn, gst)
which is endowed with a maximal number of imaginary Killing spinors. Thus using Theorem
10 (or Theorem 7), we get the existence of a maximal number of imaginary Killing spinors on
(Mn, g) and thus by [6] and [5] it has to be hyperbolic. �

Remark 7. All the preceding results hold for even dimensional manifolds since in these dimen-
sions, the spinor bundle is endowed with a chirality operator (the volume element of the spinor
bundle).

Remark 8. It is clear that with Theorem 7, we can prove a rigidity result for geodesic balls
of the hyperbolic space H

n. However in this case we need the existence of a chirality operator
which is in fact not necessary as explained below. Indeed, one can obtain such a result from

an estimate on the first eigenvalue of the twisted Dirac operator D̃± proved by Hijazi, Montiel
and Roldán in [11]. In fact, they show that if (Mn, g) is a connected compact Riemannian spin
manifold with smooth boundary ∂M such that the scalar curvature of M is bounded from below
by −n(n− 1) and the mean curvature H of ∂M in M is nonnegative:

λ±1 ≥
n− 1

2
inf
∂M

H (28)

where λ±1 denotes the first eigenvalue of D̃±. Moreover equality occurs if and only if the eigen-
spinors associated with the eigenvalue λ±1 consist of restrictions to ∂M of imaginary Killing
spinors on M . With this result, we can prove:
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“Let (Mn, g) a compact domain in a complete Riemannian spin manifold with scalar curvature
satisfying R ≥ −n(n− 1). Assume that the boundary of M is isometric to the standard round
sphere S

n−1
(

1√
α2−1

)
(α > 1) and that its mean curvature is such that H ≥ α. Then (Mn, g) is

isometric to the standard ball of H
n whose boundary is totally umbilical (and isometric to the

standard sphere of radius 1√
α2−1

).”

Indeed, it is enough to note that for each real Killing spinor on the boundary (which exists since
the boundary is isometric to a round sphere), we can construct an eigenspinor for the Dirac

operator D̃± associated with the eigenvalue n−1
2 α. More precisely, if Ψ denotes a real Killing

spinor with Killing number 1
2
√

α2−1
then the spinor field defined by:

Ψ± := Ψ ± (α−
√
α2 − 1)iγ(ν)Ψ,

satisfies:

D̃±Ψ± =
n− 1

2
αΨ±. (29)

Thus the assumption H ≥ α shows that the equality case in (28) is reached and then from [11]
the spinor field Ψ± is the restriction of an imaginary Killing spinor on (Mn, g). Since there is a
maximal number of real Killing spinors on ∂M , one easily check that there is a maximal number
of imaginary Killing spinors on M and [6] and [5] give the result.
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