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for a Generalized Fast Marching Method

Nicolas Forcadel1,2
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Abstract

In [4], the authors have proposed a generalization of the classical Fast Marching

Method of Sethian for the eikonal equation in the case where the normal velocity

depends on space and time and can change sign. The goal of this paper is to propose

a modified version of the Generalized Fast Marching Method proposed in [4] for which

we state a general comparison principle. We also prove the convergence of the new

algorithm.

AMS Classification: 65M06, 65M12, 49L25 .
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1 Introduction

In this paper, we are interested in the Fast Marching Method (FMM). This method has been introduced
by Sethian [8, 9] (see also Tsitsiklis [10] for a previous single-pass method) and adapted for general given
normal velocity c(x, t) in [4] (we refer to [4] for a detailed discussion and for more references on Fast Marching
Method). More precisely, in [4] the authors have proposed a generalization of the classical FMM for the
following equation

(1.1)

{
θt = c(x, t)|Dθ| in R

N × (0,+∞),
θ(·, 0) = 1Ω0

− 1Ωc
0

on R
N ,

and we have proved a convergence result in the class of discontinuous viscosity solutions for our Generalized
Fast Marching Method (GFMM). A major improvement of our GFMM is that it can deal with a velocity
changing sign. A drawback of this algorithm is that it was not completely monotone (see Subsection 5.2).
In (1.1) and throughout the paper, θt denotes the time derivative of θ and Dθ its gradient in space.

The goal of this paper is to propose a GFMM slightly different from the one developed in [4], which
is now truly monotone (see the comparison principle Theorem 3.4). The monotony of a scheme is a very
important property. Indeed it is a key ingredient to prove the convergence of the scheme (see the general
proof of convergence of Barles and Souganidis [3]), but it can also be used to prove some error estimate (we
refer to Crandall, Lions [6]). In this direction, we give some heuristic error estimate in Theorem 8.1. We
will explore more carefully the rate of convergence of our GFMM in a future work.

The comparison principle can also be useful to prove convergence result for non-local dynamics. We will
use, in particular, this algorithm in a future work [5] to study numerically the dynamics of one dislocation
line (see Alvarez, Hoch, Le Bouar, Monneau [2] for a description of the mathematical model).
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Organization of the paper
In Section 2, we give the modified version of the GFMM. The main results are presented in Section 3. In
Section 4, we give some general properties of the algorithm. Sections 5 and 6 are devoted to the proof of
the comparison principle Theorem 3.4. We also give a counter-example for the GFMM of [4]. In Section
7, we prove the convergence of the algorithm (see Theorem 3.6) and we provide an heuristic error estimate
(Theorem 8.1).

2 The monotone GFMM algorithm

We begin this section by describing the new feature of our algorithm which makes it monotone.
Let us first recall the basic ideas of the classical FMM (as well as the GFMM of [4]). One feature of the

classical FMM is to generate a sequence of times tn. In the GFMM algorithm (and also in the FMM) we
also need a phase parameter θn

I with values +1 or −1 (which is in fact represented by the frozen points and
its complementary set in the classical FMM) defined at each step n of the algorithm and for any I ∈ Z

N .
This θn

I should be thought as a discretisation of the solution θ of equation (1.1) at time tn and at point
xI = I∆x (∆x being the space step).

To make evolve the front (i.e. the discontinuity of θn
I ), the FMM also needs to introduce a time un

I

defined for I in the whole front at the n-th iteration of the algorithm. This time un
I can be interpreted in

the classical FMM as the time when the front reaches the point I (this interpretation is essentially true for
our GFMM algorithm except in the more delicate case where the velocity vanishes). The goal is then to find
the next point reached by the front. To do this, the idea is to compute a tentative value ũn

I (at the n-th
iteration and at the point xI) of the arrival time for all points which can be immediately reached by the
front (which is called the Narrow Band). The computation of the tentative value ũn

I uses the time un
J for J

in the neighbourhood of I. The next points reached by the front is then the ones which have the minimum
tentative value. We then denote by tn+1 this minimum value and we accept (i.e. we change the θ) at time
tn+1 the points that realize the minimum and we iterate.

In the case of positive velocity, it has been proved that the GFMM scheme of [4] is monotone (as well
as the classical FMM). This is not the case when the velocity can change sign (see the counter example
in Subsection 5.2). This essentially comes from the change of the sign in time of the velocity. Indeed, to
compute the tentative value ũn

I , when the velocity changes sign, the good notion to use is the time when
the front begins to go from a neighbour J of I to I, and not the time when the front reaches the point J .
This two notions are the same when the velocity is of constant sign in time but they differ when the velocity
changes sign. Moreover, for a point J , the time when the front begins to go from J to each direction can be
different. This is the reason why we have to introduce several times for each node, in fact a time for each
direction (see the details of the algorithm in Section 2).

With this new notion, we recover a good interpretation of the computation (even when the velocity
vanishes or changes sign) and it is in fact sufficient to recover the monotonicity of the scheme.

2.1 Preliminaries

We consider a modified version of the GFMM algorithm introduced in [4].
Let us consider a lattice Q = {xI = (xi1 , .., xiN

) = (i1∆x, .., iN∆x), I = (i1, .., iN ) ∈ Z
N} with space step

∆x. We will also use a time step ∆t > 0 (which does not satisfy any CFL condition).
The following definitions will be useful in the following.

Definition 2.1 The neighbourhood of the node I ∈ Z
N is the set

V (I) ≡ {J ∈ Z
N : |J − I| ≤ 1}.

Definition 2.2 Given the speed cn
I ≡ c(xI , tn) we define the function

ĉn
I ≡

{
0 if there exists J ∈ V (I) such that (cn

I cn
J < 0 and |cn

I | ≤ |cn
J |),

cn
I otherwise.

Definition 2.3 The numerical boundary ∂E of a set E ⊂ Z
N is

∂E ≡ V (E)\E
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with
V (E) =

{
J ∈ Z

N , ∃I ∈ E, J ∈ V (I)
}

Definition 2.4 Given a field θn : Z
N → {+1,−1}, we define the two phases

Θn
± ≡ {I : θn

I = ±1},

and the fronts
Fn
± ≡ ∂Θn

∓, Fn ≡ Fn
+ ∪ Fn

−.

We now describe our modified GFMM algorithm for unsigned velocity. As in the classical FMM, we
define the Narrow Band (NB) which consists on the points I ∈ Z

N that can be immediately reached by the
front:

NBn = {I ∈ Z
N , ∃ J ∈ V (I), θn

I = −θn
J and θn

I ĉn
I < 0}, NBn

± = NBn ∩ {I, θn
I = ±1}.

We observe that the Narrow Bands NBn
± are related with the previous definition of fronts set as following:

NBn
+ = Fn

+ ∩ {I, ĉn
I < 0}, NBn

− = Fn
− ∩ {I, ĉn

I > 0}.

Fig.1 shows the Front and the Narrow Band, the white part of the picture represents the domain where
the speed is negative and the grey part the domain with speed positive.

Figure 1: The Front F+ (white spot), the front F− (black spot), the Narrow Band NB+ (circled white
spot) and the Narrow Band NB−(circled black spot). In the white domain the speed is negative, in the grey
domain the speed is positive.

As in the FMM, for all I ∈ NBn, we have to compute a tentative value (which we denote ũn
I in the

sequel) of the arrival time of the front at point I. To compute this tentative value, we define the points that
are useful for I, i.e. that we will use in the computation of ũn

I :

Un(I) = {J ∈ V (I), θn
I = −θn

J}, Un = ∪I∈NBnUn(I).

For all the points J that are useful for a point I ∈ NBn (i.e. J ∈ Un(I)) we will introduce a time un
J→I .

This time un
J→I can be interpreted as the time when the front Fn begin to go from point J to point I and

will be used to compute the tentative value at point I.
The algorithm is now very similar to the classical Fast Marching Method. Once we have computed

the tentative values for all points of the Narrow Band, we denote by t̃n the minimum of all this values.
Unfortunately, this sequence of ”candidate” time is not non-decreasing, so we have to truncate t̃n to define
tn such that (see Step 6 of the algorithm):

0 ≤ tn − tn−1 ≤ ∆t

for a fixed ∆t (independent on ∆x). We then accept (in most of the cases, see Step 7 of the algorithm) all
the points that realize the minimum (i.e., we change the value of the θ), we redefine the values un

J→I and we
iterate.
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2.2 The algorithm step-by-step

We now give the details of the algorithm:

Initialization

1. Set n = 1

2. Initialize the field θ0 as

θ0
I =

{
1 for xI ∈ Ω0

−1 elsewhere

3. Initialize the time for points I

u0
I→K =

{
t0 if I ∈ U0(K) and K ∈ NB0

+∞ otherwise

Loop

4. Compute ũn−1 on NBn−1

Let I ∈ NBn−1, then we compute ũn−1
I as the solution of the following second order equation:

N∑

k=1

(
max
±

(
0, ũn−1

I − un−1
Ik,±→I

))2

=
(∆x)2

|ĉn−1
I |2

,

(2.1)

where
Ik,± = (i1, .., ik−1, ik ± 1, ik+1, .., iN ).

5. t̃n = min
{
ũn−1

I , I ∈ NBn−1
}
.

6. Truncate t̃n
tn = max(tn−1,min{t̃n, tn−1 + ∆t})

7. if tn = tn−1 + ∆t and tn < t̃n go to 4 with n := n + 1, θn = θn−1 and un = un−1.

8. Initialize the new accepted points
NAn

± = {I ∈ NBn−1
± , ũn−1

I = t̃n}, NAn = NAn
+ ∪ NAn

−

9. Reinitialize θn

θn
I =

{
−θn−1

I for I ∈ NAn

θn−1
I otherwise

10. Reinitialize un
I→K

un
I→K =

{
min(un−1

I→K , tn) if I ∈ Un(K)) and K ∈ NBn

+∞ otherwise

11. Set n := n + 1 and go to 4

Remark 2.5 In Step 12 of the algorithm described in [4], we defined un on all the front Fn, but in the
modified version of the GFFM, we define finite values of un (the useful time) only on the side of the front
where we need the values to propagate our computation. Moreover, in this new version, the time at point I
(un

I→K) depends on the neighbours K and is defined as the first time the point I becomes useful for K.

Remark 2.6 We refer to [4, Subsection 2.3] for a detailed discussion on the complexity and on the imple-
mentation of the algorithm.
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3 Main results

The physical sequence of time {tn, n ∈ N}, defined at the step 6 in the algorithm is non-decreasing and we
can extract a subsequence {tnk

, k ∈ N} strictly increasing such that

tnk
= tnk+1 = ... = tnk+1−1 < tnk+1

.

We denote by Sk
I the square cell Sk

I = [xI , xI + ∆x[×[tnk
, tnk+1

[ with

[xI , xI + ∆x[= ΠN
α=1[xiα

, xiα
+ ∆x[

and by ε the couple
ε = (∆x,∆t).

Let us define the following functions:

(3.1) θε(x, t) = θ
nk+1−1
I if (x, t) ∈ Sk

I .

Definition 3.1 (Comparable and compared times)
Let T > 0 and let us consider two velocities cu and cv. We denote by (tn)n and (un

J→K)n (resp. (sm)m and
(vm

J→K)m) the sequences of times and of useful times associated to the velocity cu (resp. cv). We say that
sm and tn are comparable if the property C(tn, sm) holds true:

(C(tn, sm))






tn ≤ sm < tn+1 and sm < sm+1

or
sm ≤ tn < sm+1 and tn < tn+1.

We say that θm
v and θn

u are compared and we denote this by θm
v º θn

u if for all J ∈ Z
N ,






θm
v,J > θn

u,J ,

or 




θm
v,J = θn

u,J =: σJ = ±1

and (with some obvious notation)
σJun

J→K ≥ σJvm
J→K for all K ∈ V (J)\{J} such that J ∈ Un

u (K) ∩ Um
v (K).

Remark 3.2 The notation θm
v º θn

u is abusive. Indeed, this is not an order relation and we also compare
the value un and vm in certain cases.

Remark 3.3 In the definition of θm
v º θn

u , the fact that the inequality σJun
J→K ≥ σJvm

J→K depends on σJ

can seem curious a priori. The reason is that we search the minimum time and so when σJ = 1, since the
point K has to be accepted for v before to be accepted for u, we should ask that un

J→K ≥ vm
J→K . On the

contrary, when σJ = −1, the point K has to be accepted for u before to be accepted for v and so we should
ask the reverse inequality.

Theorem 3.4 (Comparison principle for the θε)
Let T > 0. Let two velocities cu and cv. Given θ0

u,J (resp. θ0
v,J) for all J ∈ Z

N and u0
J→K for all J ∈ U0

u(K),

K ∈ NB0
u (resp. v0

J→K for all J ∈ U0
v (K), K ∈ NB0

v), we assume that

t0 := sup
J∈U0

u(K),K∈NB0
u

u0
J→K ≤ T,

(
resp. s0 := sup

J∈U0
v (K),K∈NB0

v

v0
J→K ≤ T

)

for a given T > 0.
We also assume that the two velocities satisfy for all (x, t) ∈ R

N × [min(t0, s0), T − ∆t]

inf
s∈[t,t+∆t]

cv(x, s) ≥ sup
s∈[t,t+∆t]

cu(x, s).

If C(t0, s0) and θ0
v º θ0

u, then
θε

v(x, t) ≥ θε
u(x, t)

for all (x, t) ∈ R
N × [max(t0, s0), T ].
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Remark 3.5 If we choose u0
J→K = 0 for all J ∈ U0

u(K), K ∈ NB0
u and v0

J→K = 0 for all J ∈ U0
v (K),

K ∈ NB0
v , then the condition θ0

v º θ0
u is equivalent to θ0

v,I ≥ θ0
u,I for all I ∈ Z

N .

The basic idea to prove this comparison principle is that when a point K is such that K ∈ NBn
u ∩NBm

v

with tn and sm comparable (i.e. C(tn, sm) is true), then all the points J such that J ∈ Un
u (K)∩Um

v (K) has
become useful for v before to become useful for u. Using the definition of the time un

J→K and vm
J→K (Step

10 of the algorithm), we can prove that this implies that vm
J→K ≤ un

J→K and we then get that ṽm
K ≤ ũn

K

(using the monotonicity of the computation of the candidate time, see Step 4 of the algorithm). It then
implies that the point K will be accepted for v before to be accepted for u. This preserves the comparison
of θu and θv.

We see here that the introduction of a time on each direction is crucial because it allows us to get that
vm

J→K ≤ un
J→K from the fact that J has become useful for v before to become useful for u. This implication

is not true if we impose that the time on a point is the same in each direction.

We now give the convergence result for the modified GFMM (presented in Subsection 2.2). To do this,
we make the following assumption

(A) The velocity c ∈ W 1,∞(RN × [0, T ]), for some constant L > 0 we have |c(x′, t′) − c(x, t)| ≤ L(|x′ − x| +
|t′ − t|), and Ω0 is a C2 open set, with bounded boundary ∂Ω0.

We also have to define the half-relaxed limits of θε:

(3.2) θ
0
(x, t) = lim sup

ε→0,y→x,s→t

θε(y, s), θ0(x, t) = lim inf
ε→0,y→x,s→t

θε(y, s).

Theorem 3.6 (Convergence Result)

Under assumption (A), θ
0

(resp. θ0) is a viscosity sub-solution (resp. super-solution) of (1.1). In particular,

if (1.1) satisfies a comparison principle, then θ
0

= (θ0)∗ and (θ
0
)∗ = θ0 is the unique discontinuous viscosity

solution of (1.1).

4 Preliminary results

In this section, we give some general properties of the algorithm that will be useful in the proofs.

Proposition 4.1 (General properties of the algorithm)
We have the following properties:

1. 0 ≤ tn − tn−1 ≤ ∆t

2. For all K ∈ Z
N and I ∈ Un(K), we have

un
I→K ≤ tn

3. NBn ∩ Un = ∅

4. If I ∈ NAn, then

un
I→K =

{
tn if I ∈ Un(K)
+∞ otherwise

5. If I ∈ NAn, then ũn−1
I ≤ tn.

6. If I ∈ Un−1(K) ∩ Un(K), then
un

I→K = un−1
I→K .

7. If I ∈ Un(K)\Un−1(K), then
un

I→K = tn.

8. If tn > tn−1 then t̃n ≥ tn.

9. If tn = tn−1, then t̃n ≤ tn.

6



Proof of Proposition 4.1

1. This is a straightforward consequence of Point 6 of the algorithm.

2. This is a straightforward consequence of Point 10 of the algorithm.

3. By contradiction, assume that there exists I and K ∈ V (I)\{I} such that I ∈ NBn ∩ Un(K). The
fact that I ∈ NBn implies that

(4.1) θn
I ĉn

I < 0.

The fact that I ∈ Un(K) implies that

(4.2) θn
I = −θn

K and θn
I ĉn

K > 0.

Combining (4.1) and (4.2), we get
ĉn
I ĉn

K < 0,

which contradicts the definition of ĉ.

4. By point 10 of the algorithm, we just have to prove that if I ∈ NAn, then min(un−1
I→K , tn) = tn. But

if I ∈ NAn, then I ∈ NBn−1 and so, by Property 3, we get that I 6∈ Un−1(K). This implies that
un−1

I→K = +∞.

5. By contradiction, assume that ũn−1
I > tn. Since I ∈ NAn, we get that

ũn−1
I = t̃n > tn.

By Step 6 of the algorithm, we deduce that tn = tn−1 + ∆t < t̃n and so by Step 7, no point are
accepted. Contradiction.

6. If I ∈ Un−1(K) ∩ Un(K), then by Step 10 of the algorithm, we have

un
I→K = min(un−1

I→K , tn) = un−1
I→K

where we have used Property 2 for the last equality.

7. If I ∈ Un(K)\Un−1(K), then by Step 10 of the algorithm, we have

un
I→K = min(un−1

I→K , tn) = tn

where we have used that un−1
I→K = +∞ since I 6∈ Un−1(K).

8. If tn > tn−1, then by Step 6 of the algorithm, we get

tn = min(t̃n, tn−1 + ∆t) ≤ t̃n.

9. If tn = tn−1, then by Step 6 of the algorithm, we get

tn−1 ≥ min(t̃n, tn−1 + ∆t)

and so tn = tn−1 ≥ t̃n.

Proposition 4.2 (Monotonicity of c → ĉ)
The application c 7→ ĉ is monotone. More precisely, if cv ≥ cu then ĉv ≥ ĉu.

Proof of Proposition 4.2 Let cv ≥ cu. We will prove that for all I ∈ Z
N , we have

(4.3) ĉv,I ≥ ĉu,I .

The proof is distinguished in four cases:
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Case 1: ĉv,I = cv,I and ĉu,I = cu,I .
In this case, we have

ĉv,I = cv,I ≥ cu,I = cu,I

and (4.3) is true.

Case 2: ĉv,I 6= cv,I and ĉu,I 6= cu,I .
In this case, we have ĉv,I = 0 = ĉu,I and so (4.3) is true.

Case 3: ĉv,I = cv,I and ĉu,I 6= cu,I .
This implies in particular that ĉu,I = 0. By contradiction, let us assume that

(4.4) ĉv,I = cv,I < 0 = ĉu,I .

Since cv ≥ cu, this implies in particular that cu,I < 0. Since ĉu,I 6= cu,I , we also deduce that there exists
J ∈ V (I) such that cu,J > 0 and |cu,I | ≤ |cu,J |. This implies that

|cv,I | ≤ |cu,I | ≤ |cu,J | = cu,J ≤ cv,J

and so ĉv,I = 0. This contradicts (4.4) and proves (4.3).

Case 4: ĉv,I 6= cv,I and ĉu,I = cu,I .
This case can be treated in the same way as Case 3.

Proposition 4.3 (Symmetry of the algorithm)
Let us consider two velocities cu and cv. We denote by (tun)n, (un

J→K)n, (θn
u)n (resp. (sv

m)m, (vm
J→K)m, (θm

v )m)
the sequences of times , of useful times and of field associated to the velocity cu (resp cv) and with the initial
condition θ0

u (resp. θ0
v).

We also define (sū
m)m, (ūm

J→K)m, (θm
ū )m (resp. (tv̄n)n, (v̄n

J→K)n, (θn
v̄ )n) the sequences of times , of useful

times and of field associated to the velocity cū = −cv (resp cv̄ = −cu) and with the initial condition θ0
ū = −θ0

v

(resp. θ0
v̄ = −θ0

u).
Then, we have the following equivalence:

θm
v º θn

u ⇐⇒ θn
v̄ º θm

ū

Proof of Proposition 4.3
Following [4, Lemma 4.1], we have

θm
ū = −θm

v , θn
v̄ = −θn

u , sū
m = sv

m, tv̄n = tun, ūm
J→K = vm

J→K , v̄n
J→K = un

J→K

Let us assume that θm
v º θn

u and let us prove that θm
ū º θn

v̄ (the other implication being similar).

Case 1: θm
v > θn

u

Then
θm

ū = −θm
v < −θn

u = θn
v̄ .

Case 2: θm
v = θn

u = σ
This implies that

θm
ū = θn

v̄ = σ̄ = −σ.

Let J ∈ Um
ū (K) ∩ Un

v̄ (K). This implies in particular that J ∈ Um
v (K) ∩ Un

u (K). Then, we have

σ̄v̄n
J→K = −σun

J→K ≤ −σvm
J→K = σ̄ūm

J→K

where we have used that θm
v º θn

u .
This implies that θn

v̄ º θm
ū .
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5 Comparison principle

5.1 Comparison principle for θ
ε

This subsection is devoted to the proof of Theorem 3.4.
To prove this theorem, we need the following comparison result for the tn time, whose proof is given in

Subsection 5.3.

Theorem 5.1 (Comparison principle for the tn times)
Under the assumptions of Theorem 3.4, we denote by (tn)n and (un

J→K)n (resp. (sm)m and (vm
J→K)m) the

sequences of times and of useful times associated to the velocity cu (resp. cv). Then θm
v º θn

u for every times
satisfying (C(tn, sm)) and tn, sm ≤ T .

Proof of Theorem 3.4
Let us define

t∗ = inf{t ≥ max(t0, s0) s.t. θε
v(x, t) < θε

u(x, t) for some x ∈ R
N}

and
x∗ s.t. θε

v(x∗, t∗) < θε
u(x∗, t∗).

Let m, n and J s.t. 




sm ≤ t∗ < sm+1,
tn ≤ t∗ < tn+1,
x∗ ∈ [xJ , xJ + ∆x).

Then θε
v(x

∗, t) = θm
v,J for t ∈ [sm, sm+1) and θε

u(x∗, t) = θn
u,J for t ∈ [tn, tn+1). Therefore t∗ = sm or t∗ = tn

and we can easily check that C(tn, sm) is true. This implies by Theorem 5.1 that θm
v º θn

u and then

θm
v,J ≥ θn

u,J

which is a contradiction.

5.2 Counter-example for GFMM of [4]

In this subsection, we give a counter-example in dimension one for the comparison principle for the GFMM
of [4], which holds for all ∆x and ∆t small enough. We recall that in the GFMM of [4], we affect ,to un (for
points that are not accepted) the time when the point enter in the front while in the GFMM of Subsection
2.2, we affect the time when the point becomes useful.

The velocity for cu and cv are given by

cu(x, t) =

{
max(0, 4

3x) if t ≤ 1
min(0,−2x) if t ≥ 17

16

, cv(x, t) =

{
max(0, x) if t ≤ 1
min(0,−3x) if t ≥ 17

16

and cu, cv ∈ Lip(RN × [0, T ]). The initial conditions are given by

θ0
u,i = θ0

v,i =

{
1 if i ≤ 0
−1 if i ≥ 1

We begin to compute the evolution for u. The result are presented in Figure 2 on the left.
A simple computation gives that the point i = 1 will be accepted at time t = 3

4 and we affect the value
u1 = u2 = 3

4 . The point i = 2 will not be accepted before the velocity changes sign because ũ2 = 9
8 > 17

16 .
When the velocity changes sign, the point i = 1 will be accepted again for ∆t small enough, with a time

u1 = u2 +
∆x

2∆x
=

5

4
>

17

16
.

We now compute the evolution for v. The result are presented in Figure 2 on the right. As before, the
point i = 1 will be accepted at time s = 1 and the point i = 2 will not be accepted before the velocity
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changes sign. Moreover, v2 = 1. When the velocity changes sign, the point i = 1 will be again accepted with
a time

v1 = v2 +
∆x

3∆x
=

4

3
>

5

4
.

As we see, during the time interval [5/4, 4/3], we have

θε
u(∆x, t) = −1 and θε

v(∆x, t) = 1

which contradicts the comparison principle.

x

t t

x

3
4

1

4
35

4
θε
u = 1 θε

u = −1
θε
v = 1 θε

v = −1

Figure 2: Counter-example for the comparison principle.

Remark 5.2 In this counter-example, we see that the contradiction comes from the value we put for the
node i = 2 which is the time when it enters in the front. This is the reason why, in our new GFFM (see
Subsection 2.2), we put the time when the point become useful. Since the velocity are ordered, we then have
u2 ≤ v2 and so the evolution preserves the inclusion (see Theorem 3.4).

5.3 Comparison principle for the tn times

This subsection is devoted to the proof of Theorem 5.1. To perform the proof, we will need the following
results

Lemma 5.3 (Two jumps, two arrivals)
Assume that θm−1

v º θn−1
u . Then, if sm−1 ≤ tn < sm (resp. tn−1 ≤ sm < tn) and tn, sm < T , then we have

θm−1
v º θn

u (resp. θm
v º θn−1

u ).

Lemma 5.4 (Two jumps, one arrival)
Assume that θm−1

v º θn−1
u , tn−1 < tn and sm−1 < sm. If sm = tn ≤ T , then θm

v º θn
u .

Proposition 5.5 (Stationary case with the same arrival)
Let us assume that tn−p−1 < tn−p = ... = tn < tn+1 and sm−q−1 < sm−q = ... = sm < sm+1 with p, q ≥ 0
and tn = sm ≤ T . If θm−q

v º θn−p
u , then θm

v º θn
u .

The proofs of Lemma 5.3 and 5.4 are given at the end of this subsection while the proof of Proposition 5.5
is given in Section 6.

Proof of Theorem 5.1
By contradiction, let us define

s∗ = inf {min(tn, sm) such that θm
v 6º θn

u , tn, sm ≤ T and C(tn, sm) is true}

Up to a symmetry (see Proposition 4.3), we can assume that s∗ = sm∗ for a certain index m∗. Then let us
define

n∗ = inf
{

n ≥ 0 such that θm∗

v 6º θn
u , tn ≤ T and C(tn, sm∗) is true

}

Therefore (tn∗ , sm∗) is the minimal couple such that θm∗

v 6º θn∗

u , sm∗ ≤ tn∗ < sm∗+1 and tn∗ < tn∗+1.
To simplify the notation, let us denote n∗ by n and m∗ by m. The proof is decomposed into two cases:

10



Case 1: sm < tn
We define p ≥ 0 such that

tn−p−1 < tn−p = ... = tn < tn+1.

Step 1 : θm
v º θn−p−1

u

To prove that θm
v º θn−p−1

u is true, it suffices to show that C(tn−p−1, sm) is satisfied (because (n,m) is the
minimal couple such that θm

v 6º θn
u). We recall that

sm < tn−p = ... = tn < sm+1, and tn−p+1 < tn−p.

If sm ≤ tn−p−1, then sm ≤ tn−p−1 < sm+1 and tn−p−1 < tn−p, while if tn−p−1 < sm, then tn−p−1 <
sm < tn−p and sm < sm+1.

So, we always have that property C(tn−p−1, sm) is satisfied, which implies that θm
v º θn−p−1

u .
Step 2: Contradiction.
Using Lemma 5.3 successively, we deduce that θm

v º θn−p
u ,..., θm

v º θn
u . Contradiction.

Case 2: sm = tn
Let us define p and q such that

tn−p−1 < tn−p = ... = tn < tn+1 and sm−q−1 < sm−q = ... = sm < sm+1.

We then have tn−p−1 ≤ sm−q−1 < sm−q = tn−p or sm−q−1 ≤ tn−p−1 < tn−p = sm−q and so
C(tn−p−1, sm−q−1) is satisfied. Therefore, this implies (by definition of (n,m)) that θm−q−1

v º θn−p−1
u .

Using Lemma 5.4, we deduce that θm−q
v º θn−p

u . Using Proposition 5.5, we then deduce that θm
v º θn

u .
Contradiction.

Before to give the proofs of Lemma 5.3 and 5.4, we need some preliminary results (Lemma 5.6 and 5.7).
The following lemma claims that if we compare θn−1

u and θm−1
v (in the sense θm−1

v º θn−1
u ), then we can

compare the candidate time ũn−1 and ṽm−1 on the Narrow Band. This essentially comes from our definition
of θm−1

v º θn−1
u in which we compare not only the θ (and so the point that will play a role in the computation

of the candidate time) but also the time on the useful points. The result then comes from the monotonicity
of the computation of the candidate time (see Step 4 of the algorithm).

Lemma 5.6 (Comparison of the candidate time ũ)
Assume that θm−1

v º θn−1
u , |tn−1 − sm−1| ≤ ∆t, with tn−1, sm−1 ≤ T . If

θm−1
v,I = θn−1

u,I = −1 and I ∈ NBn−1
u,−

(
resp. θm−1

v,I = θn−1
u,I = 1 and I ∈ NBm−1

v,+

)
,

then
I ∈ NBm−1

v,− and ũn−1
I ≥ ṽm−1

I
(
resp. I ∈ NBn−1

u,+ and ũn−1
I ≤ ṽm−1

I

)
.

Proof of Lemma 5.6
We do the proof in the case θm−1

v,I = θn−1
u,I = −1 and I ∈ NBn−1

u,− (the other case is similar). Since I ∈ NBn−1
u,− ,

we deduce that

(5.1)

{
∃J ∈ V (I)\{I} s.t. θn−1

u,J = 1

ĉn−1
u,I > 0

Step 1: I ∈ NBm−1
v,−

Since θm−1
v º θn−1

u , we deduce that θm−1
v,J ≥ θn−1

u,J = 1 and so θm−1
v,J = 1. This implies that

(5.2) I ∈ Fm−1
v,− .

Moreover |tn−1 − sm−1| ≤ ∆t and so
cv(·, sm−1) ≥ cu(·, tn−1).
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Using Proposition 4.2, yields

(5.3) ĉm−1
v,I ≥ ĉn−1

u,I > 0

where the last inequality comes from (5.1).
Combining (5.2) and (5.3), we deduce that

(5.4) I ∈ NBm−1
v,− .

Step 2: Ordering un−1
·→I ≥ vm−1

·→I

Let J ∈ V (I)\ {I}.
Case 1: θm−1

v,J = −1

Since θm−1
v º θn−1

u , we get that θm−1
v,J ≥ θn−1

u,J and then θn−1
u,J = −1. Therefore

un−1
J→I = +∞ = vm−1

J→I

Case 2: θm−1
v,J = +1

Assume first that θn−1
u,J = +1 which implies that J ∈ Un−1

u (I) ∩ Um−1
v (I). Then assumption θm−1

v º θn−1
u

implies that un−1
J→I ≥ vm−1

J→I with σJ = +.
In the case θn−1

u,J = −1, we get that un−1
J→I = +∞ which again implies un−1

J→I ≥ vm−1
J→I .

We therefore deduce that in the general case, we always have

un−1
J→I ≥ vm−1

J→I for any J ∈ V (I)\ {I} .

Step 3: ũn−1
I ≥ ṽm−1

I

We know that
N∑

k=1

(
max

(
0, ũn−1

I − un−1
Ik,±→I

))2
=

(∆x)
2

|ĉn−1
u,I |2

and
N∑

k=1

(
max

(
0, ṽm−1

I − vm−1
Ik,±→I

))2
=

(∆x)
2

|ĉm−1
v,I |2

with ĉm−1
v,I ≥ ĉn−1

u,I > 0 (see (5.3)), which implies, using also Step 2 that

ũn−1
I ≥ ṽm−1

I

and ends the proof of the Lemma.

The following lemma claims that a point J with θm
v,J = θn

u,J = −1 is useful for u before to be useful for
J . This essentially comes from the fact that the velocity are ordered.

Lemma 5.7 (Property of useful points)
Assume that J ∈ Um

v (K) ∩ Un
u (K), θm

v,J = θn
u,J = θn−1

u,J = −1 and |tn−1 − sm| ≤ ∆t with tn, sm ≤ T .

Then J ∈ Un−1
u (K).

Proof of Lemma 5.7
By contradiction, assume that J 6∈ Un−1

u (K). Since J ∈ Um
v (K) and θm

v,J = −1, we deduce that

θm
v,K = 1 and ĉm

v,K < 0.

In the same way, we also have
θn

u,K = 1 and ĉn
u,K < 0

Now because |tn−1 − sm| ≤ ∆t, we deduce that

ĉn−1
u,K ≤ ĉm

v,K < 0.

Using that θn−1
u,J = −1, ĉn−1

u,K < 0 and J 6∈ Un−1
u (K), we deduce that

θn−1
u,J = θn−1

u,K = −1

But we can not pass from θn−1
u,K = −1 to θn

u,K = +1 with a negative velocity ĉn−1
u,K < 0. Contradiction.
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Proof of Lemma 5.3
We make the proof in the case sm > tn, the other case being equivalent by symmetry (see Proposition 4.3).
By contradiction, assume that θm−1

v 6º θn
u . Then, there exists J such that

(5.5)






θm−1
v,J < θn

u,J

or
θm−1

v,J = θn
u,J = σJ and ∃K : J ∈ Um−1

v (K) ∩ Un
u (K) and σJun

J→K < σJvm−1
J→K

The proof is decomposed in two cases: in the first one, the value of θn
u changes while it do not change in

the second one.
Case 1: J ∈ NAn

u

There is only two non trivial sub-cases (but we treat all the cases below). The first one (Sub-case 1.1) is
when the two θ were different and are now the same. In this case, we will contradicts the second line of (5.5)
(on the time). This is rather easy because we know the value of un

J→K (which is in fact tn since J ∈ NAn
u).

The second non trivial sub-case (Sub-case 1.2.2) is when the θ were the same and are now order in the bad
sense (first line of (5.5)). In this case, we will prove that J should have been accepted for v before to be
accepted for u.

Sub-case 1.1: θm−1
v,J > θn−1

u,J

Then θm−1
v,J = 1 and θn−1

u,J = −1. Since J ∈ NAn
u, we deduce that θn

u,J = 1 = θm−1
v,J = σJ . We then have

vm−1
J→K ≤ sm−1 ≤ tn = un

J→K

where we have used the fact that J ∈ Um−1
v (K) and Proposition 4.1 Point 2 for the first inequality and the

fact that J ∈ NAn
u ∩ Un

u (K) joint to Proposition 4.1 Point 4 for the last equality. This contradicts (5.5).

Sub-case 1.2: θm−1
v,J = θn−1

u,J

Sub-case 1.2.1: θm−1
v,J = θn−1

u,J = 1
Since J ∈ NAn

u, we deduce that θn
u,J = −1. This contradicts (5.5).

Sub-case 1.2.2: θm−1
v,J = θn−1

u,J = −1

Step 1: ũn−1
J ≥ ṽm−1

J and J ∈ NBm−1
v,−

We want to apply Lemma 5.6. We recall that θm−1
v º θn−1

u and θm−1
v,J = θn−1

u,J = −1. Since J ∈ NAn
u, we

also deduce that J ∈ NBn−1
u,− . Moreover |tn−1 − sm−1| ≤ ∆t (because sm − sm−1 ≤ ∆t and tn − tn−1 ≤ ∆t).

We can then apply Lemma 5.6 to get

ũn−1
J ≥ ṽm−1

J and J ∈ NBm−1
v,−

Step 2: ṽm−1
J ≥ sm

Recall that sm = max(sm−1,min(sm−1 + ∆t, s̃m)). But sm > sm−1 and so

sm = min(sm−1 + ∆t, s̃m) ≤ s̃m.

Since, by definition of s̃m, we have s̃m ≤ ṽm−1
J with J ∈ NBm−1

v,− (Step 1), we deduce that

ṽm−1
J ≥ sm.

Step 3: Contradiction
By Step 1 and 2, we get

ũn−1
J ≥ ṽm−1

J ≥ sm > tn

and then
ũn−1

J > tn.

This is impossible because J ∈ NAn
u (see Proposition 4.1 Point 5).

Sub-case 1.3: θm−1
v,J < θn−1

u,J

This is impossible since θm−1
v º θn−1

u .

13



Case 2: J 6∈ NAn
u

In this case, the θ do not change and we essentially have to contradict the second line of (5.5). There is
essentially two cases. The first one is when the value of un

J→K has changed and we will use that un
J→K = tn.

The second one is when un
J→K = un−1

J→K and we will use assumption θm−1
v,J º θn−1

u,J to get the contradiction.

Sub-case 2.1: θm−1
v,J < θn

u,J

Since J 6∈ NAn
u, we have θn−1

u,J = θn
u,J and so θm−1

v,J < θn−1
u,J . Contradiction with θm−1

v º θn−1
u .

Sub-case 2.2: θm−1
v,J = θn

u,J

Since J 6∈ NAn
u, we have

(5.6) θn−1
u,J = θn

u,J = θm−1
v,J = σJ = ±1.

From (5.5), there exists K such that

(5.7) J ∈ Um−1
v (K) ∩ Un

u (K) and σJun
J→K < σJvm−1

J→K

We then distinguish several sub-cases:
Sub-case 2.2.1: J ∈ Un−1

u (K)
From (5.7), we have J ∈ Um−1

v (K) ∩ Un−1
u (K). Now the fact that θm−1

v º θn−1
u and (5.6) imply that

σJun−1
J→K ≥ σJvm−1

J→K

Now J ∈ Un−1
u (K) ∩ Un

u (K) imply, by Proposition 4.1 Point 6, that un
J→K = un−1

J→K . Therefore

σJun
J→K ≥ σJvm−1

J→K ,

which contradicts (5.7).

Sub-case 2.2.2: J 6∈ Un−1
u (K) and σJ = +1

Using the fact that J ∈ Un
u (K)\Un−1

u (K) joint to Proposition 4.1 Point 7, we get that un
J→K = tn. This

implies that
un

J→K = tn ≥ sm−1 ≥ vm−1
J→K

where we have used the fact that J ∈ Um−1
v (K) joint to Proposition 4.1 Point 2 for the last inequality.

Contradiction with (5.7).

Sub-case 2.2.3: J 6∈ Un−1
u (K) and σJ = −1

In this case, we have J ∈ Um−1
v (K) ∩ Un

u (K) and θn−1
u,J = θn

u,J = θm−1
v,J = −1. So we can apply Lemma 5.7

and we get that J ∈ Un−1
u (K). Contradiction.

Proof of Lemma 5.4
The proof is very similar to the one of Lemma 5.3, but there are some additional cases. For the reader’s
convenience we give all the structure of the proof. By contradiction, assume that θm

v 6º θn
u . Then, there

exists J such that

(5.8)






θm
v,J < θn

u,J

or
θm

v,J = θn
u,J = σJ and ∃K : J ∈ Um

v (K) ∩ Un
u (K) and σJun

J→K < σJvm
J→K

The proof is decomposed in several cases:
Case 1: J ∈ NAn

u\NAm
v

Sub-case 1.1: θm−1
v,J > θn−1

u,J

Then θm−1
v,J = 1 and θn−1

u,J = −1. Since J ∈ NAn
u\NAm

v , we deduce that θn
u,J = 1 = θm

v,J = σJ . We then have

vm
J→K ≤ sm = tn = un

J→K

where we have used the fact that J ∈ Um
v (K) and Proposition 4.1 Point 2 for the first inequality and the

fact that J ∈ NAn
u ∩ Un

u (K) joint to Proposition 4.1 Point 4 for the last equality. This contradicts (5.8).
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Sub-case 1.2: θm−1
v,J = θn−1

u,J

Sub-case 1.2.1: θm−1
v,J = θn−1

u,J = 1
Since J ∈ NAn

u\NAm
v , we deduce that θn

u,J = −1 and θm
v,J = 1. This contradicts (5.8).

Sub-case 1.2.2: θm−1
v,J = θn−1

u,J = −1

Step 1: ũn−1
J ≥ ṽm−1

J

Since J ∈ NAn
u and θn−1

u,J = −1, we deduce that J ∈ NBn−1
u,− . Moreover |tn−1 − sm−1| ≤ ∆t, so we can apply

Lemma 5.6 to get
J ∈ NBm−1

v,− and ũn−1
J ≥ ṽm−1

J

Step 2: ṽm−1
J > sm

Recall that sm = max(sm−1,min(sm−1 + ∆t, s̃m)). But sm > sm−1 and so

sm = min(sm−1 + ∆t, s̃m).

Recall that by definition of s̃m, we have s̃m ≤ ṽm−1
J with J ∈ NBm−1

v,− . We distinguish two cases:

1. ṽm−1
J > s̃m. Then

sm ≤ s̃m < ṽm−1
J .

2. ṽm−1
J = s̃m. Since J 6∈ NAm

v , we deduce that (see Step 7 and 8 of the algorithm)

sm = sm−1 + ∆t < s̃m = ṽm−1
J .

Step 3: Contradiction
By Step 1 and 2, we get

ũn−1
J ≥ ṽm−1

J > sm = tn.

This is impossible because J ∈ NAn
u (see Proposition 4.1 Point 5).

Sub-case 1.3: θm−1
v,J < θn−1

u,J

This is impossible since θm−1
v º θn−1

u .

Case 2: J ∈ NAm
v \NAn

u

By symmetry (see Proposition 4.3), this case can be treated in the same way of Case 1.

Case 3: J ∈ NAn
u ∩ NAm

v

Sub-case 3.1: θm−1
v,J > θn−1

u,J

This implies that θm−1
v,J = 1 and θn−1

u,J = −1. Using also that J ∈ NAn
u ∩ NAm

v , we deduce that J ∈

NBn−1
u,− ∩ NBm−1

v,+

This implies that
ĉn−1
u,J > 0 and ĉm−1

v,J < 0.

This is absurd since |sm−1 − tn−1| < ∆t.

Sub-case 3.2: θm−1
v,J = θn−1

u,J

Since J ∈ NAn
u∩NAm

v , we deduce that θn
u,J = θm

v,J . Using that J ∈ Un
u (K)∩Um

v (K), we have by Proposition
4.1 point 4

vm
J→K = sm = tn = un

J→K .

This contradicts (5.8).

Sub-case 3.3: θm−1
v,J < θn−1

u,J

This is impossible since θm−1
v º θn−1

u .

Case 4: J 6∈ NAn
u ∪ NAm

v

Sub-case 4.1: θm
v,J < θn

u,J

Since J 6∈ NAn
u ∪ NAm

v , we have θn−1
u,J = θn

u,J and θm−1
v,J = θm

v,J . We then get θm−1
v,J < θn−1

u,J . Contradiction

with θm−1
v º θn−1

u .
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Sub-case 4.2: θm
v,J = θn

u,J

Since J 6∈ NAn
u ∪ NAm

v , we have

(5.9) θn−1
u,J = θn

u,J = θm−1
v,J = θm

v,J = σJ = ±1.

From (5.8), there exists K such that J ∈ Um
v (K) ∩ Un

u (K) and

(5.10) σJun
J→K < σJvm

J→K

We then distinguish several sub-cases:
Sub-case 4.2.1: J ∈ Un−1

u (K) ∩ Um−1
v (K)

From (5.9) and the fact that θm−1
v º θn−1

u , we have

σJun−1
J→K ≥ σJvm−1

J→K

Now J ∈ Un−1
u (K) ∩ Un

u (K) and J ∈ Um−1
v (K) ∩ Um

v (K) imply, by Proposition 4.1 Point 6, that un
J→K =

un−1
J→K and vm

J→K = vm−1
J→K . Therefore σJun

J→K ≥ σJvm
J→K , which contradicts (5.10).

Sub-case 4.2.2: J ∈ Um−1
v (K)\Un−1

u (K)
Sub-case 4.2.2.1: σJ = +1
Using the fact that J ∈ Un

u (K)\Un−1
u (K), joint to Proposition 4.1 Point 7, we get that un

J→K = tn. This
implies that

un
J→K = tn = sm ≥ vm

J→K

where we have used the fact that J ∈ Um
v (K) and Proposition 4.1 Point 2. This contradicts (5.10).

Sub-case 4.2.2.2: σJ = −1
In this case, we have J ∈ Um−1

v (K) ∩ Un
u (K) and θn−1

u,J = θn
u,J = θm−1

v,J = −1. So we can apply Lemma 5.7

and we get that J ∈ Un−1
u (K). Contradiction.

Sub-case 4.2.3: J ∈ Un−1
u (K)\Um−1

v (K)
By symmetry, this sub-case can be treated in the same way of sub-case 4.2.2.

Sub-case 4.2.4: J 6∈ Un−1
u (K) ∪ Um−1

v (K)
Since J ∈ Un

u (K)\Un−1
u (K) and J ∈ Um

v (K)\Uv−1
v (K), we deduce by Proposition 4.1 Point 7 that

vm
J→K = sm = tn = un

J→K .

This contradicts (5.10).

6 Comparison principle for the t̃n times: proof of Proposition 5.5

This subsection is devoted to the proof of Proposition 5.5. We will prove a more general result (see Proposition
6.2). We recall that we consider two sequences

tn−p−1 < tn−p = .... = tn < tn+1 and sm−q−1 < sm−q = ... = sm < sm+1

such that tn = sm ≤ T . For simplicity of notation, we redefine, only in this subsection,

(6.1) t̃n−p = −∞ and s̃m−q = −∞.

We recall that by definition of comparable time Definition 3.1, that t̃n−k and s̃m−l are comparable for
0 ≤ k ≤ p and 0 ≤ l ≤ q if

(C(t̃n−k, s̃m−l))






s̃m−l ≤ t̃n−k < s̃m−l+1

or
t̃n−k ≤ s̃m−l < t̃n−k+1
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Remark 6.1 Let us point out that for 0 ≤ k ≤ p (resp. 0 ≤ l ≤ q), we always have

t̃n−k < t̃n−k+1 (resp. s̃m−l < s̃m−l+1).

This comes from the fact that the velocity cn−k
u (resp. cm−l

v ) is independent on k = 0, ..., p (resp. l = 0, ..., q)
and from our definition (6.1).

To prove Proposition 5.5, we will prove the following more general result:

Proposition 6.2 (Comparison principle for the t̃n times)
For p, q ≥ 0, if θm−q

v º θn−p
u for p + q ≥ 1, then θm−l

v º θn−k
u for 0 ≤ k ≤ p, 0 ≤ l ≤ q and for every times

satisfying C(t̃n−k, s̃m−l).

Remark 6.3 We have s̃m ≤ t̃n ≤ tn = sm < sm+1 ≤ s̃m+1 or t̃n ≤ s̃m ≤ sm = tn < tn+1 ≤ t̃n+1 (see
Proposition 4.1 Point 8 and 9). This implies that C(t̃n, s̃m) is true and then Proposition 6.2 implies that
θm

v º θn
u and so Proposition 5.5 is true.

The proof of Proposition 6.2 is similar to the one of Theorem 5.1 and we need the equivalent of Lemma 5.3
and 5.4 whose proofs are postponed:

Lemma 6.4 (Two jumps, two arrivals)
Assume that θm−l

v º θn−k
u for 0 ≤ k ≤ p, 0 ≤ l ≤ q and l + k ≥ 1. If s̃m−l ≤ t̃n−k+1 < s̃m−l+1 (resp.

t̃n−k ≤ s̃m−l+1 < t̃n−k+1), then θm−l
v º θn−k+1

u (resp. θm−l+1
v º θn−k

u ).

Lemma 6.5 (Two jumps, one arrival)
Assume that θm−l

v º θn−k
u for 1 ≤ k ≤ p, 1 ≤ l ≤ q. If s̃m−l+1 = t̃n−k+1, then θm−l+1

v º θn−k+1
u .

Proof of Proposition 6.2
By contradiction, let us define

s̃∗ = inf

{
min(t̃n−k, s̃m−l) such that θm−l

v 6º θn−k
u

0 ≤ k ≤ p, 0 ≤ l ≤ q and C(t̃n−k, s̃m−l) is true

}

Up to a symmetry (see Proposition 4.3), we can assume that s̃∗ = s̃m−l∗ for a certain index l∗. Then let us
define

k∗ = sup
{

0 ≤ k ≤ p, ; such that θm−l∗

v 6º θn−k
u , C(t̃n−k, s̃m−l∗) is true

}

Therefore (n − k∗,m − l∗) is the minimal couple such that θm−l∗

v 6º θn−k∗

u with

s̃m−l∗ ≤ t̃n−k∗ < s̃m−l∗+1.

Since C(t̃n−p, s̃m−q) is true, we get that k∗ < p or l∗ < q and since s̃m−l∗ ≤ t̃n−k∗ , we get that k∗ < p.
To simplify the notation, let us denote k∗ by k and l∗ by l. The proof is decomposed into two cases:

Case 1: s̃m−l < t̃n−k

Step 1 : θm−l
v º θn−k−1

u

To prove that θm−l
v º θn−k−1

u is true, it suffices to show that C(tn−k−1, sm−1)) is satisfied (because (n −
k,m − l) is the minimal couple such that θm−l

v 6º θn−k
u ). We recall that

s̃m−l < t̃n−k < s̃m−l+1.

If s̃m−l ≤ t̃n−k−1, then s̃m−l ≤ t̃n−k−1 < t̃n−k < s̃m−l+1, while if t̃n−k−1 < s̃m−l, then t̃n−k−1 < s̃m−l <
t̃n−k.

So, we always have that property (C(t̃n−k−1, s̃m−l)) is satisfied, which implies that θm−l
v º θn−k−1

u .
Step 2: Contradiction.
Using Lemma 6.4, we deduce that θm−l

v º θn−k
u . Contradiction.

Case 2: s̃m−l = t̃n−k

Since k < p, we deduce that s̃m−l = t̃n−k > −∞ and so l < q. Moreover, we have t̃n−k−1 ≤ s̃m−l−1 <
s̃m−l = t̃n−k or s̃m−l−1 ≤ t̃n−k−1 < t̃n−k = s̃m−l and so C(t̃n−k−1, s̃m−l−1) is satisfied. Therefore, this
implies (by definition of (k, l)) that θm−l−1

v º θn−k−1
u . Using Lemma 6.5, we deduce that θm−l

v º θn−k
u .

Contradiction.
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We now give the proofs of Lemma 6.4 and 6.5.

Proof of Lemma 6.4
We make the proof in the case s̃m−l+1 > t̃n−k+1, the other case being equivalent by symmetry (see Propo-
sition 4.3). Since t̃n+1 ≥ tn+1 > tn = sm ≥ s̃m ≥ s̃m−l+1 for 1 ≤ l ≤ q + 1 (see Proposition 4.1 Point 8 for
the first inequality and Point 9 for the last one), we deduce that 1 ≤ k ≤ p and tn−k+1 = tn.

By contradiction, assume that θm−l
v 6º θn−k+1

u . Then there exists J such that

(6.2)






θm−l
v,J < θn−k+1

u,J

or

θm−l
v,J = θn−k+1

u,J = σJ and ∃K : J ∈ Um−l
v (K) ∩ Un−k+1

u (K) and σJun−k+1
J→K < σJvm−l

J→K

The proof is decomposed in several cases:
Case 1: J ∈ NAn−k+1

u

Sub-case 1.1: θm−l
v,J > θn−k

u,J

Then θm−l
v,J = 1 and θn−k

u,J = −1. Since J ∈ NAn−k+1
u , we deduce that θn−k+1

u,J = 1 = θm−l
v,J = σJ . We then

have
vm−l

J→K ≤ sm−l = tn−k+1 = un−k+1
J→K

where we have used the fact that J ∈ Um−l
v (K) and Proposition 4.1 Point 2 for the first inequality and the

fact that J ∈ NAn−k+1
u ∩Un−k+1

u (K) joint to Proposition 4.1 Point 4 for the last equality. This contradicts
(6.2).

Sub-case 1.2: θm−l
v,J = θn−k

u,J

Sub-case 1.2.1: θm−l
v,J = θn−k

u,J = 1

Since J ∈ NAn−k+1
u , we deduce that θn−k+1

u,J = −1. This contradicts (6.2).

Sub-case 1.2.2: θm−l
v,J = θn−k

u,J = −1

Step 1: ũn−k
J ≥ ṽm−l

J

Since tn−k = sm−l, we can apply Lemma 5.6 (recall that J ∈ NAn−k+1
u with θn−k

u,J = −1 and so J ∈ NBn−k
u,−

and by assumption in Lemma 6.4, we have θm−l
v º θn−k

u ) to get

ũn−k
J ≥ ṽm−l

J

Step 2: Contradiction
Since J ∈ NAn−k+1

u , we know that t̃n−k+1 = ũn−k
J . By Step 1, we then get

t̃n−k+1 = ũn−k
J ≥ ṽm−l

J ≥ s̃m−l+1

where we have used the definition of s̃m−l+1 (see point 5 of the algorithm) for the last inequality. This
contradicts the fact that s̃m−l+1 > t̃n−k+1

Sub-case 1.3: θm−l
v,J < θn−k

u,J

This is impossible since θm−l
v º θn−k

u .

Case 2: J 6∈ NAn−k+1
u

Sub-case 2.1: θm−l
v,J < θn−k+1

u,J

Since J 6∈ NAn−k+1
u , we have θn−k+1

u,J = θn−k
u,J and so θm−l

v,J < θn−k
u,J . Contradiction with θm−l

v º θn−k
u .

Sub-case 2.2: θm−l
v,J = θn−k+1

u,J

Since J 6∈ NAn−k+1
u , we have

(6.3) θn−k
u,J = θn−k+1

u,J = θm−l
v,J = σJ = ±1.

From (6.2), there exists K such that J ∈ Um−l
v (K) ∩ Un−k+1

u (K) and

(6.4) σJun−k+1
J→K < σJvm−l

J→K .
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We then distinguish several sub-cases:
Sub-case 2.2.1: J ∈ Un−k

u (K)
From (6.3) and the fact that θm−l

v º θn−k
u , we have

σJun−k
J→K ≥ σJvm−l

J→K

Now J ∈ Un−k
u (K) ∩ Un−k+1

u (K) imply, by Proposition 4.1 Point 6, that un−k+1
J→K = un−k

J→K . Therefore

σJun−k+1
J→K ≥ σJvm−l

J→K , which contradicts (6.4).

Sub-case 2.2.2: J 6∈ Un−k
u (K) and σJ = +1

Using the fact that J ∈ Un−k+1
u (K)\Un−k

u (K), joint to Proposition 4.1 Point 7, we get that un−k+1
J→K = tn−k+1.

This implies that
un−k+1

J→K = tn−k+1 = sm−l ≥ vm−l
J→K

where we have used the fact that J ∈ Um−l
v (K) joint to Proposition 4.1 Point 2 for the last inequality.

Contradiction with (6.4).

Sub-case 2.2.3: J 6∈ Un−k
u (K) and σJ = −1

In this case, we have J ∈ Um−l
v (K)∩Un−k+1

u (K) and θn−k
u,J = θn−k+1

u,J = θm−l
v,J = −1. So we can apply Lemma

5.7 and we get that J ∈ Un−k
u (K). Contradiction.

Proof of Lemma 6.5
By contradiction, assume that θm−l+1

v 6º θn−k+1
u . Then, there exists J such that

(6.5)






θm−l+1
v,J < θn−k+1

u,J

or

θm−l+1
v,J = θn−k+1

u,J = σJ and ∃K\J ∈ Um−l+1
v (K) ∩ Un−k+1

u (K) and σJun−k+1
J→K < σJvm−l+1

J→K

The proof is decomposed in several cases:
Case 1: J ∈ NAn−k+1

u \NAm−l+1
v

Sub-case 1.1: θm−l
v,J > θn−k

u,J

Then θm−l
v,J = 1 and θn−k

u,J = −1. Since J ∈ NAn−k+1
u \NAm−l+1

v , we deduce that θn−k+1
u,J = 1 = θm−l+1

v,J = σJ .
We then have

vm−l+1
J→K ≤ sm−l+1 = tn−k+1 = un−k+1

J→K

where we have used the fact that J ∈ Um−l+1
v (K) and Proposition 4.1 Point 2 for the first inequality and the

fact that J ∈ NAn−k+1
u ∩Un−k+1

u (K) joint to Proposition 4.1 Point 4 for the last equality. This contradicts
(6.5).

Sub-case 1.2: θm−l
v,J = θn−k

u,J

Sub-case 1.2.1: θm−l
v,J = θn−k

u,J = 1

Since J ∈ NAn−k+1
u \NAm−l+1

v , we deduce that θn−k+1
u,J = −1 and θm−l+1

v,J = 1. This contradicts (6.5).

Sub-case 1.2.2: θm−l
v,J = θn−k

u,J = −1

Step 1: ũn−k
J ≥ ṽm−l

J

Since J ∈ NAn−k+1
u with θn−k

u,J = −1, we deduce that J ∈ NBn−k
u,− . Moreover tn−k = sm−l joint to the fact

that by assumption in Lemma 6.5, we have θm−l
v º θn−k

u , imply that we can apply Lemma 5.6 to get

ũn−k
J ≥ ṽm−l

J

Step 2: Contradiction
Because sm−l+1 = sm−l and J 6∈ NAm

v , we deduce (see Point 8 of the algorithm) that s̃m−l+1 < ṽm−l
J . By

Step 1, we then get
ũn−k

J ≥ ṽm−l
J > s̃m−l+1 = t̃n−k+1.

This is impossible because J ∈ NAn−k+1
u (see Point 8 of the algorithm).

Sub-case 1.3: θm−l
v,J < θn−k

u,J

This is impossible since θm−l
v º θn−k

u .
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Case 2: J ∈ NAm
v \NAn

u

By symmetry (see Proposition 4.3), this case can be treated in the same way of case 1.

Case 3: J ∈ NAn−k+1
u ∩ NAm−l+1

v

Sub-case 3.1: θm−l
v,J > θn−k

u,J

This implies that θm−l
v,J = 1 and θn−k

u,J = −1. Using also that J ∈ NAn−k+1
u ∩ NAm−l+1

v , we deduce that

J ∈ NBn−k
u,− ∩ NBm−l

v,+

This implies that
ĉn−k
u,J > 0 and ĉm−l

v,J < 0.

This is absurd since sm−l = tn−k.

Sub-case 3.2: θm−l
v,J = θn−k

u,J

Since J ∈ NAn−k+1
u ∩NAm−l+1

v , we deduce that θn−k+1
u,J = θm−l+1

v,J . Using that J ∈ Un−k+1
u (K)∩Um−l+1

v (K),
we have by Proposition 4.1 point 4

vm−l+1
J→K = sm−l+1 = tn−k+1 = un−k+1

J→K .

This contradicts (6.5).

Sub-case 3.3: θm−l
v,J < θn−k

u,J

This is impossible since θm−l
v º θn−k

u .

Case 4: J 6∈ NAn−k+1
u ∪ NAm−l+1

v

Sub-case 4.1: θm−l+1
v,J < θn−k+1

u,J

Since J 6∈ NAn−k+1
u ∪ NAm−l+1

v , we have θn−k
u,J = θn−k+1

u,J and θm−l
v,J = θm−l+1

v,J . We then get θm−l
v,J < θn−k

u,J .

Contradiction with θm−l
v º θn−k

u .

Sub-case 4.2: θm−l+1
v,J = θn−k+1

u,J

Since J 6∈ NAn−k+1
u ∪ NAm−l+1

v , we have

(6.6) θn−k
u,J = θn−k+1

u,J = θm−l
v,J = θm−l+1

v,J = σJ = ±1.

From (6.5), there exists K such that J ∈ Um−l+1
v (K) ∩ Un−k+1

u (K) and

(6.7) σJun−k+1
J→K < σJvm−l+1

J→K

We then distinguish several sub-cases:
Sub-case 4.2.1: J ∈ Un−k

u (K) ∩ Um−l
v (K)

From (6.6) and the fact that θm−l
v º θn−k

u , we have

σJun−k
J→K ≥ σJvm−l

J→K

Now J ∈ Un−k
u (K) ∩ Un−k+1

u (K) and J ∈ Um−l
v (K) ∩ Um−l+1

v (K) imply, by Proposition 4.1 Point 6, that
un−k+1

J→K = un−k
J→K and vm−l+1

J→K = vm−l
J→K . Therefore σJun−k+1

J→K ≥ σJvm−l+1
J→K , which contradicts (6.7).

Sub-case 4.2.2: J ∈ Um−l
v (K)\Un−k

u (K)
Sub-case 4.2.2.1: σJ = +1
Using the fact that J ∈ Un−k+1

u (K)\Un−k
u (K), joint to Proposition 4.1 Point 7, we get that un−k+1

J→K = tn−k+1.
This implies that

un−k+1
J→K = tn−k+1 = sm−l+1 ≥ vm−l+1

J→K

where we have used the fact that J ∈ Um−l+1
v (K) and Proposition 4.1 Point 2 for the last inequality. This

contradicts (6.7).

Sub-case 4.2.2.2: σJ = −1
In this case, we have J ∈ Um−l

v (K)∩Un−k+1
u (K) and θn−k

u,J = θn−k+1
u,J = θm−l

v,J = −1. So we can apply Lemma

5.7 and we get that J ∈ Un−k
u (K). Contradiction.

Sub-case 4.2.3: J ∈ Un−k
u (K)\Um−l

v (K)
By symmetry, this sub-case can be treated in the same way of sub-case 4.2.2.
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Sub-case 4.2.4: J 6∈ Un−k
u (K) ∪ Um−l

v (K)
Since J ∈ Un−k+1

u (K)\Un−k
u (K) and J ∈ Um−l+1

v (K)\Um−l
v (K), we deduce by Proposition 4.1 Point 7 that

vm−l+1
J→K = sm−l+1 = tn−k+1 = un−k+1

J→K .

This contradicts (6.7).

7 Convergence result

7.1 Proof of convergence of the modified GFMM

This subsection is devoted to the proof of Theorem 3.6.

Proof of Theorem 3.6
The proof is very similar to the one of [4, Theorem 2.5] and just needs some adaptations essentially due to
the change in the point 10 of the algorithm. The only point to check is the sub-solution property of the

limit [4, Proposition 6.1]. By contradiction, we assume that there are (x0, t0) and ϕ ∈ C2 such that θ
0
− ϕ

reaches a strict maximum at (x0, t0) with θ
0
(x0, t0) = ϕ(x0, t0) and

(7.1) ϕt(x0, t0) = α + c(x0, t0)|Dϕ(x0, t0)|

with α > 0.
Now, the proof depends on the sign of the velocity. In the case c(x0, t0) > 0 or c(x0, t0) < 0, it suffices

to replace [4, Lemma 5.1] by the following lemma (which proof is equivalent) and the proof is exactly the
same.

Lemma 7.1 (Time character of the u)
Assume there exists δ > 0 and (I, n) ∈ Z

N × N such that c(xI , tn) ≥ δ > 0, θn−1
I = −1 and θn

I = 1 (resp.

c(xI , tn) ≤ −δ < 0, θn−1
I = 1 and θn

I = −1), then for any J ∈ Un−1(I), we have for ∆x ≤
δ2

16L

un−1
J→I = sup{tm ≤ tn−1, θm−1

J = −1, θp
J = 1, for m ≤ p ≤ n − 1} > tn −

4∆x

δ

with the convention that un−1
J→I = t0 if θp

J = 1 for 0 ≤ p ≤ n − 1

(resp. un−1
J→I = sup{tm ≤ tn−1, θm−1

J = 1, θp
J = −1, for m ≤ p ≤ n − 1} > tn −

4∆x

δ
.

with the convention that un−1
J→I = t0 if θp

J = −1 for 0 ≤ p ≤ n − 1).

Intuitively, this result comes from the fact that if the front reaches the point I at step n then (in the case
where the velocity is positive) it has reached all the points J ∈ V (I) such that θn−1

J = 1 at a time closed to
tn. Moreover, the point J is useful for I as soon as J has been accepted.

Remark 7.2 This lemma implies in particular that if the velocity is positive (or negative) then the algorithm
presented in Subsection 2.2 is equivalent to the one of [4].

We now treat the case c(x0, t0) = 0. In this case, we have

ϕt = α > 0.

Since the maximum of θ
0
− ϕ is strict, there exists (xε, tε) → (x0, t0) as ε → 0 such that

max((θε)∗ − ϕ) = ((θε)∗ − ϕ)(xε, tε).

In particular, we have (θε)∗(xε, tε) = 1 for ∆x,∆t small enough. Indeed, by contradiction, suppose that
(θε)∗(xε, tε) = −1. Using the fact that (θε)∗ is upper semi-continuous, we obtain (θε)∗ = −1 a neighbourhood
of (xε, tε). We then deduce that ϕt(xε, tε) = |Dϕ(xε, tε)| = 0 and so

0 = ϕt(xε, tε) − c(xε, tε)|Dϕ(xε, tε)| → ϕt(x0, t0) − c(x0, t0)|Dϕ(x0, t0)| = α

This is absurd.

We now recall the following Lemma which can be found in [4, Lemma 5.3]:
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Lemma 7.3 (Separation of the phases of θε by the level set of a test function)
Let ϕ ∈ C2 in a neighbourhood V of (x0, t0) such that ϕt(x0, t0) > 0. There exist δ0 > 0, r > 0, τ > 0
such that if max

V̄
((θε)∗ − ϕ) is reached at (xε, tε) ∈ Bδ0

(x0, t0) ⊂ V with (θε)∗(xε, tε) = 1, then there exists

Ψε ∈ C2(Br(x0), (t0 − τ, t0 + τ)) such that

(i) For all (xJ , tm) ∈ Qr,τ (x0, t0) = Br(x0) × (t0 − τ, t0 + τ)

(7.2) θε(xJ , tm) = 1 =⇒ tm ≥ Ψε(xJ ).

(ii) There exists (I, nk) ∈ Z
N × N such that

(xε, tε) ∈ S̄k
I = [xI , xI + ∆x] × [tnk

, tnk+1
], (θε)∗(xI , tnk

) = 1, tnk
= Ψε(xI)

and
θn

I = 1, θm
I = −1 m0 ≤ m ≤ n − 1

where
n = inf {n, nk ≤ n ≤ nk+1 − 1, θn

I = 1} and m0 = inf{m, tm ≥ t0 − τ}.

(iii) The following Taylor expansion holds

Ψε(xJ) = Ψε(xI) −
Dϕ(x0, t0)

ϕt(x0, t0)
(xJ − xI) + (∆x) O (∆x + |xI − x0| + |tnk

− t0|) .

We now come back to the proof of Theorem 3.6.

For all J ∈ Un−1(I) (with n defined in Lemma 7.3), we define

mJ = sup{k ≤ n, J 6∈ Uk−1(I)}

We distinguish two cases:

1. There exists J ∈ Un−1(I) such that mJ < m0.

In particular, we have that J ∈ Um(I) for m0 ≤ m ≤ n − 1, so by Proposition 4.1 Point 6 and Point
2, we have that un−1

J→I = um0

J→I ≤ tm0
. Moreover, since J ∈ Um(I) and θm

I = −1 for m0 ≤ m ≤ n − 1,
we deduce that

θε(xJ , tm0
) = 1.

By (7.2), we then have tm0
≥ Ψε(xJ).

We now assume that |Dϕ| 6= 0 (the case |Dϕ| = 0 can be treated in a similar way). Using Lemma 7.3
iii), we deduce that

tm0
≥ Ψε(xJ ) = tnk

−
1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tnk

− t0|),

where c̄ =
α

|Dϕ(x0, t0)|
> 0 and ~n0 =

Dϕ(x0, t0)

|Dϕ(x0, t0)|
. We then get

tnk
− tm0

≤
1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tnk

− t0|)

≤
∆x

c̄
+ (∆x) O(∆x + |xI − x0| + |tnk

− t0|)

Sending ∆x,∆t to 0, we remark that tnk
→ t0 (since tε → t0, tε ∈ [tnk

, tnk+1
[ and tnk+1

− tnk
≤ ∆t)

and tm0
→ t0 − τ (by definition of m0). This implies that

t0 − (t0 − τ) = τ ≤ 0.

This is absurd.
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2. For all J ∈ Un−1(I), mJ ≥ m0.
Using the fact that J ∈ (UmJ (I) ∩ ... ∩ U n̄−1(I))\UmJ−1(I) joint to Proposition 4.1 Point 6 and 7, we
get that un−1

J→I = umJ

J→I = tmJ
. Moreover (since J ∈ Um(I) and θm

I = −1 for mJ ≤ m ≤ n − 1), we
have that θε(xJ , tmJ

) = 1 and so by (7.2) we have un−1
J→I = tmJ

≥ Ψ(xJ).

We now assume that |Dϕ| 6= 0 (the case |Dϕ| = 0 can be treated in a similar way). Using Lemma 7.3
iii), we deduce that

un−1
J→I ≥ Ψ(xJ) = tnk

−
1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tnk

− t0|),

where c̄ =
α

|Dϕ(x0, t0)|
> 0 and ~n0 =

Dϕ(x0, t0)

|Dϕ(x0, t0)|
. Since I ∈ NAn, we know by Proposition 4.1 Point

5 that ũn−1
I ≤ tn = tnk

. This implies that

ũn−1
I − un−1

J→I ≤ tnk
− un−1

J→I ≤
1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tnk

− t0|)

We first define un−1
Ii→I

for all directions i ∈ C ⊂ {1, .., N} such that

ũn−1
I − un−1

Ii→I
:= max(ũn−1

I − un−1
Ii,+→I

, ũn−1
I − un−1

Ii,−→I
) ≥ 0.

We deduce that

(
∆x

ĉn−1
I

)2

=
∑

i∈C

(
ũn

I − un−1
Ii→I

)2

≤

(
∆x

c̄

)2

+ (∆x)2 O(∆x + |xI − x0| + |tnk
− t0|).

i.e.
1

|ĉn−1
I |2

≤
1

c̄2
+ O(∆x + |xI − x0| + |tnk

− t0|)

Sending ∆x,∆t to 0, yields a contradiction since c̄ > c(x0, t0) = 0.

This ends the proof of the theorem.

8 Appendix: heuristic error estimate for monotone evolution

We propose an error estimate in the case of the dynamics with signed speed. This is an heuristic computation,
since we assume that the solution of the PDE (1.1) is a characteristic function of a smooth hyper-surface to
allow us to do all the computations. This explain why we obtain an error estimate of order 1, while for this
type of scheme the expected order of convergence is 1/2, see [6].

In the proof we make use of a recent result by Vladimirsky, see [11], where the propagation of a front
evolving with signed speed depending on time is interpreted as a static PDE for a time-dependent control
problem. We consider here the case of an isotropic dynamics, but in the cited paper the general anisotropic
case is analysed.

Let Ω0 be a bounded domain of R
N and let u(x) be the minimum time to reach a point x ∈ Ω0 starting

from any point of ∂Ω0 with the velocity c(x, t) : Ω0 × [0,∞) → (−∞, 0). If c is Lipschitz continuous and
bounded, then the minimum time can be obtained solving the following stationary PDE:

(8.1)

{
−c(x, u(x))|Du(x)| = 1 in Ω0,
u(x) = 0 on ∂Ω0.

It is known, see for instance [7], that c(x, t) can be interpreted as a normal speed of a contracting front,
whose position at time t is the level set u(x) = t. Then θ(x, t) = 1{u(x)>t} − 1{u(x)≤t} solves the eikonal
equation (1.1) with speed c(x, t).
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Theorem 8.1 (Heuristic error estimate for local monotone dynamics )
Let Ω0 ⊂ R

N be a bounded open set of R
N and consider a speed c ∈ W 1,∞(RN × (0,∞)) such that c ≤ δ < 0.

We assume that u ∈ C2(Ω0) is a solution of the stationary equation (8.1) such that θ(x, t) = 1{u(x)>t} −
1{u(x)≤t} is a solution of (1.1). Let us denote by θε(x, t), for (x, t) ∈ R

N × (0, T ], the numerical solution of
(1.1) obtained by the GFMM algorithm with ε = (∆x,∆t).

Then, for T > 0, there exists a positive constant KT such that

|θε − θ|L∞((0,T );L1(RN )) ≤ KT (∆x + ∆t).

Remark 8.2 In Theorem 8.1, it is possible to assume that u ∈ C2 only on a neighbourhood of ∂Ω0, but for
simplicity of presentation and since the proof is formal, we prefer to assume that u ∈ C2 in all Ω0.

Before giving the proof, we need the following lemma whose proof is postponed:

Lemma 8.3 (Construction of a velocity from a θ)
Let Ω0 be a bounded open set, e ∈ R, c ∈ W 1,∞(RN × (0,∞)) with c ≤ δ < 0. We denote by θe the solution
of

(8.2)

{
θe

t = (c(x, t) + e)|Dθe| in R
N × (0,∞)

θe(·, 0) = 1Ω0
− 1Ωc

0
on R

N

We denote by ue the solution of

(8.3)

{
−(c(x, ue(x)) + e)|Due(x)| = 1 in Ω0,
ue(x) = 0 on ∂Ω0.

such that θe(x, t) = 1{ue(x)>t} − 1{ue(x)≤t}.
Given a mesh {xI = I∆x, I ∈ Z

n}, we define a sequence of discrete increasing time ten by
{

te1 = min{ue(xI), xI ∈ Ω0}
ten = min{ue(xI) > ten−1, xI ∈ Ω0} for n ≥ 2.

We assume that ue ∈ C2(Ω0) uniformly in e for e small enough, then there exist a discrete velocity ĉn−1,e
I ,

defined for (I, n) such that u(xI) = ten, and a constant C such that

(8.4) |ĉn−1,e
I − c(xI , u(xI)) − e| ≤ O(∆x)

and
θε,e(xI , t

e
n) = θe(xI , t

e
n)

where θε,e is the numerical solution of the GFMM algorithm with velocity ĉn,e
I and with initial condition as

in (8.2).

To prove Theorem 8.1, we also need another version of the comparison principle Theorem 3.4 with weak
assumptions on the velocities:

Proposition 8.4 (Comparison principle for the θε)
Let T > 0. Let two velocities cu ≥ 0 and cv ≥ 0. Given θ0

u,J (resp. θ0
v,J) for all J ∈ Z

N and u0
J→K for all

J ∈ U0
u(K) (resp. v0

J→K for all J ∈ U0
v (K)), we assume that

t0 := sup
J∈U0

u(K),K∈NB0
u

u0
J→K ≤ T,

(
resp. s0 := sup

J∈U0
v (K),K∈NB0

v

v0
J→K ≤ T

)

for a given T > 0.
We also assume that the two velocities satisfy for all (x, t) ∈ R

N × [min(t0, s0), T − ∆t]

ĉm−1
v,I ≥ sup

s∈[−∆t,∆t], sm−1+s≥0

cu(xI , sm−1 + s),

for all I ∈ Z
N , m ∈ N such that I ∈ NAm

v .
If C(t0, s0) and θ0

v º θ0
u, then

θε
v(x, t) ≥ θε

u(x, t)

for all (x, t) ∈ R
N × [max(t0, s0), T ].
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Proof of Proposition 8.4
In fact, in the proof of Theorem 3.4, when the velocities are positive, the only point where we have to
compare the velocities is in Lemma 5.6 and it is in fact sufficient to have an information on cv,I only when
I ∈ NAm

v (i.e. for ĉm−1
v,I )

Proof of Theorem 8.1
Let us denote by u the solution of (8.1) such that θ(x, t) = 1{u(x)>t} − 1{u(x)≤t}. Given a mesh {xI =
I∆x, I ∈ Z

n}, we define a sequence of discrete increasing time tn in the following way
{

t1 = min{u(xI), xI ∈ Ω0}
tn = min{u(xI) > tn−1, xI ∈ Ω0} for n ≥ 2.

Then we consider θε,0(x, t) the projection of θ on the mesh, defined by

(8.5) θε,0(x, t) = θ(xI , tn) if x ∈ [xI , xI + ∆x) and t ∈ [tn, tn+1).

In particular, we have
|θε,0 − θ|L∞((0,T );L1(RN )) ≤ C(∆x + ∆t)

where C is a constant (depending on ‖u‖C2). Let us call θε the numerical solution obtained by the GFFM
algorithm and extended in the continuous space by (3.1). For e > 0, we consider the discrete velocities
ĉn−1,+e
I and ĉn−1,−e

I defined by Lemma 8.3 from Problem (8.2) with velocity c + e and c − e respectively.
From (8.4), we have, for e ≥ C(∆x + ∆t) and C large enough

ĉn−1,+e
I ≥ sup

s∈[−∆t,∆t],tn−1+s≥0

c(xI , tn−1 + s), ĉn−1,−e
I ≤ inf

s∈[−∆t,∆t],tn−1+s≥0
c(xI , tn−1 + s)

for (I, n) such that ue(xI) = ten.
Using the comparison principle Proposition 8.4, we then get

θε,+e ≥ θε and θε,−e ≤ θε.

By the comparison principle for equation (1.1), we have θ−e ≤ θ ≤ θe and then by Lemma 8.3, the
following inequality holds

θε,−e ≤ θε,0 ≤ θε,+e.

Choosing e := C(∆x + ∆t) = O(|ε|), we can conclude that

|θε(·, t) − θ(·, t)|L∞((0,T );L1(RN )) ≤|θε − θε,0|L∞((0,T );L1(RN )) + |θε,0 − θ|L∞((0,T );L1(RN ))

≤|θε,+e(·, t) − θε,−e(·, t)|L∞((0,T );L1(RN )) + C(∆x + ∆t)

≤KT (∆x + ∆t).

where KT is a positive constant. The last inequality follows by regularity property of equation (1.1) (see for
instance [1]).

We now give the proof of Lemma 8.3:
Proof of Lemma 8.3
We define

ûn,e
J =

{
ue(xJ ) if ue(xJ) ≤ ten
+∞ otherwise

To construct the velocity ĉn−1,e
I , we solve (2.1) (where the unknown is the velocity ĉn−1,e

I ) for I such that
ue(xI) = ten. In particular, we have

ĉn−1,e
I = c(xI , t

e
n) + e + O(∆x)

and by construction
θε,e(xI , t

e
n) = θe(xI , t

e
n).
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