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EDGE CONNECTIVITY IN GRAPHS: AN EXPANSION

THEOREM

ALVAREZ-HAMELIN, JOSÉ IGNACIO AND BUSCH, JORGE RODOLFO

Abstract. We show that if a graph is k-edge-connected, and we adjoin to it
another graph satisfying a “contracted diameter ≤ 2” condition, with minimal
degree ≥ k, and some natural hypothesis on the edges connecting one graph
to the other, the resulting graph is also k-edge-connected.

1. Introduction

Let G be a simple graph (i.e. a graph with no loops, no multiple edges) with
vertex set V (G) and edge set E(G) (we follow in notation the book [Wes01]). Given
A, B ⊂ V (G), [A, B] is the set of edges of the form ab, joining a vertex a ∈ A to a
vertex b ∈ B. As we consider edges without orientation, [A, B] = [B, A]. Abusing
of notation, for v ∈ V (G), A ⊂ V (G), we write [v, A] instead of [{v}, A]. The degree
of a vertex v ∈ V (G) is degG(v)

.
= |[v, V (G)]|. The neighbourhood of a vertex v,

N(v), is the set of vertexes w such that vw ∈ E(G). Given A ⊂ V (G), G(A) is
the graph G′ such that V (G′) = A and E(G′) is the set of edges in E(G) having
both endpoints in A. Given v, w ∈ V (G), dG(v, w) is the distance in G from v to
w, that is the minimum length of a path from v to w. If v ∈ V (G), A ⊂ V (G) we
set dG(v, A)

.
= minw∈A dG(v, w).

An edge cut in G is a set of edges [S, S̄], where S ⊂ V (G) is non void, and
S̄

.
= V (G) \ S is also assumed to be non void.
The edge-connectivity of G, k′(G), is the minimum cardinal of the cuts in G.

We say that G is k-edge-connected if k′(G) ≥ k. Menger’s theorem has as a
consequence that given two vertices v, w in V (G), if G is k-edge-connected there
are at least k-edge-disjoint paths joining v to w (see [Wes01], pp.153-169).

In this paper we address the following expansion problem: given a k-edge-
connected graph G2, give conditions under which the result of adjoining to G2

a graph G1 will be also k edge-connected (see Corollary 1 below).

2. An expansion theorem

Let G be a simple graph. Let V1 ⊂ V (G), V2
.
= V (G) \ V1, and set G1 =

G(V1), G2 = G(V2). We assume in the sequel that V1 and V2 are non void. We
define, for x, y ∈ V1, the contracted distance

δ(x, y)
.
= min{dG1

(x, y), dG(x, V2) + dG(y, V2)}

and for x ∈ V, y ∈ V2

δ(x, y) = δ(y, x)
.
= dG(x, V2)

If x ∈ V and A ⊂ V , we set δ(x, A)
.
= mina∈A δ(x, a).

Notice that with these definitions, if δ(x, y) = 2 for some x, y ∈ V , then there
exists z ∈ V such that δ(x, z) = δ(z, y) = 1.
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We shall also use the notations

∂jV1
.
= {x ∈ V1 : |[x, V2]| ≥ j}

ijV1
.
= {x ∈ V1 : |[x, V2]| < j}

Under these settings, we consider also

Φ
.
=

∑

x∈V1

min{max{1, |[x, i2V1]|}, |[x, V2]|}

In this general framework, we have

Theorem 1. If maxx,y∈V δ(x, y) ≤ 2 (i.e. the contracted diameter of V is ≤ 2),
[S, S̄] is an edge cut in G such that V2 ⊂ S, and k

.
= minx∈V1

degG(v) > |[S, S̄]|,
then

(1) ∃s̄ ∈ S̄ : δ(s̄, S) = 2.
(2) ∀s ∈ S : δ(s, S̄) = 1.
(3) |S ∩ V1| < |[S, S̄]| < k < |S̄|.
(4) S ∩ V1 ⊂ ∂2V1, S̄ ⊃ i2V1.
(5) Φ ≤ |[S, S̄]|.

(See the examples in Figure 1.)
Proof.

(1) Arguing by contradiction, suppose that for any s̄ ∈ S̄: δ(s̄, S) = 1. Let
s̄ ∈ S̄. Then we have k1 edges s̄si, 1 ≤ i ≤ k1 with si ∈ S and (eventually)
k2 edges s̄s̄j , s̄j ∈ S̄. But each s̄j satisfies δ(s̄j , S) = 1, thus we have k2

new edges (here we used that G is simple, because we assumed that the
vertices s̄j are different) s̄js

′

j , with s′j ∈ S, whence

|[S, S̄]| ≥ k1 + k2 = degG(s̄) ≥ k

which contradicts our hypothesis.
(2) Let s̄0 ∈ S̄ be such that δ(s̄0, S) = 2. Then for each s ∈ S, as δ(s̄0, s) = 2,

there exists s̄′ such that δ(s̄0, s̄
′) = δ(s̄′, s) = 1. But, again, as δ(s̄0, S) = 2,

it follows that s̄′ ∈ S̄, hence δ(s, S̄) = 1.
(3) By the previous point, we have for each s ∈ S ∩ V1 some edge in [S, S̄]

incident in s, and for some v ∈ V2 we have also some edge in [S, S̄] incident
in v, thus

|S ∩ V1| + 1 ≤ |[S, S̄]|

On the other hand, if s̄ ∈ S̄ satisfies δ(s̄, S) = 2 (such s̄ exists by our first
point), then N(s̄) ⊂ S̄ (recall that N(s̄) is the neighbourhood of s̄), whence

|S̄| ≥ 1 + |N(s̄)| ≥ 1 + k

and our statement follows.
(4) Let s ∈ S ∩ V1. By our second point, and using again that there is at least

one edge in [S̄, V2], we have

|N(s) ∩ V1| + |[s, S̄]| ≤ |[S, S̄]| − 1

< degG(s) − 1

and the first of our statements follows if we notice that

degG(s) = |N(s) ∩ V1| + |[s, S̄]| + |[s, V2]|

Now, S̄ = V1 \ S ∩ V1, and our second statement follows immediately.
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(5) By our previous points, if s ∈ S ∩ V1 then

|[s, S̄]| ≥ max{1, |[s, i2V1]|}

and of course for s̄ ∈ S̄, |[s̄, S]| ≥ |[s̄, V2]|, thus

|[S, S̄]| = |[S ∩ V1, S̄]| + |[S̄, V2]|

≥
∑

s∈S∩V1

max{1, |[s, i2V1]|} +
∑

s̄∈S̄

|[s̄, V2]|

≥ Φ

Corollary 1. Assume that

(1) degG(x) ≥ k, x ∈ V (G)
(2) G2 is k-edge connected
(3) maxx,y∈V δ(x, y) ≤ 2

Then any of the following

(1) Φ ≥ k

(2) |∂1V1| ≥ k

(3) V1 = ∂1V1

implies that G is k-edge-connected.

(See the examples in Figure 2.)
Proof. Let [S, S̄] be any cut in G. We shall show that, under the listed hypotheses

and any of the alternatives, |[S, S̄]| ≥ k.
If S ∩ V2 6= ∅ and S̄ ∩ V2 6= ∅, then, as

[S ∩ V2, S̄ ∩ V2] ⊂ [S, S̄]

is a cut in G2, which we assumed to be k-edge connected, we obtain |[S, S̄]| ≥ k.
Without loss of generality, we assume in the sequel that V2 ⊂ S. We argue by

contradiction assuming that there exists some S such that |[S, S̄]| < k, so that we
are under the hypothesis of Theorem 1.

The first of our alternative hypothesis contradicts the last of the conclusions of
Theorem 1.

When x ∈ ∂1V1,

min{max{1, |[x, i2V1]|}, |[x, V2]|} ≥ 1

so that we have |∂1V1| ≤ Φ i.e. the second of our alternative hypothesis implies
the first one.

To finish our proof, notice that if V1 = ∂1V1, as S̄ ⊂ V1, we have δ(s̄, S) = 1 for
any s̄ ∈ S̄, contradicting the first of the conclusions in Theorem 1.

3. Final remarks

Corollary 1 is related to a well known theorem of Plesńık (see [Ple75], Theorem
6), which states that in a simple graph of diameter 2 the edge connectivity is equal
to the minimum degree.
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(a) (b)

(c) (d)

Figure 1. Conventions: 1.Filled polygons represent cliques,
and curved arcs represent edges. 2.The dotted line separates G2

(the upper graph) from G1 (the lower graph). 3. The widest arc
shows the cut [S, S̄]. Descriptions: (a) Here |[S, S̄]| = 3 < k = 4,
|S ∩ V1| = 2, |S̄| = 5, Φ = 3, S ∩ V1 = ∂2V1. (b) Here |[S, S̄]| =
3 < k = 4, |S ∩ V1| = 1, |S̄| = 5, Φ = 3, S ∩ V1 6= ∂2V1. (c) Here
|[S, S̄]| = 4 < k = 5, |S ∩ V1| = 1, |S̄| = 6, Φ = 3, S ∩ V1 6= ∂2V1.
(d) Here |[S, S̄]| = 1 < k = 2, |S ∩ V1| = 0, |S̄| = 3, Φ = 1,
S ∩ V1 = ∂2V1 = ∅.
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(a) (b)

Figure 2. Conventions: 1.Filled polygons represent cliques,
and curved arcs represent edges. 2.The dotted line separates G2

(the upper graph) from G1 (the lower graph). 3. The widest arc
shows a minimal cut [S, S̄]. Descriptions: (a) Here |[S, S̄]| = k =
4, Φ = 4, |∂1V1| = 3. (b) Here |[S, S̄]| = k = 3, Φ = 1, |∂1V1| = 1,
V1 = ∂1V1. This example shows that Corollary 1 includes an edge-
connectivity version of the Expansion Lemma in [Wes01], Lemma
4.2.3.


