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Campus des Cézeaux, 63173 Aubière cedex

pchainai@isima.fr

Abstract. We present a framework for modelling the switching dynamics
of a time series with correlation structures spanning distinct time scales,
based on a neural-based multi-expert prediction model. First, an orthog-
onal wavelet transform is used to decompose the time series into varying
levels of temporal resolution so that the underlying temporal structures of
the original time series become more tractable. The transitions between
the resolution scales are assumed to be governed by a hidden Markov
model (HMM). The best state sequence is obtained by the Viterbi algo-
rithm assuming some prior knowledge on the state transition probabilities
and energy-dependent observation probabilities. The model achieves a
hard segmentation of the time series into distinct dynamical modes and
the simultaneous specialization of the prediction experts on the segments.
The predictive ability of this strategy is assessed on a synthetic time series.

1 Introduction

The idea of combining both wavelets and neural networks has attracted much
attention over the last decade. Wavelet networks [1] are feedforward neural
networks with one hidden layer of nodes, whose basis functions are drawn from
a family of orthonormal wavelets. They were introduced for neural network
dynamic modelling in presence of varying sampling times, sparse and dense data
in different regions and the inherent presence of both large and small dynamics.
A wavelet network is first trained to learn the mapping at the coarsest resolution
level. In subsequent stages, the network is trained to incorporate elements of
the mapping at higher and higher resolutions [2, 3]. Another strategy, aimed
at combining neural network forecasts on wavelet-transformed time series, has
been proposed in [4, 5, 6]. Contrary to the wavelet networks, the wavelet part is
essentially decoupled from learning. A neural network is trained on each time-
scale to approximate the underlying law governing the wavelet coefficients. The
individual wavelet scale forecasts are afterward recombined to form the current
estimate. In this paper, we discuss a new framework for modelling the switching
dynamics of a time series with correlation structures spanning distinct time scale.
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The experts are selected according to the energy at the different scales assuming
markovian dynamic transitions. The method is illustrated on artificial data.

2 Multiresolution

A multiresolution [7, 8, 9] of L2(R) is characterized by a set of subspaces Vj

and Wj , j ∈ Z, of L2(R). The scaling spaces Vj are increasing and the wavelet
space Wj is the difference between Vj and Vj+1. The space Vj+1 is the direct
sum of Vj and Wj which intersect only at the zero vector. A function f(t)
in the whole space has a piece in each subspace. The piece in Vj is fj(t).
On requirement on the sequence of subspaces is completeness: fj(t) → f(t)
as j → ∞. The completeness condition can be restated as V0 ⊕ ∑∞

j=0Wj =
L2. In the orthogonal case, any function f(t) ∈ L2(R) can be decomposed
as f(t) = f0(t) +

∑+∞
j=0 ∆fj(t) where ∆fj = fj+1 − fj belongs to Wj . Let

{ψj,k(t) := 2−jψ(2−jt − k), k ∈ Z} a basis for Wj , in the orthogonal case we
may write

∆fj(t) =
+∞∑

k=−∞
dk

jψj,k(t) (1)

where dk
j are the detail coefficients at scale j. The energy in this piece is∑+∞

k=−∞ |dk
j |2. In our case, f(t) is unknown, only samples are observed at dif-

ferent instants. These observations are gathered in a time series {xt}. The task
is to predict the future value yt = xt+τ of the time series {xt}. τ is the delay
parameter. Now, at each time t, we compute an orthogonal wavelet transform
on a sliding time window of size wsize over the past values t, t−1, . . . , t−wsize.
The output is a sequence of coefficients {dt

0, d
t
1, . . . , d

t
J , a

t
J} up to resolution level

J , where at
J are the ultimate approximations. The proposed prediction method

is based on the assumption that the contribution of scale j to the future value
yt = xt+τ is dependent upon the fraction of the energy at that scale. In our
case, the energy estimate at scale j, for t > wsize, noted by Et

j , is given by

Et
j =

t∑
j=t−K

dk
j

2
(2)

where K is a constant and wsize = 2J+K . In our experiments, K = 2 to speed
up the detection of change points.

3 Prediction experts

In the following we assume that the reader is familiar with the basic principles
of HMM. For a thorough introduction, we refer to the tutorial by Rabiner [10].
Our presentation closely derives from [11, 12]. Consider an HMM where each
state i = 1, . . . ,M is associated to a prediction expert. The prediction expert



i predicts the future value yt = xt+τ of the time series {xt} or some exogene
variable, given a vector of past values

zt
j = (xt−2j−1d, . . . , xt−2j−1 , xt). (3)

where d is the embedding dimension. As may be seen, the past sequence at time
t is summarized by a vector of time delayed coordinates zt

j whose sampling rate
is divided by two as we move from scale j to scale j + 1. This comes implicitly
from the two scale difference in the dilation equation [8], the reason is to restrain
the analysis to the frequencies lying the octave band of interest. We suppose the
target variables yt, at each time t, are given by some deterministic function,
fi(zt

i), where i is current dynamic mode, corrupted with an additive gaussian
noise εt. The noise variance, σ2

i , does not depend on zt
i or on t. The observation

probability distribution for each state j is supposed to be given by

P (yt|st = j, xt
1) = K · e−αEt

j (4)

where K is the normalizing factor, xt
1 = x1, . . . , xt and α is some constant and

Et
i is the estimate of the energy at time t and at time-scale i. Note that Et

i

are implicit functions of xt
1. The transition matrix A = {aij} determines the

probability to switch from a state i to a state j. In principle, this matrix can be
found by the Baum and Welch method [10]. However, since we focus on problems
with only relatively few switching events, the matrix is used to incorporate this
prior knowledge in such a way that remaining in the current state is as likely
than switching to another state (low switching rate assumption [12]) :

aij =

{
k

k+(M−1) if i = j
1

k+(M−1) if i �= j
(5)

With thus get a constant transition matrix which depend on a single parameter
k (k = M − 1 in our experiments). The restriction on models with a low
switching rate reduces the degrees of freedom in model space and effectively
prevents from overfitting the data. Note that this model we arrive at differ from
the so-called the mixture-of-experts architecture [13]. In such model, the input
space is divided into a nested set of regions. Training the gating models for
P (st|xt

1) is however difficult especially when too few transitions are observed
in the data. Instead, we assume here that the state probability at time t can
directly be computed from the energy estimates Eτ

i , for τ ≤ t and i = 1, . . . , J ,
which are calculated other sliding windows. The number of freedom parameters
is significantly reduced and the training is greatly facilitated.

4 Expert training

We seek to model the functions fi() by prediction experts. The goal is to find
the maximum likelihood estimator of expert parameters given the observed data
{xt}. In the architecture used in [11, 12], the time series {xt} has been observed
but not the hidden states {st}. The architecture is interpreted as a statistical



model and the training is performed by the Expectation-Maximization (GEM)
algorithm [14] algorithm to find the maximum likelihood estimator of the system.
In our case, the dynamic states are readily obtained from the input data {xt}.
It suffices to calculate the energies Et

i in order to fix all the parameters of the
HMM. The optimal state sequence is then obtained by the well-known Viterbi
algorithm [15], (i.e., argmaxs1,...,sT

P (s1, . . . , sT |xT
1 , y

T
1 )) by

δj
t = K · e−αEt

j · max
i

[δi
t−1aij ] (6)

where δj
t = maxs1,...,st−1 P (s1, . . . , st = j, xt

1) is the best score along a single
path, at time t, which account for the first t observations and ends in state j.
We finally obtain a complete data set in which the observations are labeled with
the optimal sequence of states given our assumptions.

4.1 Detection of switching points

Once the predictors are trained, it suffices to detect the current dynamical mode
based on the new incoming data and run the corresponding expert to output the
forecast. Clearly, mode changes are not detected instantaneously. According to
our prior (with k = 2), the switching rate is such that the model remains in its
current state with probability 1/2. However, given that the wavelet energies are
estimated from the last two wavelet coefficients, the energy profile varies rapidly
as a new dynamic takes place. In our experiments, the current mode at time t
is selected according to argmaxj [δ

j
t−1] since Et

j is not yet available.

5 Experiments on synthetic data

To illustrate the predictive ability of the method, we compare our multi-scale
approach to the direct approach using a single prediction model fed with a time
delay vector. It is important to note that the comparison is made on the basis on
the same number of parameters and the same number of inputs. The number of
inputs is deliberately small to increase the difficulty of the prediction task. The
prediction models used are standard multilayer neural networks (MLP) trained
by conjugate gradient techniques. The same MLP of size 3 × 4 × 1 is used to
model each prediction expert up to time-scale J = 6. This makes a total of 126
adjustable parameters including bias. The MLP used in the direct approach has
size 3 × 25 × 1. We generate a synthetic data set made up from a succession
of 5 noisy sine functions with exponentially distributed duration periods and
distinct frequencies f1 = 3.1, f2 = 5.17, f3 = 9.11, f4 = 24.15 and f5 = 39.77.
These frequencies were chosen rather at random so as to spread the signal over
the 6 scales. The signal is corrupted by an additive gaussian noise of variance
σ2 = 0.03. The noise level was taken sufficiently large to enforce the overlapping
of time delay coordinates. The signals were generated over a period spanning
20 seconds with a sampling rate of 500Hz. This makes a total of 10000 values
for xt, half of the data is used for training and the rest for validation. The



multiresolution is performed on 6 octaves over the past 1024 data points. The
target is the average of the next 4 data points.
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Fig. 1: Random succession of five noisy sine functions. From top to bottom :
the raw signal, the true dynamical mode, the scale having maximum energy, the
optimal sequence of experts, the wavelet coefficients dt

j up to scale 6, and the
energy estimates.

The results are illustrated in Figure 1. From top to bottom, : the raw
signal, the true dynamical mode, the scale having maximum energy, the optimal
sequence of experts obtained by the Viterbi algorithm, the wavelet coefficients
dt

j for j = 1, . . . , 6 and the current energy estimate for each scale approximated
by the two last wavelet details. As may be observed, the wavelet segmentation
approach achieves a very accurate segmentation of the dynamics. Not plotted
here, the neural nets achieve accurate forecasts when they are selected as experts
and give erroneous predictions outside their own dynamic. The normalized mean
squared error (NMSE) on the test set for the reference model is 0.42 and 0.21
for the neuro-wavelet approach. These preliminary results on this toy problem
are encouraging given the limited number of inputs and neurons for the experts.
Experiments conducted at present on real world teletraffic data will be reported
on in due course. Further substantiation through more analysis and experiments
are needed to ascertain the data best suited for this approach.



6 Conclusion

We have discussed a new method based on a multiresolution for modelling the
switching dynamics of a time series with correlation structures spanning distinct
time scales, based on multi-expert prediction models. The best state sequence is
obtained by the Viterbi algorithm assuming some prior knowledge on the state
transition probabilities and energy-dependent observation probabilities. The
model achieves a hard segmentation of the time series into distinct dynamical
modes and the simultaneous specialization of the prediction experts on the seg-
ments. The predictive ability of this strategy was illustrated on a synthetic time
series.
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