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Modelling switching dynamics using prediction experts operating on distinct wavelet scales

We present a framework for modelling the switching dynamics of a time series with correlation structures spanning distinct time scales, based on a neural-based multi-expert prediction model. First, an orthogonal wavelet transform is used to decompose the time series into varying levels of temporal resolution so that the underlying temporal structures of the original time series become more tractable. The transitions between the resolution scales are assumed to be governed by a hidden Markov model (HMM). The best state sequence is obtained by the Viterbi algorithm assuming some prior knowledge on the state transition probabilities and energy-dependent observation probabilities. The model achieves a hard segmentation of the time series into distinct dynamical modes and the simultaneous specialization of the prediction experts on the segments. The predictive ability of this strategy is assessed on a synthetic time series.

Introduction

The idea of combining both wavelets and neural networks has attracted much attention over the last decade. Wavelet networks [START_REF] Zhang | Wavelet networks[END_REF] are feedforward neural networks with one hidden layer of nodes, whose basis functions are drawn from a family of orthonormal wavelets. They were introduced for neural network dynamic modelling in presence of varying sampling times, sparse and dense data in different regions and the inherent presence of both large and small dynamics. A wavelet network is first trained to learn the mapping at the coarsest resolution level. In subsequent stages, the network is trained to incorporate elements of the mapping at higher and higher resolutions [START_REF] Ch | Wavelet interpolation networks[END_REF][START_REF] Zhang | An adaptive neural-wavelet model for short term load forecasting[END_REF]. Another strategy, aimed at combining neural network forecasts on wavelet-transformed time series, has been proposed in [START_REF] Aussem | Combining neural network forecasts on wavelettransformed time series[END_REF][START_REF] Aussem | A neuro-wavelet strategy for web traffic forecasting[END_REF][START_REF] Aussem | Wavelet-based feature extraction and decomposition strategies for financial forecasting[END_REF]. Contrary to the wavelet networks, the wavelet part is essentially decoupled from learning. A neural network is trained on each timescale to approximate the underlying law governing the wavelet coefficients. The individual wavelet scale forecasts are afterward recombined to form the current estimate. In this paper, we discuss a new framework for modelling the switching dynamics of a time series with correlation structures spanning distinct time scale. * Supported by the Alliance Franco-British research partnership programme.

The experts are selected according to the energy at the different scales assuming markovian dynamic transitions. The method is illustrated on artificial data.

Multiresolution

A multiresolution [START_REF] Mallat | A theory for multiresolution signal decomposition[END_REF][START_REF] Strang | Wavelets and Filter Banks[END_REF][START_REF] Starck | Image Processing and Data Analysis[END_REF] of L 2 (R) is characterized by a set of subspaces V j and W j , j ∈ Z, of L 2 (R). The scaling spaces V j are increasing and the wavelet space W j is the difference between V j and V j+1 . The space V j+1 is the direct sum of V j and W j which intersect only at the zero vector. A function f (t) in the whole space has a piece in each subspace. The piece in V j is f j (t). On requirement on the sequence of subspaces is completeness:

f j (t) → f (t) as j → ∞. The completeness condition can be restated as V 0 ⊕ ∞ j=0 W j = L 2 .
In the orthogonal case, any function f (t) ∈ L 2 (R) can be decomposed as f (t) = f 0 (t) + +∞ j=0 ∆f j (t) where ∆f j = f j+1f j belongs to W j . Let {ψ j,k (t) := 2 -j ψ(2 -j tk), k ∈ Z} a basis for W j , in the orthogonal case we may write

∆f j (t) = +∞ k=-∞ d k j ψ j,k (t) ( 1 ) 
where d k j are the detail coefficients at scale j. The energy in this piece is

+∞ k=-∞ |d k j | 2 .
In our case, f (t) is unknown, only samples are observed at different instants. These observations are gathered in a time series {x t }. The task is to predict the future value y t = x t+τ of the time series {x t }. τ is the delay parameter. Now, at each time t, we compute an orthogonal wavelet transform on a sliding time window of size wsize over the past values t, t -1, . . . , twsize. The output is a sequence of coefficients {d t 0 , d t 1 , . . . , d t J , a t J } up to resolution level J, where a t J are the ultimate approximations. The proposed prediction method is based on the assumption that the contribution of scale j to the future value y t = x t+τ is dependent upon the fraction of the energy at that scale. In our case, the energy estimate at scale j, for t > wsize, noted by E t j , is given by

E t j = t j=t-K d k j 2 (2) 
where K is a constant and wsize = 2 J+K . In our experiments, K = 2 to speed up the detection of change points.

Prediction experts

In the following we assume that the reader is familiar with the basic principles of HMM. For a thorough introduction, we refer to the tutorial by Rabiner [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF].

Our presentation closely derives from [START_REF] Aussem | Segmentation of switching dynamics with a hidden Markov model of neural prediction experts[END_REF][START_REF] Kohlmorgen | Fast change point detection in switching dynamics using a hidden Markov model of prediction experts[END_REF]. Consider an HMM where each state i = 1, . . . , M is associated to a prediction expert. The prediction expert i predicts the future value y t = x t+τ of the time series {x t } or some exogene variable, given a vector of past values

z t j = (x t-2 j-1 d , . . . , x t-2 j-1 , x t ). ( 3 
)
where d is the embedding dimension. As may be seen, the past sequence at time t is summarized by a vector of time delayed coordinates z t j whose sampling rate is divided by two as we move from scale j to scale j + 1. This comes implicitly from the two scale difference in the dilation equation [START_REF] Strang | Wavelets and Filter Banks[END_REF], the reason is to restrain the analysis to the frequencies lying the octave band of interest. We suppose the target variables y t , at each time t, are given by some deterministic function,

f i (z t i )
, where i is current dynamic mode, corrupted with an additive gaussian noise t . The noise variance, σ 2 i , does not depend on z t i or on t. The observation probability distribution for each state j is supposed to be given by

P (y t |s t = j, x t 1 ) = K • e -αE t j ( 4 
)
where K is the normalizing factor, x t 1 = x 1 , . . . , x t and α is some constant and E t i is the estimate of the energy at time t and at time-scale i. Note that E t i are implicit functions of x t 1 . The transition matrix A = {a ij } determines the probability to switch from a state i to a state j. In principle, this matrix can be found by the Baum and Welch method [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. However, since we focus on problems with only relatively few switching events, the matrix is used to incorporate this prior knowledge in such a way that remaining in the current state is as likely than switching to another state (low switching rate assumption [START_REF] Kohlmorgen | Fast change point detection in switching dynamics using a hidden Markov model of prediction experts[END_REF]) :

a ij = k k+(M-1) if i = j 1 k+(M-1) if i = j (5)
With thus get a constant transition matrix which depend on a single parameter k (k = M -1 in our experiments). The restriction on models with a low switching rate reduces the degrees of freedom in model space and effectively prevents from overfitting the data. Note that this model we arrive at differ from the so-called the mixture-of-experts architecture [START_REF] Jordan | Hierarchical mixtures of experts and the em algorithm[END_REF]. In such model, the input space is divided into a nested set of regions. Training the gating models for P (s t |x t 1 ) is however difficult especially when too few transitions are observed in the data. Instead, we assume here that the state probability at time t can directly be computed from the energy estimates E τ i , for τ ≤ t and i = 1, . . . , J, which are calculated other sliding windows. The number of freedom parameters is significantly reduced and the training is greatly facilitated.

Expert training

We seek to model the functions f i () by prediction experts. The goal is to find the maximum likelihood estimator of expert parameters given the observed data {x t }. In the architecture used in [START_REF] Aussem | Segmentation of switching dynamics with a hidden Markov model of neural prediction experts[END_REF][START_REF] Kohlmorgen | Fast change point detection in switching dynamics using a hidden Markov model of prediction experts[END_REF], the time series {x t } has been observed but not the hidden states {s t }. The architecture is interpreted as a statistical model and the training is performed by the Expectation-Maximization (GEM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF] algorithm to find the maximum likelihood estimator of the system. In our case, the dynamic states are readily obtained from the input data {x t }. It suffices to calculate the energies E t i in order to fix all the parameters of the HMM. The optimal state sequence is then obtained by the well-known Viterbi algorithm [START_REF] Forney | The viterbi algorithm[END_REF], (i.e., argmax s1,...,sT P (s 1 , . . . , s T |x T 1 , y T 1 )) by

δ j t = K • e -αE t j • max i [δ i t-1 a ij ] ( 6 ) 
where δ j t = max s1,...,st-1 P (s 1 , . . . , s t = j, x t 1 ) is the best score along a single path, at time t, which account for the first t observations and ends in state j.

We finally obtain a complete data set in which the observations are labeled with the optimal sequence of states given our assumptions.

Detection of switching points

Once the predictors are trained, it suffices to detect the current dynamical mode based on the new incoming data and run the corresponding expert to output the forecast. Clearly, mode changes are not detected instantaneously. According to our prior (with k = 2), the switching rate is such that the model remains in its current state with probability 1/2. However, given that the wavelet energies are estimated from the last two wavelet coefficients, the energy profile varies rapidly as a new dynamic takes place. In our experiments, the current mode at time t is selected according to argmax j [δ j t-1 ] since E t j is not yet available.

Experiments on synthetic data

To illustrate the predictive ability of the method, we compare our multi-scale approach to the direct approach using a single prediction model fed with a time delay vector. It is important to note that the comparison is made on the basis on the same number of parameters and the same number of inputs. The number of inputs is deliberately small to increase the difficulty of the prediction task. The prediction models used are standard multilayer neural networks (MLP) trained by conjugate gradient techniques. The same MLP of size 3 × 4 × 1 is used to model each prediction expert up to time-scale J = 6. This makes a total of 126 adjustable parameters including bias. The MLP used in the direct approach has size 3 × 25 × 1. We generate a synthetic data set made up from a succession of 5 noisy sine functions with exponentially distributed duration periods and distinct frequencies f 1 = 3.1, f 2 = 5.17, f 3 = 9.11, f 4 = 24.15 and f 5 = 39.77. These frequencies were chosen rather at random so as to spread the signal over the 6 scales. The signal is corrupted by an additive gaussian noise of variance σ 2 = 0.03. The noise level was taken sufficiently large to enforce the overlapping of time delay coordinates. Fig. 1: Random succession of five noisy sine functions. From top to bottom : the raw signal, the true dynamical mode, the scale having maximum energy, the optimal sequence of experts, the wavelet coefficients d t j up to scale 6, and the energy estimates.

The results are illustrated in Figure 1. From top to bottom, : the raw signal, the true dynamical mode, the scale having maximum energy, the optimal sequence of experts obtained by the Viterbi algorithm, the wavelet coefficients d t j for j = 1, . . . , 6 and the current energy estimate for each scale approximated by the two last wavelet details. As may be observed, the wavelet segmentation approach achieves a very accurate segmentation of the dynamics. Not plotted here, the neural nets achieve accurate forecasts when they are selected as experts and give erroneous predictions outside their own dynamic. The normalized mean squared error (NMSE) on the test set for the reference model is 0.42 and 0.21 for the neuro-wavelet approach. These preliminary results on this toy problem are encouraging given the limited number of inputs and neurons for the experts. Experiments conducted at present on real world teletraffic data will be reported on in due course. Further substantiation through more analysis and experiments are needed to ascertain the data best suited for this approach.

  The signals were generated over a period spanning 20 seconds with a sampling rate of 500Hz. This makes a total of 10000 values for x t , half of the data is used for training and the rest for validation. The multiresolution is performed on 6 octaves over the past 1024 data points. The target is the average of the next 4 data points.
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Conclusion

We have discussed a new method based on a multiresolution for modelling the switching dynamics of a time series with correlation structures spanning distinct time scales, based on multi-expert prediction models. The best state sequence is obtained by the Viterbi algorithm assuming some prior knowledge on the state transition probabilities and energy-dependent observation probabilities. The model achieves a hard segmentation of the time series into distinct dynamical modes and the simultaneous specialization of the prediction experts on the segments. The predictive ability of this strategy was illustrated on a synthetic time series.