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dl INTRODUCTION
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O concemns regarding the predictability of cosmological suee-
ments in simulations have been with us for some time. In tighre
bouring field of secular galactic evolution, it has been kndar a

ABSTRACT

The onset of stochasticity is measuredi@DM cosmological simulations using a set of clas-
sical observables. It is quantified as the local derivativine logarithm of the dispersion of
a given observable (within a set of different simulatiorféeding weakly through their initial
realization), with respect to the cosmic growth factor. inEulerian framework, it is shown
here that chaos appears at small scales, where dynamic-lgiean while it vanishes at larger
scales, allowing the computation of a critical transiticale corresponding te 3.5Mpc/h.
This picture is confirmed by Lagrangian measurements whichivghat the distribution of
substructures within clusters is partially sensitive titiah conditions, with a critical mass
upper bound scaling roughly like the perturbation’s anoplé to the powe6.15. The cor-
responding characteristic mas¥,..;; = 210'*M, is roughly of the order of the critical
mass of non linearities at= 1 and accounts for the decoupling induced by the dark energy
triggered acceleration.

The sensitivity to detailed initial conditions spills torse of the overall physical prop-
erties of the host halo (spin and velocity dispersion tes@ntation) while other “global”
properties are quite robust and show no chaos (mass, spmptar, connexity and center
of mass position). This apparent discrepancy may reflectatiethat quantities which are
integrals over particles rapidly average out details ofedénce in orbits, while the other
observables are more sensitive to the detailed environofdotming halos and reflect the
non-linear scale coupling characterizing the environmehhalos.

Key words: Cosmology, Chaos, N-body, etc.

cles are likely to be poorly resolved by the numerical scheme
plemented, the properties of structures would nevertaddeswvell
representedtatistically In other words, so long as the simulated
region was large enough to represent a fair sample of dyradignic
independent regions, the stochastic exponential depdfitum the

O\l while (Bellwood and Wilkins¢n[ (19p3)) that the significanider-

unperturbed trajectories was expected to average out wiresice

o sampling of resonances could mislead the dynamical ewolwf
O N-body systems when the evolution time becomes large caedpar

ering such a statistical sample. The question remains &iufes
specific to a given realization, such as the relative pasitibob-

—' to the local dynamical time. Over the course of the last decad Jects.
various “universal” relationship$ (Navarro ef al. (109hang and The sensitivity of the gravitational N-body problem to smal
C Fall ),| Richer et j;l.l)) have been extracted nicalgr changes in initial conditions has been investigated inidetsy
from cosmological N-body simulations. In this context,refgcant Kandrup and collaborators in a series of papers (Kandrup and

efforts [ (2093)) have been invested in compatif: Smith (199].] 1992)f Kandrup et|al. (1992, 1994)) in the cante

ferent numerical schemes and codes, but, with the develaipofe of a Newtonian (time-independent) Hamiltonian. They hdwens
very high resolution “zoom” re-simulations[( Weil et|d]. @, in particular that the growth of small perturbations in iitcon-

Piemand et 4dl.[(2004)f Hansen and M¢ofe (2pd6a) Sales|et al.ditions is exponential, with a mean e-folding time that igrap-

(P0OOY), [Strigari et 41.[(200[ra)) one question remains: hemsis totically independent of the number of particles at largeaNd

tive is a given run with respect to its initial conditions?gdartic- a distribution of e-folding times that is reproducible frasimu-
ular, what set of observables is likely to be robust with eesfo lation to simulation for sufficiently large N. In the cosmgical

a specific choice in the “phases” of the draw (the whitenetikini context, the N-body description is an approximation of th#i-c
realization)? In the context of cosmology, the general mggion sionless Boltzmann equation for the evolution of the darlktena
has been that, even though the detailed orbits of dark nyadrér so that another related question is in which sense a limihéo t
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continuum can be established as the number of particlesdres.
Indeed, it has been argued in the Iiteratﬁre (Kal:ld up (19560d-
man et al. |(1993)) that the discretization of smooth, andsipos
bly integrable potentials invariably leads to strongly afi@orbits
in the N-body framework, independently of the number of ipart
cles; this has been confirmed numerically (Kandrup and Sider
(R001);[Sideris and Kandrup (2402)), both for integrablé aan-
integrable underlying distributions by evolving orbits‘frozen-N
body” samplings of the smooth mass distributions. Howexan-
drup and Sideris also showed that when one follows the dewiat
of orbits evolved in the frozen-N and smooth potentials vwd#nti-
cal initial conditions, and when the deviation amplitudaliswed
to reach large fractions of the system size (macroscopie)vie
continuum limit can be well defined in the sense that thesea@nac
scopic departures from the orbits of the smooth potentialgch
can be themselves either regular or chaotic) grow as a pawmer |
with time, and that the characteristic divergence time sning
with the number of particles. These results, together viaghclaim
of universality (halo profilesl(Navarro et|a. (1997)), thehape
(Hansen and Modﬁrel@geb)), the mass functicigns (Zhang g!ld Fa
1999),|Richer et g1] (1991))) that is widely used in the cokmgy
community, lead us to revisit the problem of the sensitizfyN-
body simulations to slight changes in the initial condifat fixed
power spectrum in the cosmological context, and to numidyica
investigate the presence (or absence) of “chaotic” bebawbdif-
ferent statistical quantities derived from N body simuas. Our
focus will be on the transition between large scale linearaghy-
ics and small scale stochastic propertles (Strigarilepa0Tb)). A
possible concern in this context is the development of stetitr
ity induced by the ill-conditioning/non-linearity of themator of
the chosen set of observables. Another concern lies in gafag-
ties of the numerical code used. Finally, numerical noiskided
by round-off errors should also be kept at bay, since theyhbynt
selves will lead to some level of stochasticity. Since thgicof
this paper is not optimal estimation, no attempt will be méale
argue that the set of estimators used here is superior os@ffieet-
ter trade-off in bias versus variance. Similarly, a staddiategrator
.1)) is used to carry the simulation$aiset of
conservative parameters. Round-off errors are assumeglitcebe-
vant. Specifically, this paper will investigate what scaid anass is
expected to play a role and will identify which quantities ésund
to be robust with respect to such exponential divergeneétlialso
find out if stochasticity breaks in as soon as non lineardsir or
if it is possible to identify two distinct time scales in thgrimics
of large scale structures.

This paper is organized as follows: in Sectﬂm 2 the method
to characterize the statistical onset of stochasticityuimerical N-
body simulations is presented. In Sectﬂm 3 the correspgndya-
punov exponents are computed for Eulerian quantities an8ec-
tion B) for Lagrangian ones. SectiEh 5 discusses other $sand
wraps up.

2 METHOD & SETTINGS

In this paper, we address the problem of the sensitivity dfody
simulations to initial conditions. To do so, we choose tagthow
slight changes in these initial conditions affect the etioluof the
dispersion of a number of statistical quantities with tiffiis is
achieved by generating several realizations of identicaligtions
where a small amount of random noise has been added to tiad init
realisation. The generic procedure goes as follows:

J. Thiebaut, C. Pichon, T. Sousbhie, S Prunet & D. Pogosyan

i) Generate a cosmological simulation usingrafic
r5)) and gadggt (Springel ¢tlal. (P001)).

(ii) Start with the same noise file (i.e. the “phases”), bud ad
Gaussian white noise with RMS 1/300f the previous white noise
(except in SectionE.Z a@zm, where this amplitude isedui
This only affects the relative positions of clumps, not tregec-
tral distribution (the expectation of the power spectrumaas
unchanged).

(iii) Rerun the simulation with the new white noise;

(iv) Iterate the above two steps “50 times;

(v) Compute a set of observables in each simulation;

(vi) Compute the RMS (or the relative RMS) of the distributio
of observables for various expansion factors.

(vii) Fit the corresponding evolution of tHeg RMS vs the ex-
pansion factor.

(viii) Possibly find the scaling of its corresponding Lyapun
exponent (see below), with the smoothing scale associatadive
observable (see S.2), or the corresponding mass (s@&e

Let us define the “Lyapunov exponentx, as the rate of change
of the logarithm of the fluctuation of the relevant quantity, as a
function of the scale factou;

danX
= — 1
1a @

This stochasticity parameter is not strictly speaking apuyev
exponent since it corresponds neither to an asymptotit éinkarge
time, nor to an asymptotic limit at small fluctuation. It isosér
in spirit to the short time Lyapunov exponent defined by Kapdr
etal. (199f).

In practice two distinct sets of simulations are consideéned
this paper, one composed of 65 realisations2s> particles each
(S1 hereafter) and the other of 27 realisations véiftt> particles
each (. hereafter). The box size 00k~ 'Mpc, the cosmology
a standardA\CDM model €2,, = 0.3, Qx = 0.7, Hy = 70),
the softening parameter &9.5h *kpc and the expansion factor
ranges from 0.05 up to 1 fof; and from 0.05 up to 0.4 fob .
These two sets allow us to check the robustness of our finditig w
respect to resolution. Lyapunov exponents will also be esged
as characteristic timescales,using the relationship between time
and expansion factor in a CDM model (or equivalently ih@DM
model belowa < 0.5), a  72/2. Note that the resolution in mass
of FOF halos containing more than 100 particles correspbeds
to 4102 My, for the setS; and5 10'! My, for the setS, .

X

3 EULERIAN EXPONENTS

In this Section, we investigate the “global” chaos in theletion

of the Eulerian properties of théensity field with respect to the
expansion factos, as opposed to chaos in the Lagrangian proper-
ties of objects which are specific to the matter distribution in the
universe (such as halos and filaments). This will be adddesse
Sectiorﬂl.

3.1 Chaos in density fluctuations

In order to study the density fluctuations, the density fiefls’
andS- are sampled on@4? grid using a simple NGP (nearest grid
point) method allowing the computation of statistical cfitées on
the resulting grid, such as the average density or the gefhsit-

(© 0000 RAS, MNRASDOO, 000—-000
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tuations! Within each set, for every pixel we compute the PDF of
the realisations of the density values at that pixel and #vemage
the individual pixel PDFs over all the pixels that have meansity
value across realisations above the given threshold. Toletén

of the width of this pixel-averaged PDF is then computed aga-m
sure of the chaotic divergence amongst realisations wigfntyy

different initial conditions. Specifically, Figu@e 1 prexds the evo- :g
lution of the mean relative dispersion of the density/p (where On.“i’

p is the mean density of the pixel over all the realisations raoid
the average density of the simulation), in identical pixaighe
different realisations of; (middle panel) and> (bottom panel),
considering regions where density is greater than givesstiolds’

As expected, these measurements show that this dispension i
creases with time, as can easily be seen otdb@anelof figureﬂ.,
where the PDF o p/p is plotted for different values aof. The fact
that the growth rate of the dispersion increases when cernsgl
regions of higher densities may be explained by the highei &f
nonlinearity of the evolution of matter distribution in #eeregions.

In fact, in denser regions, the evolution becomes non-ieea-
lier, which favors the development of chaos. But at lateemon
linearities have had time to develop at all considered @mesity
levels, which explains the asymptotic merging of the curvEke
exponential growth of the dispersions demonstrates tleaetio-
lution is chaotic as defined in the introduction and allowstfe
computation of Lyapunov exponentsp, as the rate of change of
the logarithm of the average relative density fluctuatiom &snc-
tion of the scale factor.

The fact that the non-linearity in the evolution increasesos
is illustrated by Figure[|2, where maps of the average density
(top panél and the corresponding Lyapunov exponet (bot-
tom panel) are plotted. Each map represents the projecfi@an o
10h~*Mpc slice from a sample of> ata = 0.35. The correlation
between the two maps confirms the dependence of chaos on over
density (see also the projections of different realisatiofithe same
halos on Figur{|6, where substructures are clearly diffezean
though the shape of main halos remains mostly the same)eThes
results must nonetheless be interpreted with care as thefuse
finite sampling grid may bias the measurements. Indeedjd®ms
ing higher density regions amounts to considering smatiaiese-
gions, of order the size of the grid pixeks (1.5h~! Mpc?), which
may affect the measured value ob.

3.2 Chaos transition scale

Transition to chaotic behaviour of the density field thattehwith
linear evolution is fundamentally linked to the developmefithe
nonlinearity. Since different scales enter nonlinear megat dif-
ferent epochs, one expects that at a given time there exiaha t
sition scale,L., below which variation of the density in pixels of
the sampled field is clearly chaotic. Figtﬂe 3 presents thadeur

of the average value ofp for different perturbation amplitudes,

as a function of the scalé. These measurements are derived by
computing the average Lyapunov exponents in pixels on the sa
pled maps shown in figuie 2, smoothed using a Gaussian kefrnel o
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Figure 1. top: Evolution of the pixel-averaged PDF of the density val-
ues while samplingS; on a 643 grid for different values ofa €
[0.1(light), - - - 0.4(dark)] (only the pixels wherep/p > 2 were con-
sidered, wherg is the cosmic mean density). As expected the full width

half max (FWHM) of the distribution increases exponenyiallith the ex-

1 we also considered E283 grid and found no difference in the measured
exponents.

2 note that the number of pixels above a given threshold isggiminlepend
on redshift, but for the contrasts considered here, the errthe dispersion
due to shot noise is always negligible, as we have at @@ particles
above the highest threshold, at the highest redshift.

bottom: same as middle frame but f&k .

(© 0000 RAS, MNRASDOQ, 000-000

pansion factor reflecting the chaotic behaviour of the PDEhefdensity
field; middle: temporal evolution of the dispersion in the sampled dgnsit
field per unit of the mean density, for sub regionsSaf corresponding to
thresholds in overdensity/p of 0.5, 1, 1.5 and 2 respectively as labelled.
The asymptotic merging for different thresholds reflecesfttt that at later
times, regions of different overdensity levels are all ia ttonlinear regime;
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Figure 2. Logarithm of the projected density of the pixel®o frame)
and their associated Lyapunov exponebwtfom frame), for a projected
10h~*Mpc slice Sz ata = 0.35. The comparison of the two maps empha-
sizes the correlation of the two fields: denser regions hanget Lyapunov
exponents. On closer inspection, one may argue that lagggrunov expo-
nents lie in the outskirts of the denser regions.

FWHM L, and considering only the overdense regign&(> 1).
Density is computed by making a histogram of particles ingttie
using the NGP method, and by smoothing it with a Gaussiarekern
afterwards. The measurements are performed at the présent t
a = 1in S, simulation and at = 0.4 for S set.

The plot demonstrates a rather sharp transition to chaetic b
haviour at scales below the critical smoothing length~ 3.5h~!
Mpc with Lyapunov exponent increasing for ever smaller ssal
whereas on larger scales the Lyapunov exponent is small@nd c
stant. This behaviour is indicative of tieCDM background cos-
mology of the standard model. Indeed, in the pure CDM cosgyolo
with the critical density of the matter, the gravitation&lstering
would have continued to escalate to present time and onecexpe
to see Lyapunov exponent falling smoothly fo ~ 8h~'Mpc,
the present-day nonlinear scdleln contrast, inACDM cosmol-

3 The nonlinear scale is usually defined with top-hat smogthis
o?(Rty) = 1. The FWHM of the Gaussian smoothing filtérthat we
use gives similar variance to the top-hat filtefaty ~ 0.9L. Our simula-
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Figure 3. Evolution of the average Lyapunov exponent of the pixel den-
sity fluctuations A p, as a function of the smoothing lengthfor regions
wherep/p > 1 and for different amplitudes of the initial perturbations,
(expressed as a fraction of the initial dispersion ampéijudeasured in the
setS1. The top dark dashed line corresponds to theSsefior A = 1/30.
The sharp transition nedrgyootn =~ 3.5Mpc/h is exhibited in both res-
olutions. The perturbation amplitude does not affect tisaltesignificantly.
The difference in time of measurement for the curve (slightly earlier
than the freeze-out time around~ 1) may explain small the difference
in the corresponding non linear scale. The bottom light éddime corre-
sponds also tel = 1/30 in S; but measured on 8283 grid; it shows that
the exponent is not sensitive to the sampling resolution.

ogy the hierarchical clustering saturates when the darkggrze-
gins to accelerate the expansion of the Universe. Numegiicalla-
tions show that in the standardCDM model the clustering largely
ceases by ~ 1 ( mfi)) The non-linear scale at
this redshift isL = 3.7h~'Mpc, which corresponds to the mass
scaleM ~ 2 x 10* M. The halos of smaller mass collapse en
masse at earlier times passing by= 1 through a period of hier-
archical mergers with similar-mass halos as well as acoréhiat
contributes to the formation of the chaotic features. Waerthe
larger overdense patches, even the rare ones that turneadaoy

z ~ 1 and will collapse by the present time, evolve in a quiescent
environment of frozen hierarchly (van den Bggch £002; Autedt
Pichon{200[7). This argues fér~ 3.7h~"Mpc providing the fixed
critical length between chaotic and regular regimes foeait 1,
which is in general agreement with our measurements.

4 LAGRANGIAN EXPONENTS

In the previous section, we studied the development of cimeibe
density field of cosmological simulations. We measured todue

tion of the variance of this density field on a grid (i.e. at yler
Eulerian locations) and showed that chaos tends to be more pro-
nounced in higher density regions as well as on smaller schét

us now focus instead dragrangian properties of peculiar objects
with a physical significance such as dark matter halos or élgm

tions are normalized to(8h ! Mpc) = 0.92 which ata = 1 corresponds
to nonlinear scal®kry ~ 7.2h~'Mpc, i.e L ~ 8h~Mpc.

(© 0000 RAS, MNRASDOO, 000—-000
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4.1 Inter skeleton distance

Filaments correspond to a central feature of the large slistg-
bution of matter: large void regions are surrounded by a Biam
tary web linking haloes together. Studying the propertieshe
filaments isn’'t an easy thing and one first needs to find a way of
extracting their location from a simulation. The skeletaveg a
mathematical definition of the filaments as the locus wheeet-s
ing from the filament type saddle points (i.e. those wherg onk
eigenvalue of the Hessian is positive), one reaches a loaal-m
mum of the field by following the gradient. This is equivaléat
solving the equation:

E =V = (2)
for x, wherep(x) is the density fieldVp its gradient, anck the
position. Although apparently simple, solving this eqoatis quite
difficult which is why a local approximation was introduced i
(Sousbie et 4l.[ (20pg, 2407)): thecal skeleton. One can show
that, up to a second order approximation, solving Equaﬂ:)n's(
equivalent to finding the points in the field where the gratlisn
an eigenvector of the Hessian matrix together with a coimstoa
the sign of its eigenvalues. This approach leads to a systéwoo
differential equations, solved by finding the intersectidtwo iso-
density surfaces of some function of the density field andirss
and second derivatives. This procedure is very robust dod/sl
for a fair detection of the dark matter filaments. Figure Didigs
the skeleton of different realisations 6f ata(t) = 0.1 (top) and
a(t) = 0.4 (bottom). Note that the dispersion of the skeleton loca-
tion has increased with the scale factor. Using the methedrited
in (Sousbie et al.| (20D$, 2407)), thecal skeleton provides a list
of small segments. In order to measure the distance between t
skeletons, for each segment, the distance to the closasesen
the other skeleton is computed leading to the PDF of thisidist
tion. The mean distance between the two skeletons is se¢ footh
sition of the first mode of their inter-distance PDF (See &laacci
etal. {200B)). We then define a mean inter-skeleton distamzeng
all the realisations within a set as the arithmetic averdgtheir
pairwise distances. This means that the normalized ihkieton
distance{D) /Lo, is our measure of the dispersion in the skeleton
location. It is a Lagrangian property since it follows thenfldts
evolution as a function of the scale factor is plotted on Fé@:for
different smoothing lengthg,, for S> (top) and.S; (bottom). The
smoothing operation is achieved, as previously, by corrglthe
density field with a Gaussian kernel of FWHK,, ranging from
Lo = 1.2k *Mpc (3 pixels) up toLo = 3.5k 'Mpc (9 pix-
els). It is clear that whatever the smoothing scale or theluésn
used, the evolution of the dispersion is linear with the es¢attor.
A shift in the skeleton of the initial conditions will evolNimearly
with time and not exponentially: the skeleton at presenétmon’t
be affected very much. There is no chaotic drift of the ponsiti
of the skeleton and thus no chaos in the evolution of the acosmi
web. Note nonetheless that the smaller the smoothing letiggh
stronger the increase ¢D) /Lo. This implies that smaller scales
are more sensitive to initials conditions, which is confidy the
fact that (D) /Lo is larger for lower values of.o, whatever the
value ofa.

Vp,

4.2 Positions of halos

Turning to stochasticity on smaller scales in a Lagrangiamé-
work (i.e. ignoring the absolute shift in position relatizea fixed

(© 0000 RAS, MNRASDOQ, 000-000
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Figure 4. Thelocal skeletons of the different realisations $f, computed
ata(t) = 0.1 (top) anda(t) = 0.4 (bottom) and for a smoothing length
Lo = 1.2h~Mpc. Each figure corresponds to the projection aba !
Mpc thick slice. Each color represents a different reabsaof the simula-
tion, the color coding is not consistant between the top badbttom pan-
els. The dispersion in the position of the skeletons appteahsve grown
froma(t) = 0.1toa(t) = 0.4.

frame), let us define a matching procedure to identify stmest in
different runs. haloes are first identified using the FOF rtigm
(Davis et al. (1995)f Suginohara and $uto (1992)) with agarc
tion length of0.25h~"Mpc for S; and0.5h~*Mpc for S corre-
sponding td).2x mean interparticular distance. In order to tag dif-
ferent FOF haloes in different realisations as countespatt par-
ticles of a given halo are matched in another realisationggieir
initial index (FigureDS). The halo of the other simulatiomtaining
most of these particles is tagged as its counterpart. Theegdoe is
carried over all pairs of simulations, allowing the measugat of
the variation in the halo properties like their spins, thpsitions,
their velocity dispersion tensors or their masses.

As shown on Figun£|6, the haloes locations seem relatively
insensitive to small changes in the initial conditions. Ewelu-
tion of the mean distance between a halo in a given simulatich
the same halo in another realisation is linear, as for thieegkg
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Figure 5. The normalized mean distandd)) /Lo, between the skeletons
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accuracy at smaller scales, only the larger smoothinghereye represented
for Sp. At these resolutions, the two sets agree. The cosmic wekisn
clearly evolves linearly with time, confirming that chaodirked to non-
linearities.
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Figure 6. Heaviest cluster (in the X-Y plane in Mpc/h) of 9 realisagon
of Sy at z = 1.5. The position and the global shape of the halo does
not change from one simulation to another, but the subsirestare quite
different; this is confirmed via automated substructurantifieation using
ADAPTAHORP.

which confirms the first impressions: no chaos is observedes
scales and s@, the Lyapunov exponent of the inter halo distance,
is null. But the most interesting results involve the sulnstires.
The halo pictured in Figurﬂ 6 is a good example of the generic b
haviour. The number of substructures changes from onesatialin

to another (here, 1 or 2 substructure(s)) and their positaso dif-
fer. These results are confirmed by an automated detectitmeof
substructures usingDAPTAHOP (. 4)). Both the
locations and the number of substructures are possiblyesuty)
chaos, but the lack of a cross identification procedure miakkfs
ficult to quantify it and is somewhat beyond the resolutiothese
sets of simulations (Secti.3 addresses this problethédFOF
halos). This trend confirms quantitatively the findings (uit'sm
from the point of view of Eulerian estimators which are stéwnsi
to the detailed extension of the distribution of matter withalos:
denser regions were found to be chaotic, and will be addiesse
more details in Sectior} 4.4 in terms of halo density and vgloc
moments.

4.3 Connexity and mass of clusters

The connexity of haloes can be defined as follows: considerin
the pt"halo, Hy, in the r*" realisation, its particles are spanned

amongstn haloes in thet" realisation, and a fractioﬁ;",:' (k €

1, ..,n) of them belong to a halb amongn in ther’*" realisation.

Hence, its relative connexil@;""' can be defined as:

=2 i (11X hk ) @
i=1 j=1k=j

where by constructioﬁ,‘;“is equal to one if both haloes are iden-
tical in realisations- andr”’; C’;T' is equal ton. if the halop splits
into n haloes with equal fraction r};/ = 1/n in realisation”,

while preserving continuity when the valuesfﬂ'differ, see Ap-
pendix A. The mean connexity, is obtained by averaging over all
haloes containing more tha0 particles in every possible com-
binations of realisations and is a measure of the dispeisithe
particles.

As shown on Figurﬂ T increases with the scale factor, rang-
ing from 1.17 (i.e., statistically, 90% of the particles belong to a
unique halo in other realisations) 1037 ( 85%) froma = 0.2 up
toa = 1.0. The connexity clearly does not vary exponentially with
the scale factor : there are statistically no halo fissiorinduevo-
lution (thanks to the efficiency of dynamical friction). Memver,
two haloes marginally linked by FOF would almost always epd u
merging sooner or later. More and more haloes merge at eliffer
times in different realisations which is in part due to thet féoat
some threshold is involved in the FOF algorithm: a preciskitig
length has to be chosen, inducing the possibility that sofehges
in particles position can induce significant changes in inaéog-
ing time (according to the FOF definition of a halo). At latenés
(a > 0.7), the connexity reaches a plateau, which suggests that
when haloes are massive enoughi (> M., see Sectior@A be-
low), they become insensitive to the merging of lighter ors@sce
equal mass merging rarely occur belew= 1. The analysis of the
masses of the haloes shows that there is no sweeping chashge,an
no obvious evolution of the haloes mass distribution: tlseciated
Lyapunov exponent\as, is null. The number of different particles
increases with time but the missing particles are replagede
particles. Thus, the mass stays quite constant even as tinexco
ity increases. It follows that the mass function extractednf the
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Figure 7. The haloes average connexity computed over all the realisat
of S; as a function of the scale factor. While the connexity is nbject to
chaos, its value increases with time. This result can berstats through
the difference in merging time of the haloes.

N-body simulations are found to be quite robust with respect
changes in the initial conditions. Although the massesetiiloes
are similar in different realisations, some of the parclehich
compose them may be different, which may generate diffe@®nc
in the physical properties of the haloes. The substructarelif-
ferent (Fig.[b) in their numbers and positions, which is cesible
for the Eulerian chaos found in Secti3.2. Let us now rdegrp
this in a Lagrangian framework.

4.4 Spin Orientation of clusters

The influence of chaos on the spin of haloes is estimated by com
puting the cosine of the anglé,,, between the sping, and.J, of
corresponding haloes in two different realisations p and q:

_ _Jv-Jq
[Tl 1T qll

For every bin of mass, a measure of the dispersioiof the orien-
tation is given by the average andle:

1

0 = arccos —E cosbpq |,
Ne =~
i—

where the sum is over all th¥. possible pairwise combinations of
realisations. Note that only bins of masses containing rii@e 30
haloes have been retained.

Figure|}3 displays the exponential growth of this dispersion
with time, and shows that the precise value of its associayed
punov exponent\, depends on the selected bin of mass. It also
shows that the exponent does not seem to be sensitive togbket n
as its value is left unchanged when resolution is increaséaden
S1 anng.

cos(0pq)

4)

®)

4 the estimator of the dispersion, EH. (5) is robust since kgig the sum
by the spin parameter yields the same results.
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scale factor a

Figure 8. Logarithm of the dispersion of the angle between the spin
of one halo ofS; as a function of the scale factor. Results are com-
puted for different ranges of mass&s|0'2Mg iMi6 10'2M, (top) and

1.6 1013MiMi2 1013M, (bottom). For heavier halos the Lyapunov ex-
ponent vanishes. The triangles correspond to the first ofdgghter mass,

but measured irbs; the exponent remains unchanged which suggests that
particle shot noise is not an issue.

Also, as itisseenin Fiﬂ.6, the detailed distribution oefdes
within a given cluster varies from one realisation to angttiee an-
gular momentum orientation (in contrast to say, its modoluthe
halo mass) is quite sensitive to the outer region of theibigion.
Recall that the spin parameter (i.e. the= J/(v/2M Vago R200)
Bullock et al. [200h)[ Aubert et hi[ (2d04)) of a halo diglao
chaotic behaviour. It stays quite constant from a simufat@®an-
other and the evolution of its dispersion is not exponential

The measured Lyapunov exponent ranges from 0 to 0.3.
value of the mean dispersion of the orientation of the spiméav-
ier haloes is about 35 degrees exp(3.55)). Globally this sug-
gests that the orientation of the spin varies with the tideldfi
which in turn depends on the relative position of structwrihin
the environment of the halo.

For lighter haloes, the measured valueXgf is higher than
for heavier ones (Figurﬂ 8) which may be partly explainedhsy t
fact that a slight change in a few clumps within the haloesaas
larger influence on its spin when they represent a signififrant
tion of it. Faltenbacher & al.[(Faltenbacher e} &l. (200%vged
that if the lightest halo has a mass less tha of the mass of the
larger halo, the orientation of the resulting post mergiagwill
remain statistically the same. In contrast, if its mass éatgr than
20% of the more massive halo, the final orientation of the merged
halo depends on the speed vector of the two progenitors. &ur r
sults corroborate well their finding since the lightest lesldhat
are formed by merging of two substructures of comparablesasas
have chaotic spins (substructures being chaotic, seeoﬁ@timd
Figure|]5), while heavier ones have spin that are relatividple
with time (they only merge with much smaller haloes). It egesr
from these measurements that there is a critical me&s,above
which chaotic behaviour disappears. Haloes heavier thamthss
are too heavy to feel the influence of incoming clumps and thei

The
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Figure 9. Critical mass M., (in units of 101°M ) for the spin orientation
as a function of the amplitude of the perturbatiors(in fraction of the
initial dispersion amplitude). It appears thet. = 21013 Mg A%15. The
larger the amplitude of the perturbation, the heavier tHedsathat can be
considered stable.

spins are clearly defined. They are therefore not subjechéos
and their Lyapunov exponents are null at the one sigma lavel,
contrast to lighter ones whose spin are sensitive to thialimmion-
ditions and whose Lyapunov exponents are positive.

As for the critical smoothing length (see Sectﬂ»n 3), we can
study the evolution of this critical mass as a function of ahepli-
tude, A, of the perturbations. Figuﬂa 9 shows this evolution. A good
fit of this transition mass is given byl = 210" My A%'5. The
higher the amplitude of the perturbations, the higher tlygired
time for haloes to have a spin clearly defined. Consequetty,
critical mass increases with the perturbation amplitudd, fzaloes
that can be considered stable are heavier. Note that it nteahs
the spin is constant with time but not very reliable sincefiital
orientation depends, in part, on the initial conditions.

4.5 Orientation of the velocity dispersion tensor

The orientation of the velocity dispersion tensor is alsaardjity
of interest from the point of view of stochasticity sincedtrelated
to the shape of the halo via the Virial theorem. The corredpon
ing estimator involves computing the orientation of theseigector
V associated to the largest eigenvalue of the velocity disper
tensor. As for the orientation of the spin, (S 4.4) thafig,
between the eigenvectdf,, of the halo in simulatiop and its cor-
responding eigenvectdr , in a simulationg is computed as:

V,.V,
Vol IVall

For every bin of mass, a measure of the dispersiois also given

by Equation ). Once again, only bins of masses containiogem
than 30 haloes were considered. As shown in Fie 10 this est
mate is consistent with the exponents of the orientatioh@tpin:
only the lightest masses are sensitive to the initial caomit while

the dispersion of the orientation for the heavier massesristant
(about 40 degrees). The measured Lyapunov exponentanges

cos(0yq) =

(6)
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Figure 10. Logarithm of the dispersion of the angle between the first
eigenvector of the velocity dispersion tensor of the haloks;, as a
function of the scale factor. Results are computed for wdfie ranges of
masses5 1012M o iMj6 1012M¢ (top) and2.310'3MiMj2.8 1013 Mg
(bottom). The less massive haloes are more sensitive to the iniiadlie
tions, the average angle being constant for the heavier, abest a value

of 40 degrees. The triangles correspond again taStheet and shows not
difference. The Lyapunov exponenty ranges from0 to 0.65.

from O up to 0.65 . These results corroborate well those ®sthin
axis, given that its orientation follows the third eigenwef the
dispersion matrix (i.e. the axis along which dispersioréegmall-
est).a05) showed that the orientatidhe
principal axis of the halo is correlated with the vector limk the
two mergers (i.e. their relative positions) particulanythe case
where one of the mergers has a mass smaller th@hof the sec-
ond one. The chaos found at small scales (substructures) ssal
once again responsible for the chaos in these geometrima¢pres
of haloes since changing the initial conditions amount$emging
the relative positions of the substructures (sec.ﬁd)hus to
changing the orientation of the resulting halo’s disperdiensor.
As for the spin, there is evidence of a critical mass abovechvhi
chaotic evolution disappears: more massive haloes onlgeneith
lighter ones that do not affect their global properties.

5 CONCLUSION AND DISCUSSION

Let us first emphasize here again that the term chaos is uskid in
paper in the loose sense, as the age of the universe doesavot al
for many e-foldings on larger scales. Taﬂle 1 summarizeglifhe
ferent Lyapunov exponents computed in this paper. As shown i
section3J1 (Figurg]3), chaos appears below a critical seleh
corresponds roughly to cluster scales. The higher the tyetisé
more chaotic is the corresponding region. We also foundtibtit
Lagrangian and Eulerian measurements are consistent. cluge
ters and filaments, whose dynamics is globally linear (l@cpe
structures), are not stochastic: a shift in the initial abads will
increase linearly with the scale factor. By contrast, thstriiutions

of substructures within clusters, whose characteristie isismaller
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than~ 3.5h~*Mpc, are governed by non-linear dynamics and may
undergo a stochastic evolution for some observables.
Nevertheless, this chaos at substructures scale doesawot oc
for all physical characteristics of the cluster’s halo. Aimi@action
of particles remains in the same halo from one realisatioanto
other, while a difference arises (in part) from the delay irging
times of the substructures. These timing effects are hawaser-
aged out yielding, to first order, a constant halo mass. lovicd
that the mass function derived from a simulation is quitestsient
from one realisation to another. Similarly, the dispersbthe am-
plitude of the total spin of haloes does not increase expaign
with time.

The mass of a given halo is an integrated quantity which does

not trace which specific particle entered the FOF halo; sirlyil
the spin parameter is also an adiabatic invariant, and dlce tf the
dispersion tensor will relax rapidly to its virial expedtat (which
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A 7(Gyear)
Pixels PDF)\ p 0-2.5 3.4e0
Velocity dispersion tensop 0-0.65 2500
Spin orientation\» 0.-0.31 7580
Inter skeleton distance\g ~0 [eS)
Connexity,\c ~0 00
Position of the halos and substructurgs, ~0 )
Mass of the halos) 5, ~0 00
Spin parameter) p ~0 o9
Mean dispersion of velocity\y ~0 00
Table 1. Lyapunov exponents of the different observables studieigr

is mass dependent) in a few short dynamical times; in cantiees
spin orientation or the orientation of the dispersion temsgitl de-
pend precisely on the orientation of velocities of the enggparti-
cles and has no direct relation to the mass of the halo; irafsects
the initial environment of the proto halo. For instance it leen
shown in|Sousbie et jall (2J07), Aubert et &l. (3004) that tlesh
preferentially anti-align their spin with the axis of theafihent in
which they are embedded, while we have shown in Sen atl th
the filament's locus was not stochastic.

It is possible to recast these interpretations in the cardex
the peak-patch| (Bond and Myfells (1p96)) description of fsalte
this framework, massive haloes correspond to large quasiigal
patches around density peaks, which non-linear evolutidirder
couple from their neighbouring large patches thanks to tisenic
acceleration belowt ~ 1. Conversely, small haloes correspond
to small typically aspherical peak-patches, and will acejtidal
torques early on which depend specifically on the detailedewh
noise realisation (which fixes the shape of the peak-paichethe
tidal torque theory, the mass and the spin parameter arateske
integral functions over the volume of these patches, hericaot
depend on the initial perturbations, whereas the spin taiem it-
selfis sensitive to these perturbations, at least at therlewd of the
mass spectrum. This is consistent with the low scatteriogisttip
between the spin parameter and the m (2004)

Thanks to angular momentum leverage, the orientation of
haloes is itself affected by stochasticity mostly at smedlss, a
result which seems insensitive to shot noise as the lyupenev
ponents are consistent between sgtsand S». In fact, as long as
the haloes merging together have similar sizes (massesjprth
entation of both spin and velocity dispersion tensors ismieined
by the relative positions and velocities of the two mergexdsose
dynamics is non-linear and whose characteristic size isvbéhe
critical scale (FigureﬂS). These results seem robust wiheet to
resolution.

When the halo is formed and well-isolated by cosmic accelera
tion, it merges only with satellites/substructures whossses rep-
resent a small fraction of the host's mass. Consequengy;, thi-
entations are globally preserved after merging, and thes;taotic
behaviour stops and the dispersion in the orientation nesretithe
same level (i.e. the resulting average angle is unchangtstjce,

a critical mass can be defined as the mass above which thischao
behaviour of the orientation stops. The measured valueiotth-

ical mass M. = 210 My A% is just below the scale of non-
linearity atz ~ 1 and shows weak dependence on the amplitude
of the added perturbative nois&f. = 2 10*3 M A%, Although
some slow increase df/. with A is expected since adding power

(© 0000 RAS, MNRASDOQ, 000-000

estingly, many global properties of halos do not displayotisebehaviour.

to inhomogeneities shifts the nonlinear scale to highersemshe
details of the dependence require further investigation.

This paper has concentrated on a reali&f@DM cosmology:
it would also be interesting to rerun this investigation oals-free
power spectra to confirm that the dark energy is indeed resipien
for the saturation of\/.. A natural extension of this work, clearly
beyond its current scope, would also involve computing luyew
exponents for the properties of substructures within hédes for
instancq Valluri et d1.[(2097)), and parameters corresipgrio the
inner structure of halos, such as NFW concentration paemtee
phase space densiy = po/0® ([Peirani et g.[(2006)), the Gini
index or the asymmetry (Conselice e} &l. (4007)) within t¥FF

In closing, the answer to our riddle is that chaos and non-
linearities are very strongly linked, and both occur at $reedhles
(substructures scales) though some non linear halo pasesnet
(spin, mass etc...) do not seem to be subject to chaos. Wiale t
large scale structures in a simulation (filaments and halass
quite robust both in their locus and properties, the distidn of
substructures is more sensitive to initial conditions sitheir num-
bers and positions vary when initial conditions vary. Thigtirn
may prove to be a concern when generating zoomed resirmsatio
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APPENDIX A: CONNEXITY

Let us consider a haldd, split into n parts,P;*,i < n, with a
fraction, f;, of its particles in each of them, the indicédeing
sorted following the decreasing values 6f(f; > f; if i < 7).

A measureC,, of the connexity ofH should indicate the number
of clumps into which it was split, this number does not neaslys
have to be an integer, depending on the fraction of the mags of
that went into eactP;*. For instance, ifu = 2, we want to obtain
Cy = 2whenf, = f, = 1/2andC> — 1 whenf; — 1 and
fo =1— fi — 0; as the indices are sortel < f> < 1/2. So, in
this case, we could write the connexity Bf as:
Co=1+2f>. (AL)
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Now, considering that was split into3 parts P2, then0 <
(f2+ f3) <2/3and0 < f3 < 1/3.S0C3 = 2+ 3f3 — 2
if f3 — 0andC3 — 3 when f; — 1/3. It follows thatCy =
(f2 + f3)C%4 — 2 whenf, — 1/3 (which implies thatfs — 1/3)
and thatC — 0 when f> — 0 (which implies thatf; — 0 also).
So
C3 =14 (fa+ f3)(2+3f3) (A2)

has the right properties to represent the connexity of a bplio
into 3 parts. Hence, by generalizing recursively this formula, we
obtain:

Co = 14 (fot - fu) 24 (st fa) [ [0 — 2+ (A3)
(fr—1 4 fa) [(n = 1) +nfu]] -], (A4)

which can be developed as:
Cn =142(fo+ - fu) +3(fa+ - fu)(fs+ - fu) + (A5)
cotn(fot o f)(fa A fu) o (fa), (A6)

S (ﬁifk) | -

i=1 j=1k=j

which corresponds to E(ﬂ(3). Note that by construction ptfaget
in Eq. (A7) is smaller thari /4, so thatC, is always smaller or
equal ton.
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