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Abstract

A new field of research is rapidly expanding at the crossroad between statistical physics, infor-

mation theory and combinatorial optimization. In particular, the use of cutting edge statistical

physics concepts and methods allow one to solve very large constraint satisfaction problems like

random satisfiability, coloring, or error correction.

Several aspects of these developments should be relevant for the understanding of functional

complexity in neural networks. On the one hand the message passing procedures which are used

in these new algorithms are based on local exchange of information, and succeed in solving some

of the hardest computational problems. On the other hand some crucial inference problems in

neurobiology, like those generated in multi-electrode recordings, naturally translate into hard

constraint satisfaction problems.

This paper gives a non-technical introduction to this field, emphasizing the main ideas at

work in message passing strategies and their possible relevance to neural networks modelling.

It also introduces a new message passing algorithm for inferring interactions between variables

from correlation data, which could be useful in the analysis of multi-electrode recording data.

1. Introduction: Constraint Satisfaction Problems

Engineers offer encounter problems with many degrees of freedom (‘variables’) but
also many constraints. The problem is to find a value of the variables which satisfies
all constraints, or the most probable configuration of variable given the constraints and
some a priori measure. Obvious applications are scheduling (classes, airplanes...), or job
assignment. But similar problems occur in various branches of scientific activity, and
are crucial in several domains. To be short we shall focus here on four of them. The
satisfiability problem is at the core of the theory of computational complexity in computer
science. Error correcting codes are one of the main topic of information theory. Learning
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from examples is a basic process in cognitive neuroscience. Reconstruction of neuron
interactions from multi-electrode recording is a problem which is becoming more and
more important.

All these problems can be formulated in a common language (Mézard & Montanari,
2008), and have a strong relationship to fundamental issues in statistical physics like the
existence of phase transition, and the possibility of glassy phases. They can also be cast
into a somewhat generic formalism, based a graphical representation of the topology of
constraints (Kschischang et al., 2001), which allows to apply a general ‘message passing’
strategy to all of them. Some of these message passing algorithms have actually shown
strikingly good performance, solving some problems in satisfiability or perceptron learn-
ing that are unreachable by any other algorithms. It is interesting in itself to understand
how fundamental issues in computational complexity and information processing can be
formulated in the same language as relevant problems in neuroscience, the main aim of
this paper is to give some clues on these connexions.

2. Satisfiability

The problem of satisfiability involves N Boolean variables xi ∈ {T, F}. There exist
thus 2N possible configurations of these variables. The constraints take the special form
of ‘clauses’, which are logical ‘OR’ functions of the variables. For instance the clause
x1 ∨ x2 ∨ x̄3 is satisfied whenever x1 = T or x2 = T or x3 = F (the bar means negation:
T̄ = F and F̄ = T ). Therefore, among the 8 possible configurations of x1, x2, x3, the
only one which is forbidden by this clause is x1 = x27 = 0, x3 = 1. An instance of the
satisfiability problem is given by the list of all the clauses it contains. The problem is to
find a choice of the Boolean variables (called an ’assignment’) such that all constraints
are satisfied. When there exists such a choice the corresponding instance is said to be
‘SAT’, otherwise it is ‘UNSAT’, and one typically seeks a configuration of variables which
violates the smallest number of constraints.

Satisfiability plays an essential role in the theory of computational complexity, be-
cause many other difficult problems like the traveling salesman, the colouring of graphs,
scheduling, protein folding, can be mapped ‘polynomially’ to it. It was the first problem
which has been shown to be ‘NP-complete’ (Cook, 1971). This means that if one could
find an algorithm that solves satisfiability in a ‘polynomial’ time (growing like a power
of N), one could also solve all these other problems in polynomial time: life would be
much easier, in particular the life of scientists... This is generally considered unlikely, but
the corresponding mathematical problem (whether the NP class is distinct or not from
the ‘P’ class of problems which are solvable in polynomial time) is an important open
problem in mathematics.

The result of Cook is a worst case analysis of the satisfiability problem. However it
appears more and more important to study ‘typical case’ complexity of satisfiability
problems by introducing some classes of instances. A much studied class is the ran-
dom ‘3-SAT’ problem. Each clause contains exactly three variables chosen randomly in
{x1, .., xN}, and each variable is negated randomly with probability 1/2. This problem is
particularly interesting because its difficulty can be tuned by varying one single control
parameter, the ratio α = M

N
of constraints per variable. One expects intuitively that for

small α most instances are SAT, while for large α most of them are UNSAT. Numerical
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Fig. 1. Left: Probability that a formula generated from the random 3-SAT ensemble is satisfied, plotted
versus the clause density α. The curves correspond to N = 50 (full line), N = 100 (dashed), N = 200
(dotted). The transition between satisfiable and unsatisfiable formulas becomes sharper as N increases.
Right: Computational effort. Plotted is the computer time (in arbitrary units) required to find a solution,
or prove that there is no solution, versus the clause density α. From bottom to top: N = 50, 100, 150,
200.

experiments have confirmed this scenario, but they indicate actually a more interesting
behavior. The probability that an instance is SAT exhibits a sharp crossover, from a
value close to 1 to a value close to 0, at a threshold αc which is around 4.3. When the
number of variables N increases, the crossover becomes sharper and sharper (Kirkpatrick
& Selman, 1994; Selman & Kirkpatrick, 1996), as shown in Fig.1. It has been shown that
it becomes a staircase behavior at large N (Friedgut, 1999): almost all instances are
SAT for α < αc, almost all instances are UNSAT for α > αc. This threshold behavior
is nothing but a phase transition as one finds in physics, and has been analyzed using
the methods of statistical physics (Kirkpatrick & Selman, 1994; Monasson et al., 1999;
Mézard et al., 2003).

A very interesting observation illustrated in Fig.1 is that the algorithmic difficulty of
the problem, measured by the time taken by the algorithm to answer if a typical instance
is satisfiable, also depends strongly on α: the problem is easy when α is well below or
well above αc, and is much harder when α is close to αc. Therefore the region of phase
transition is also the region which is difficult from the computational point of view.

3. Error correction

One of the fundamental problems in information theory consists in correcting transmis-
sion errors that always occur when a message is sent through a communication channel
(Richardson & Urbanke, 2006; Montanari & Urbanke, 2007). This is done by adding
redundancy. In codes based on parity constraints, the message which is sent is chosen in
a pool of ‘codewords’. A codeword is a set of N bits x1, · · · , xN , where xi ∈ {0, 1}, which
satisfies M parity check equations taking the form:

xi1(a) + · · · + xiK(a) = even (1)

For each a ∈ {1, · · · ,M} there is one such equation, characterized by the set of bits
i1(a), · · · , iK(a) which are involved in it. So the codebook, i.e. the set of codewords, is
the set of solutions to these M constraints. It is conveniently represented graphically as
in Fig. 2. Because the code is based on a system of linear equations, if they are designed
to be independent, which is usually the case, the number of codewords will be 2N−M :
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Fig. 2. Tanner graph representation of a parity check code. Here there are 7 bits related by three parity
check equations. Each square represents a parity check: it enforces the constraints that the sum of bits
connected to it must be even

the code transmits N −M effective bits of information, the extra M bits are used to
introduce redundancy and possibly correct errors.

How does one correct errors? Imagine for simplicity that a codeword x = x1, · · · , xN

is sent through a ‘binary symmetric channel’, which flips each bit independently with
probability p < 1/2. The received message is y = y1, · · · , yN , where yi = xi with prob-
ability 1 − p, and yi = 1 − xi with probability p. Decoding means trying to infer the
sent codeword x given the received one y. For this we write the probability that the sent
message was a set of bits x′ = x′1, · · · , x

′
N :

P (x′|y) =
1

Z

∏

i

[

(1 − p)δx′
i
,yi

+ pδx′
i
,1−yi

]

M
∏

a=1

I

(

x′i1(a) + · · · + x′iK (a) = even
)

(2)

where the first terms come from our knowledge of the channel, and the last ones enforces
the fact that the sent codeword is known to satisfy the parity check equations (I(A) is
an indicator function equal to one if the statement A is true, equal to 0 if it is not true).
Decoding amounts to finding the most probable codeword given the received message,
i.e. finding the set of bits x′ which maximizes P (x′|y). This is in general another difficult,
NP-complete, problem. But we will see that it can done efficiently with a message passing
procedure called Belief Propagation (BP) if the noise level p is not too large.

Low Density Parity Check (LDPC) codes are based on random constructions in which
the parity check equations are generated randomly (Gallager, 1963). For instance in
regular (l, k) codes one generates equations such that each equation contains k variables,
and each variable appears in l equations. In the large code limit N → ∞ one finds two
phase transitions when one varies p. The first one is the threshold for decoding through
BP: it works almost always when p < pd, it fails almost always if p > pd. The second
one is the threshold for decoding through exact inference (computing the true maximum
of P (x′|y)). It works almost always when p < pc, it fails almost always if p > pc. For
instance in a (l = 3, k = 6) regular LDPC codes, the two thresholds are pd = 0.084 and
pc = 0.101, while Shannon’s theorem states that perfect decoding should be possible
up to p = 0.110, and impossible above. In practice the relevant threshold is pd. This is
because BP decoding is fast (it typically takes a time that grows linearly with N), while
exact inference is much too slow (its time grows exponentially with N). Optimized LDPC
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codes can have a threshold pd which gets quite close to the Shannon limit (Richardson
& Urbanke, 2006; Montanari & Urbanke, 2007).

4. Two problems in neuroscience

4.1. Supervised learning

Learning and memory tasks are believed to occur in neural systems through changes
of synaptic strengths. Despite years of efforts, the precise way these changes are imple-
mented in the brain for specific tasks is poorly understood. In the scenario of supervised
learning, synaptic changes are monitored by a feedback signal carrying information about
the success of the intended task. The perceptron classification problem is the prototypical
example of supervised learning: given a set of training patterns (ξ1, . . . , ξM ), where each
ξa is a vector of N binary variables (ξa

i = ±1, i = 1, . . . , N), we want to learn the correct
synaptic weights wi leading to the classification of these inputs into two classes, C+ and
C−, using a feed-forward network called perceptron:

for each a = 1, . . . ,M, sign

(

N
∑

i=1

wiξ
a
i

)

= σa (3)

where we require that σa = +1 if ξa belongs to class C+, and σa = −1 if ξa belongs to
class C−.

Interestingly, this problem can be formulated as a constraint satisfaction problem,
whose graph representation is given by the right panel of Fig. 3. The weights wi are the
unknown variables, and each pattern defines a constraint through Eq. (3).

Efficient algorithms for solving this problem are known in the case of analog synaptic
stengths (real wi) (Rosenblatt, 1962). However, recent experimental studies have shown
that some synapses undergo changes in the form of jumps between a finite number of sta-
ble states (Petersen et al., 1998; O’Connor et al., 2005). Unfortunately, this discreteness
makes the classification problem much harder: for instance, the task of learning binary
weights wi = ±1 is NP-complete (Blum & Rivest, 1992). Although it has been known for
years that a perceptron with binary synapses can in principle be trained to classify up to
M = αcN random patterns in the limit of large N , with αc ≈ 0.83 (Krauth & Mézard,
1989), until recently no algorithm was known that could even perform this task for an
extensive number of patterns (i.e. M = αN with N → ∞ and α fixed), emphasizing the
difficulty of the problem.

Like for error-correcting codes, message passing procedures provide a viable solution
to this hard problem. The learning task can be handled approximately by algorithms
derived from Belief Propagation (Braunstein & Zecchina, 2006). Somewhat surprisingly,
these techniques perform well for large random problems, even relatively close to the
theoretical threshold M/N = αc. An on-line, biologically relevant variant of BP, which
can still classify an extensive number of patterns, has also been showcased as a plausible
learning mechanism for realistic neural networks (Baldassi et al., 2007).
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σ = sign
(

∑N
i=1 wiξi

)

σ1 = sign
(

∑N
i=1 wiξ

1
i

)

σM = sign
(

∑N
i=1 wiξ

M
i

)

a ∈ [M ]
i ∈ [N ]

ξ1

...

ξ2

wN

ξN

w1

w1
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Fig. 3. Left: a perceptron is a feed-forward network that takes a pattern ξ as an input, and outputs a
binary variable σ. Right: training of the perceptron viewed as a constraint satisfaction problem (factor
graph representation, see further). Weights are variables (circles), and each pattern to be classified defines
a constraint (squares).

4.2. Inferring neuronal couplings from multielectrode recordings

Recent experimental studies indicate that correlations play an important role in the
retinal code (Schneidman et al., 2006). In these experiments, many cells from a retinal
ganglion patch are recorded simultaneously by a dense electrode array. It was shown
that individual cells do not carry independent pieces of information, but rather respond
cooperatively through effective pairwise interactions. This suggests that the stimulus is
represented in a redundant manner reminiscent of error-correcting codes. We will see
that the problem of learning effective pairwise interactions between neurons from the
observed data can also be formulated in our common statistical physics language.

Formally, the neural response of a retinal patch can be binned and represented by a
string of binary variables. For each time bin of size δt (with e.g. δt = 20 ms), labelled
by t, the neural response is coded by a binary word xt, where xt

i = +1 if neuron i has
fired in that time bin, and xt

i = −1 otherwise. The neuronal response is stochastic in
nature and can be described by a probability distribution P (x), which accounts for both
stimulus and noise fluctuations. Beside its interest for itself, a correct estimation of P (x)
is also important for the brain, as it may be used downstream the retina to evaluate the
likelihood of spiking events, which in turn can be used to detect ‘abnormal’ stimuli, or
to perform classification tasks.

In the limit of a large integration time T , the probability distribution can in principle
be measured through direct sampling:

P (x) ≈
1

T

T
∑

t=1

δx,xt (4)

In practice however, neither we nor the brain itself can handle such a large amount of
data. If N ≈ 200 is the number of cells in a patch, the number of pattern probabilities
to be stored is 2N ≈ 1060, much more than any realistic integration time or storage
capacity. One must thus recourse to simplifying assumptions. The simplest one is the
independent approximation, which formally corresponds to factorizing the probability:
P (x) =

∏N
i=1(1+ximi)/2. One then just needs to measure the averagemi := 〈xi〉 of each

neuron activity in order to reconstruct the full probability distribution (brackets denote
expectations with respect to P (x)). Unfortunately, this approximation fails to correctly
render some important statistical properties of the collective response, including the law
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governing the total number of spikes in the population. This prompts us to take into
account the correlative structure of the response.

The first step beyond independence is to consider pairwise correlation functions:

χij = 〈xixj〉 − 〈xi〉〈xj〉, (5)

These numbers measure the propensity of pairs of neurons to spike cooperatively rather
than independently. An approximate probability distribution, that reproduces these cor-
relations as well as the average firing probabilities (1 +mi)/2 with minimal constraints,
can be constructed using the principle of maximum entropy (Jaynes, 1949; Schneidman
et al., 2003). We look for a distribution P (2)(x) of maximum entropy

S := −
∑

x

P (2)(x) logP (2)(x) (6)

that matches the one and two-point correlation functions of the observed response:

χ
(2)
ij = χij , m

(2)
i = mi. (7)

This distribution, which is uniquely defined, has been shown to account for most (90%) of
the correlative structure of as many as 40 neurons recorded silmutaneously in the retina
(Schneidman et al., 2006).

With the help of Lagrange multipliers one can show that the Maximum Entropy dis-
tribution takes the form:

P (2)(x) =
1

Z
exp





∑

i

hixi +
∑

i>j

Jijxixj



 (8)

where Z is a normalization constant. In physics terms this is a disordered Ising model.
Usually, physicists face the problem of solving direct Ising problems, which typically con-
sist in infering thermodynamical quantities, as well as magnetizations mi and correlation
functions χij , from the external fields hi and couplings Jij . This problem is computa-
tionally very hard in general, and there exist no simple relation between (hi, Jij) on the
one hand, and (mi, χij) on the other: an exact estimate requires summing over the 2N

possible configurations x. Here we have to deal with the inverse Ising problem (inferring
the couplings from the correlation functions), which is even harder.

This learning problem and its variants have become increasingly important recently.
Besides its relevance to neural decoding, it is also useful for thinking about inference in
protein interaction networks (Tkacik, 2007), the correlative structure of some catalytic
proteins (Socolich et al., 2005; Russ et al., 2005), and even the statistical properties of
four-letters words in English (Stephens & Bialek, 2007).

A number of algorithmic strategies, mostly based on Monte-Carlo sampling, have been
proposed to learn the couplings from the correlation functions (Ackley et al., 1987; Brod-
erick et al., 2007). Very little is known, however, about possible neural implementations
of this learning task. We will see that strategies based on message-passing ideas may
provide leads on that question.

5. The message passing strategy

All the problems we have seen so far can be formulated in a common language. We
have N variables (x1, · · · , xN ), taking value in some space X , and they are linked by
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Fig. 4. Factor graph representation of satisfiability: A variable is represented by a circle. A constraint is
represented by a square, connected with a full (resp. dashed) line to a variable when this variable appears
as such (resp. negated) in the clause. Left hand side: The clause x̄1 ∨x2 ∨ x̄3. Right hand side: the factor
graph representing the formula: (x̄1 ∨ x̄2 ∨ x̄4)∧(x1 ∨ x̄2)∧(x2 ∨ x4 ∨ x5)∧(x1 ∨ x2 ∨ x̄5)∧(x1 ∨ x̄3 ∨ x5)

constraints of probabilistic nature: each constraint ψa links the variables with labels
i1(a), · · · , iK(a), in the form of a probabilistic factor ψa(xi1(a), · · · , xiK(a)). In the case
of hard constraints like parity checks the hard constraint takes value 1 if the check is
satisfied, 0 otherwise. In other cases it can take intermediate values, like for instance the

factors
[

(1 − p)δx′
i
,yi

+ pδx′
i
,1−yi

]

due to the received message in coding. The problem is

defined by a probability distribution

P (x) =
1

Z

∏

a

ψa(xi1(a), · · · , xiK(a)) (9)

Our goal is twofold. On the one hand we want to study the properties of one given
instance: compute the marginal distributions P (xi), or find the x which maximizes P (x).
On the other hand when P is generated from an ensemble which allows to consider the
large N limit one would like to understand the phase diagram of the problem, like the
thresholds pd and pc that we defined in decoding.

Eq. (9) is not the most general probability distribution betweenN variables: the crucial
point is that each ψa involves only a finite number of variables. When N is very large,
P induces a topological structure in the space of variables that we shall exploit. The
factor graph representation is a very convenient way of characterizing this structure.
Each constraint ψa is represented by a function node (square), connected to the various
variables (circles) which appear in the constraint (Kschischang et al., 2001). An example
for satisfiability is described in Fig.4. The Tanner graph of code is nearly a factor graph:
one just needs to add to it degree 1 function nodes connected to each variables, accounting

for the factor
[

(1 − p)δx′
i
,yi

+ pδx′
i
,1−yi

]

. The factor graph of the perceptron learning

problem is shown on Fig. 3.
If the factor graph were a tree, it would be easy to solve our problem (for instance find

marginals). The idea of BP is to write ‘mean field’ like equations that would be exact on a
tree, and try to use them also in more general (and more interesting) cases. BP equations
are self-consistency relations between two types of ‘messages’, ηi→a and ηa→i. On trees,
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ηi→a can be interpreted as the probability measure on xi when the factor node a has
been removed, while ηa→i is the probability measure on xi when all factors neighboring
i, expect a, have been removed. Denoting ∂a = {i1(a), · · · , iK(a)} the neighborhood of
i, and ∂i the neighborhood of a, BP equations read (Mézard & Montanari, 2008):

ηa→i(xi) =
1

za→i

∑

x
∂a\i

ψa(xi1(a), . . . , xiK(a))
∏

j∈∂a\i

ηj→a(xj) (10)

ηi→a(xi) =
1

zi→a

∏

b∈∂i\a

ηb→i(xi) (11)

where the z’s are normalization constants. In practice, these equations are solved by
iteration (with parallel or random update schedules) until a fixed point is reached. Con-
vergence is typically met in linear time. This makes BP a very fast algorithm. At the
fixed point, the probability measure on xi is given by:

Pi(xi) =
1

zi

∏

a∈∂i

ηa→i(xi) (12)

Thermodynamical quantities such as the free-energy − logZ can also be derived (Mézard
& Montanari, 2008) from the messages (ηi→a, ηa→i).

Note that while convergence and accuracy are garanteed when the graph is a tree, BP
equations sometimes fail to find the correct fixed point or provide a poor approximation
of the probability measure when the graph is loopy. This can happen when there are
many small loops, or when correlations build up across the graph. To overcome the
first issue, generalized Belief Propagations (GBP) schemes have been proposed (Yedidia
et al., 2001). The second issue, which is related to the partition of the measure P into a
multiplicity of disconnected ‘states’, can be handled by an extension of BP called Survey
Propagation (SP) (Mézard & Zecchina, 2002; Braunstein et al., 2005).

As we mentionned earlier, BP is the best known solver for LDPC codes, provided
that the channel noise is not too high. While BP can also handle random satisfiability
problems for small enough clause densities α, SP becomes necessary as one gets to higher
α, where problems become hard. SP can find solutions to 3-SAT instances for up to 107

variables at α = 4.25, very close to the satisfiability threshold αc (Mézard & Zecchina,
2002).

Beside their efficiency, the appeal of message passing procedures like BP resides in
their local nature: information is propagated along the edges of the graph, and each
message is updated using only other messages coming into the same node. This makes
them highly amenable to parallelization. It is also tempting to make the connection with
learning mechanisms in the brain, whereby synaptic strengths change only according to
the activity of its neighboring neurons. And indeed, the engineering of BP/SP-inspired
algorithms for the perceptron show that learning rules using only post and pre-synaptic
activities, as well as error signals, suffice to implement efficient learning (Baldassi et al.,
2007).
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x1 x2 x3 x4

eh1x1 eh2x2 eh3x3 eh4x4

eJ12x1x2 eJ13x1x3 eJ23x2x3 eJ13x1x4 eJ34x3x4eJ24x2x4

Fig. 5. Factor graph representation of the Ising model Eq. (8).

6. An application: the inverse Ising problem

We now study a novel application of message-passing to the inverse Ising problem
introduced in Section 4.2. As in the perceptron, the proposed method relies on local
exchanges of information between variables.

Let us start with the direct problem, whose factor graph is represented in Fig. 5.
BP can be used to compute probability measures on single variables (i.e. local magne-
tizations mi), but it does not give information on the two-point correlation functions
χij . To access this information we will need to go a bit further. We shall make use of
the fluctuation-dissipation relation, which offers a convenient way to estimate pairwise
correlation functions using the derivatives of magnetizations:

χij = χji =
∂mi

∂hj

=
∂mj

∂hi

. (13)

But first we need to adapt the language of BP to the Ising model. The binary nature
of Ising variables allows us to reduce BP messages to single numbers:

ηi→a(xi) =
1 + ximi→a

2
, ηa→i(xi) =

1 + xima→i

2
(14)

These messages mi→a and ma→i are called ‘cavity’ magnetizations, as they are defined
on amputed graphs. Note that when factor a is just a field contribution ehixi , the message
is trivial. When factor a is a interaction contribution eJijxixj , we rewrite for convenience
mi→j := mi→a.

The iteration of BP equations, along with Eq. (12), allows to compute the mi’s. We
now define a new type of messages, called cavity susceptibilities, and defined as:

χi→j,k :=
∂mi→j

∂hk

(15)

These messages are tied by a new set of self-consistency equations, called ‘susceptibility
propagation’ equations, simply obtained as the derivatives of BP equations (10), (11)
with respect to {hk}. They reflect how small local perturbations can propagate through
the graph to remote variables, even when these variables and the perturbation are not
directly linked. As in BP, these equations can be solved iteratively. When convergence is
reached, the total susceptibilities χij are given by derivatives of Eq. (12) with respect to
{hk}.
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This susceptibility propagation algorithm has the same advantages and downsides as
BP. While being relatively fast, it relies on the assumption that the behaviour of the
model is not far from that of a tree factor graph. This can be true if the graph is sparse
and locally tree-like, or if the interactions are small enough.

Susceptibility propagation (approximately) solves the direct Ising problem (hi, Jij) →
(mi, χij). How can we use it to solve the inverse problem? The key is to realize that
although susceptibility equations are self-consistency equations on the messages, they can
also be viewed as self-consistency equations on the ‘inputs’ (hi, Jij) by simply extracting
them from the belief and susceptibility propagation equations. For instance, on can write
the following update rule for Jij ,

tanhJij =
χij −mi→jmj→i

1 − χijmi→jmj→i

. (16)

The rest of the iteration equations remains essentially unchanged, with the notable dif-
ference that now (mi, χij) are treated as constants, while (hi, Jij) become the unknown
variables to be updated.

We have tested our algorithm on synthetic data. First we have considered a spin glass
with random gaussian couplings Jij of zero mean and variance J2/N , with no magnetic
fields, hi = 0. This is the Sherrington-Kirkpatrick model. Small problems (N = 10, 15, 20)
are drawn at random and solved exactly by exhaustive enumeration. Then our algorithm
tries to reconstruct the couplings Jij from the correlation functions. Its performance is
shown on Fig. 6, and is contrasted with other mean-field methods (Kappen & Rodriguez,
1998). Interestingly, all mean-field schemes fail for J > 1, where the system notoriously
becomes ‘glassy’, with the onset of metastable states.

Perhaps the power of susceptibility propagation is better shown on examples where it
is supposed to be exact, namely, when the underlying topology is a tree. For simplicity
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Fig. 7. Reconstruction of a small linear chain. Knowing only the correlation functions, and with no prior

knowledge on the topology of the graph, the algorithm can infer both the structure and the numerical
values of the interaction strengths. Here is shown the progress of the algorithm. The gray level of each edge
codes for the couplings strength Jij . The algorithm is started with random initial conditions (leftmost
graph). Next are shown, from left to right, the couplings after 3, 6, 9 and 20 iterations.

we have tested our algorithm on linear chains. Provided that the couplings are not too
large, we can reconstruct both the topology of the linear chain (i.e. the order of variables
on the chain), and the exact strength of interactions between neighbours (see Fig. 7).
When the couplings are too large, the exact solution becomes unstable. This can partially
be remedied, however, by making zero couplings more attractive in the equations, thus
stabilizing sparse topologies.

A more systematic method for treating sparse networks is however needed. With it,
susceptibility propagation could be used as a comprehensive network reconstruction al-
gorithm, with possible applications to the inference of Bayesian networks, Markov chains
with arbitrary topologies, or in population genetics.

7. Conclusion

The message passing strategy often provides the most efficient algorithms for solving
hard constraint satisfaction problems, or for inference in graphical models. This is espe-
cially true when the factor graph representing the problem has a local tree-like structure.
It is particularly remarkable that some very difficult problems, which cannot be solved
by other methods, are solved by procedures of local exchange of messages between the
variables and constraints. It is likely that recent developments in this domain can have
some impact in neuroscience, in at least two directions. First of all because some major
challenges in neuroscience, linked to the analysis of experimental data, can themselves be
formulated in terms of graphical or constraint satisfaction problems. Secondly because
the mere fact that distributed local information exchange systems achieve this task is
very appealing in the perspective of information processing by the brain.
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