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We study electronic transport through a magnetic molecule with an intrinsic spin S coupled to
two magnetic electrodes, in the incoherent regime. The molecule is modeled as a single resonant level
with large Coulomb repulsion (no double occupancy). The molecular spin is isotropic and it interacts
with the electronic spin through an exchange interaction. Using an alternative method to the usual
master equation approach, we are able to obtain analytical formulas for various physical quantities
of interest, such as the mean current and the current fluctuations, but also the mean value of Jz -the
z component of the total spin on the molecule- and its fluctuations. This allows us to understand
how the electronic current between the magnetized electrodes can control the polarization of the
molecular spin. We observe in particular that the fluctuations of Jz reach unexpectedly high values.

I. INTRODUCTION

Molecular spintronics is at the convergence of two recent and rapidly developping fields. On the one hand, molecular
electronics,1 where individual molecules are connected to electrodes of different nature, and the effect of the various
molecular degrees of freedom on the electronic transport can be studied and possibly engineered.2 On the other hand,
spintronics, where the focus is placed on the electronic spin as a new useful degree of freedom. Magnetic molecules -
molecules having an intrinsic spin, possibly large3 - play, of course, an important role in molecular spintronics. Several
transport experiments have been performed in the past years on such magnetic molecules - specially on molecular
magnets like Mn12 derivatives, which are molecules with a large spin anisotropy, tending to align the spin along
an easy-axis.4 Theoretical calculations on transport in the incoherent regime for these molecules have been done,
specially in the case where the electrodes have magnetic properties.5 Other magnetic molecules are spin isotropic,
and some work has been done already to study electronic transport with such spin-isotropic magnetic molecule.6 In
Ref. [7], the full counting statistics (FCS) for such a molecule placed between non-magnetic electrodes has been
obtained. However, to the best of our knowledge, no work has been devoted to the electronic transport between
ferromagnetic electrodes through a spin-isotropic magnetic molecule; one of the aims of this paper to study this
problem. Experimentaly, transport through such a spin-isotropic magnetic molecule can be obtained for example
with a magnetic atom trapped inside a C60 molecule, which is placed between two electrodes (see Fig. 1).8

This paper focuses on the transport through a spin-isotropic magnetic molecule, in the regime of weak coupling to
the leads. The primary goal is to compute the current, its zero-frequency fluctuations and more importantly to analyze
the fluctuations of the total spin on the molecule. This is an important issue because of the mutual influence between
the electronic current passing through the molecule and the molecular spin. We consider ferromagnetic electrodes
with collinear alignments of electrodes (parallel or anti-parallel, or situation with only one polarized electrode).9 The
system displays a rich variety of behaviors: on the one hand the suppression of the current by spin-blockade and, on
the other hand, unusually large fluctuations of the molecular spin.

We are considering the temperature regime in which successive tunneling events through the dot are all incoherent
(incoherent tunneling regime), and describe them as a Markovian process. Such a situation is realized at a temperature
Θ which is much higher than the typical energy scale determined by Γ, i.e., ~Γ ≪ kBΘ. We model the molecule as
a quantum dot with a single resonant level, with infinite Coulomb repulsion (no double occupancy). The molecular

spin ~S , and the electronic spin on the dot level ~σ, interact through an exchange interaction, −Jex
~S ·~σ. The dot level

is, therefore, split into two levels, corresponding to two eigenvalues of the total angular momentum, J = S ± 1/2.
For simplicity, we will work at temperatures much smaller than the applied bias voltage, at which electron transport
happens only in one direction, and the bias window is infinitely sharp.10 We also choose the chemical potentials of
the electrodes such that only the J = S + 1/2 spin sector is in the bias window, and only states in this energy level
take part in the transport (see Fig. 1).

The basic mechanism at work here is the exchange of spin between the itinerant electrons and the molecule: an
incident spin-up electron, for example, can be collected as a spin-down electron (spin-flip), if the molecular spin has
its polarization along the reference axis increased by one. Magnetic electrodes, with different densities of states for

spin up/down electrons, leading to spin-depedent tunneling rates: Γ↑
L,R = ΓL,R(1+pL,R)/2, Γ↓

L,R = ΓL,R(1−pL,R)/2,

can thus induce polarization of the molecular spin (pL,R ∈ [−1, 1] is the polarization of the L/R electrode, and ΓL,R

is the tunneling rate to the L/R electrode).
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FIG. 1: Energy diagram of the system: because of the exchange interaction between the molecular spin S and the electron
spin, the occupied dot level is split between the J = S− 1

2
levels (with Jz ranging from −(S− 1

2
) to (S− 1

2
)) and the J = S + 1

2

levels (with Jz ranging from −S − 1

2
to S + 1

2
), with a spliting ∼ JexS. We chose the chemical potential of the electrodes such

that the J = S + 1

2
levels only are in the bias window. The inset shows a schematic view of a possible experimental realization:

a magnetic atom with spin S trapped inside a C60 molecule, which is placed between two electrodes.

The standard method in the incoherent tunneling regime is to use master equations. This approach has been suc-
cessfully implemented to compute numerically the current and the noise through such molecular systems.5,6 Recently,
analytical results were obtained for the full counting statistics in the case of non-magnetic electrodes.7 We use here
an alternative method which allow us to obtain analytical formulas for the case of magnetic electrodes, for the current
I, the charge Q, the total spin Jz and the fluctuations of these quantities. This method has been introduced by Ko-
rotkov, for computing numerically fluctuations in the single-electron transistor.11 It uses a Langevin approach, where
the transport process is seen as random sequential jumps between neighbouring system states. We have extended this
method, in order to obtain analytical results for the present problem.

The paper is organized as follows. In section II we present a concise but self-contained explanation of the method.
Section III presents and discusses the results we have obtained in the case of a molecular spin S = 1/2, for the mean
current and its fluctuations, and for the z component of the total spin Jz and its fluctuations. Section IV discusses
how the results are modified in the case of higher spins. Another method of calculation which can be used to obtain
the same analytical results is shortly explained in section V, and section VI gives the conclusion. A few appendices
contain some lengthy formulas, and analytical results for molecular spin S = 1.

II. THE SEGMENT PICTURE

We give a short self-contained derivation of the method, only stressing the points which are different from the
original work.11

A. General formulation

The time evolution is divided in terms of segments: a segment ζ is defined as a series of random processes which
begins with a reference state and finishes with the same state. This reference state is arbitrary, and all the physical
quantities are of course independent of the choice of this state. As the time evolution is given by a Markovian
series of random transitions, two different segments are totally independent, and any time integral used to compute
average or fluctuations can be written in terms of average over the segments. In our model, a state |α〉 can be
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characterized by the occupation number of the dot level Q, the total angular momentum J and its z-componentJz,
i.e., |α〉 = |Q, J, Jz〉. A segment of length M , starting and finishing with state α0 is thus defined by the sequence
α0 → α1 → α2 → · · · → αM−1 → α0, and by the duration of each step. The total duration of the segment is

τ [ζ] =
∑M−1

m=0 τm, where τm is the time the system stays in the state αm.
Considering a random variable X(t), we will compute its average X̄ over the measurement time, i.e.,

X̄ ≡
1

T

〈

∫ T

0

dtX(t)

〉

, (1)

and its fluctuations SXX :

SXX ≡
2

T

〈(

∫ T

0

dt
(

X(t) − X̄
)

)2〉

. (2)

Here 〈· · · 〉 represents a statistical average over random Markovian process, and we take the measurement time T
sufficiently larger than all other time scales of the system. For each physical quantity X , we define a function X [ζ]
which gives the time integral of this quantity over a given segment ζ, e.g., for Jz , we define,

Jz [ζ] =

M−1
∑

m=0

Jz,mτm, (3)

where Jz,m is the value of Jz in the state αm. We have similar expressions for all the other physical quantities which
have a fixed value in a given state αm. For the current operator I, as its time integration gives the transfered charge,
we need to define the function k[ζ] which is the number of electrons tranfered from the left to the right electrode
during segment ζ. With these functions, the time integral of X(t) in Eq. (1) over the measurement time T can be
decomposed into contributions from N successive segments, {ζ1, ζ2, · · · , ζN}:

∫ T

0

dtX(t) →
N
∑

n=1

X [ζn]. (4)

Taking it also into account that the different segments are independent, one can thus replace the statistical average
with an average over the segments;

X̄ =
1

T

N
∑

n=1

〈X [ζn]〉 =
〈X 〉

〈τ〉
, (5)

where 〈τ〉 = T/N is the mean duration of a segment. A segment ζ occurs with a probability P [ζ], giving 〈X 〉 =
∑

ζ X [ζ]P [ζ].
For the fluctuations of X one first notices that

(

∫ T

0

dt
(

X(t) − X̄
)

)2

=

N
∑

n=1

N
∑

n′=1

(

X [ζn] − X̄τ [ζn]
) (

X [ζn′ ] − X̄τ [ζn′ ]
)

(6)

We note that ζn and ζn′ are different segments of the same measurement, i.e., the set {ζ} = {ζ1, ζ2, · · · , ζN} is
common for the sum over n and n′, and the average is an average over the different segments sets {ζ}. As different
segments are independent, the terms with n 6= n′ can be written as a product of two averages, which clearly vanish,
i.e., 〈X [ζn] − X̄τ [ζn]〉 = 0. As a result, one finds,

SXX =
2

T

〈(

∫ T

0

dt
(

X(t) − X̄
)

)2〉

=
2

T

N
∑

n=1

〈

(

X [ζn] −
〈X〉

〈τ〉
τ [ζn]

)2
〉

=
2

〈τ〉

[

〈X 2〉 + 〈τ2〉

(

〈X 〉

〈τ〉

)2

− 2〈X τ〉
〈X 〉

〈τ〉

]

. (7)

We can thus express the fluctuations SXX in terms of the averages over the segments, such as, 〈τ〉, 〈X 〉, 〈X τ〉, etc.
We note that these are averages over either linear (such as, 〈τ〉, 〈Jz〉), or quadratic (such as, 〈J 2

z 〉, 〈Jzτ〉) functions.
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Note that centered moments of higher order (for example the third centered moment ∼ 1/T 〈(
∫ T

0
dt(X(t) − X̄))3〉)

cannot be easily obtained with this segment technique. Indeed, the equivalent of Eq. (7) for a higher moment has
terms involving averages over the last, incomplete, segment of the time interval [0, T ]. The contribution from this
incomplete segment is negligible (∼ 1/T ) for the first and second moment, but is important for higher moments. As
this last segment is incomplete, its statistics is different from the statistics of standard segments and cannot be easily
computed.

As is emphasized in Ref. [11], the average over the segments can be done in two steps:

〈X 〉 = 〈X 〉1,2 =
∑

ζ

〈X [ζ]〉1P2[ζ]. (8)

The first average is carried out over the durations τ0,...,τM−1 of an arbitrary sequence of states α0 → α1 → · · · →
αM−1 → α0. This first average, which we denoted in Eq. (8) as 〈. . .〉1, is easy to perform, as τm is given by a
Poissonian process, with a rate Γm, and we leave further details to Appendix A. The second step is an average over
all the possible sequences of states, with the correct probability P2[ζ] for each sequence. As we will show below, it is
possible in our case to describe the whole set of sequences, and this second average can also be performed analytically.

B. Construction of all possible segments — case of molecular quantum dot magnet

In order to perform the second average, we must identify the whole set of possible sequences for the magnetic
molecule system. As we work in the limit of strong Coulomb blockade, the dot level can be occupied at most by
1 electron, so we have Q = 0 or Q = 1. For the empty dot, the total spin is simply given by the molecular spin,
and specifying the z component of the spin determines the state completely (Sz ∈ [−S, S]), so an empty dot state is
given by |0, Sz〉. For the occupied dot (Q = 1), the total spin is obtained by the addition of the molecular spin and
the spin of the electron occupying the dot, which gives J = S ± 1/2. These two values of the total spin correspond
to two levels of the system, separated by an energy of order Jex (the value of the exchange coupling between the
spins). As explained before, we decide here to work in the ferromagnetic case, where the lower level is the one with
J = S + 1/2, and with the chemical potentials of the electrodes placed so that only this lower level is in the bias
window; then the level J = S − 1/2 plays no role in transport (it cannot be populated) and can be forgotten. The
occupied dot has thus a total spin J = S +1/2, and specifying the z component again determines the state completely
(Jz ∈ [−(S + 1/2), S + 1/2]), so an occupied dot state is given by |1, Jz〉.

For the reference state (which is the initial and final state of each segment), we choose an empty dot with spin
maximally polarized along the z axis: |0, Sz = +S〉. From this state, there are two basic sequences where a single
electron is tranfered from the left to the right electrode:

• (A) |0, Sz = +S〉 → |1, Jz = S + 1/2〉 → |0, Sz = +S〉

• (B) |0, Sz = +S〉 → |1, Jz = S − 1/2〉 → |0, Sz = +S〉.

The two sequences (A) and (B) are the two simplest ones. Clearly, the sequence A cannot be extended further, as
the spin of the intermediate state is maximal. On the contrary, the sequence (B), which we will call a basic sequence

B, can be extended by adding a subsequence starting and finishing at the intermediate state |1, Jz = S − 1/2〉, and
going only to lower values of Sz. One can add

• i1 times the subsequence v1

|1, Jz = S − 1/2〉 → |0, Sz = S − 1〉 → |1, Jz = S − 1/2〉

• i2 times the subsequence v2

|0, Sz = S − 1〉 → |1, Jz = S − 3/2〉 → |0, Sz = S − 1〉

· · ·

• i4S times the subsequence v4S

|0, Sz = −S〉 → |1, Jz = −S − 1/2〉 → |0, Sz = −S〉

Combining the 4S subsequences to the basic segment B, with arbitrary repetition of each subsequence, one can
construct all the possible sequences of type B (see also Fig. 2). We use the notation B∗(i1, i2, . . . , i4S) to represent
the type-B sequence composed of the basic sequence B combined with i1 times the subsequence v1, i2 times the
subsequence v2, etc. The basic sequence B is then simply B∗(0, 0, . . . , 0). The whole set of type-B sequences, plus the
simple sequence A, give all the possible sequences.
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Sz=S

Jz=S+1/2

Jz=S-1/2

Sz=S-2

Jz=S-3/2

Sz=S-1

Q=0 Q=1 Q=0 Q=1 Q=0

A

B

{extensions

FIG. 2: Construction of all the possible sequences - type A and type B+extensions. A sequence starts and ends in the reference
state, Q = 0, Sz = S. Sequence A (solid line) correspond to the tunneling of a spin-up electron from the left to the right lead.
Sequence B (dashed line) to the tunneling of a spin-down electron from left to right lead. Sequence B can be extended by
attaching subsequences starting and ending from the state Q = 1, Jz = S − 1/2 (thin dashed lines), forming longer sequences
where several electrons are transmitted, and where the molecular spin goes through intermediate states with Sz < S and
Jz < S − 1/2.

The probability with which a given sequence occurs is given by the product of the probabilities of the transitions
forming that sequence. The probability of a transition is given by the transition rate divided by the total transition
rate of the initial state. One must here distinguish between transitions starting from an empty dot (Q = 0) and
transition starting from an occupied dot (Q = 1). An empty dot (Q = 0) with a molecular spin Sz is subject to two
types of transitions: tunnel-in of an electron from the left electrode with either up or down spin, which brings the
dot to the state Jz = Sz + 1/2 or Jz = Sz − 1/2. The transition rates Γ+

Q=0(Sz) and Γ−
Q=0(Sz) for the above two

processes can be calculated, using Fermi’s golden rule and Clebsh-Gordan coefficients:

Γ±
Q=0(Sz) = ΓL

1 ± pL

2

S + 1 ± Sz

2S + 1
. (9)

Using the tunneling rates Γ±
Q=0(Sz), one can express the probability P±

Q=0(Sz) with which the system jumps onto
either of the two final states:

P±
Q=0(Sz) =

Γ±
Q=0(Sz)

Γ+
Q=0(Sz) + Γ−

Q=0(Sz)
. (10)

For an occupied dot (Q = 1), with the molecular spin state Jz, tunnel-out of an electron with either spin-down or
spin-up brings the dot to the state Sz = Jz + 1/2 or Sz = Jz − 1/2, with the rates

Γ±
Q=1(Jz) = ΓR

1 ∓ pR

2

S + 1/2 ∓ Jz

2S + 1
, (11)

giving the probability

P±
Q=1(Jz) =

Γ±
Q=1(Jz)

Γ+
Q=1(Jz) + Γ−

Q=1(Jz)
. (12)

Using Eq. (10,12), one can express the probabilities of sequences A and B:

P2[A] = P+
Q=0(Sz = S) × P−

Q=1(Jz = S + 1/2),

P2[B] = P−
Q=0(Sz = S) × P+

Q=1(Jz = S − 1/2). (13)
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The subscript 2 is to recall that these probabilities are associated with the second average (average over different
sequences). Similarly, extensions starting from an occupied dot or an empty dot occur with the probability,

Po(Jz) = P−
Q=1(Jz) × P+

Q=0(Sz = Jz − 1/2)

Pe(Sz) = P−
Q=0(Sz) × P+

Q=1(Jz = Sz − 1/2) (14)

where the subscript o and e stand for occupied and empty. The probability of the sequence B∗(i1, i2, . . . , i4S) is then

P2[B
∗(i1, i2, . . . , i4S)] = Ci2

i1+i2−1 . . . Ci4S

i4S−1+i4S−1 pi1
1 pi2

2 · · · pi4S

4S P2[B], (15)

where p2l−1 ≡ Po(Jz = S − (2l − 1)/2), p2l ≡ Pe(Sz = S − l). In this expression, the combinatorial factors

(Cj
i = i!/(j!(i − j)!) count the number of different sequences corresponding to the set (i1, i2, . . . , i4S) because of the

possible permutations of the subsequences. There are Cin

in−1+in−1 different possibilities to “attach” the il subsequences

at level l to one of the intermediate states of the il−1 subsequences at level l − 1. The second part of the expression
is simply the product of the probabilities of all the subsequences.

Together with some explicit formulas for the first average (see Appendix A), Eqs. (13,15) allow us to evaluate the
averages over different segments ζ appearing in Eq. (8). Evaluating all such averages, one finally finds the explicit
formulas for X̄ and SXX , formally written as Eqs. (5) and (7). Analytic results for such quantities are listed in Tables
I and II, as a function the polarization p of the electrodes. Some of such examples are also shown in Appendix B,
along with some intermediate steps in a specific case of S = 1/2. Note that we are able to obtain such analytical
formulas owing to identities involving summation on the binomial factors, like:

∞
∑

j=0

Cj
i+j−1 xj =

x

(1 − x)(i+1)

∞
∑

j=0

Cj
i+j−1 j xj =

x(1 + ix)

(1 − x)(i+2)
(16)

In practice, the calculations are quite lengthy, but results are easily obtained using a symbolic computation software.
In Appendix B, it is also shown that our analytic results are consistent with the cumulant generating function,
obtained in Ref. [7], in the limit of non-magnetic electrodes: p → 0.

III. RESULTS

In this section, we present the results we have obtained for the various quantities. We will focus on the mean
current Ī and the current noise SII , on the mean charge on the dot Q̄ and its fluctuations SQQ, and on the mean
value of z-component of the spin on the dot, J̄z and its fluctuations SJzJz

. In order to see the effect of the leads
magnetization, we will show all these quantities as a function of the polarization of the leads. For simplicity, we choose
to have a single parameter for the leads polarizations, and we have chosen four representative cases. In the first two
cases, the two electrodes are magnetic. The absolute value and the direction of the polarizations are the same in the
two electrodes, but are either parallel (PL = PR = p, case noted P), or anti-parallel (PL = −PR = p, case AP). In
the two remaining cases, only one of the electrode is magnetic (with a polarization p), while the other one has no
magnetic property. The polarized electrode can be either the left one, which is the source electrode (case LP), or the
right one, which is the drain electrode (case RP).

Table I gives the anaylitic formulas we have obtained, in the four different cases for the leads polarization, for a
molecular spin S = 1/2 (Appendix C shows a similar table for the case S = 1; we do not show any formula for a higher
spin S as they become too lengthy). For simplicity, we have chosen equal bare transition rates for the left and right

electrodes, Γ
(0)
L = Γ

(0)
R = 1 (formulas with general transition rates can be obtained easily with the same method). As

can be seen on the table, each analytic formula is given by a fraction of two polynomial in p, and containing only
of even powers of p (except for J̄z where there is an additional factor p). The orders of these polynomial, and their
coefficient, increase when the molecular spin is increased (see Appendix C)

A. Mean current and current fluctuations

The behavior of the mean current as a function of the leads polarization, for the case of the molecular spin S = 1/2,
is shown on the left panel of Fig. 3. The simplest case is the case of parallel polarizations (P, dotted curve): the mean
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P Ī 3/10

AP Ī
−5p4 + 2p2 + 3

2p4 + 20p2 + 10

LP Ī
p2 + 3

2p2 + 10

RP Ī
3(1 − p2)

2(5 − p2)

P SII

125p2 + 39

125 − 125p2

AP SII

43p12 − 318p10 − 463p8 + 12p6 + 413p4 + 274p2 + 39

(p4 + 10p2 + 5)3

LP SII

p6 + p4 + 39p2 + 39

(p2 + 5)3

RP SII

3
(

15p6 − 49p4 + 21p2 + 13
)

(5 − p2)3

P J̄z 0

AP J̄z

2p
(

3p2 + 5
)

p4 + 10p2 + 5

LP J̄z

5p

p2 + 5

RP J̄z −p

P SJzJz

88

5 − 5p2

AP SJzJz

8(1 − p2)
(

−25p8 + 48p6 + 30p4 − 200p2 + 275
)

(p4 + 10p2 + 5)3

LP SJzJz

8
(

−2p6 + 71p4 − 340p2 + 275
)

(p2 + 5)3

RP SJzJz

8
(

8p4 − 19p2 + 11
)

5 − p2

P Q̄ 3/5

AP Q̄
3p4 + 10p2 + 3

p4 + 10p2 + 5

LP Q̄
p2 + 3

p2 + 5

RP Q̄
p2 + 3

5 − p2

P SQQ

96

125 (1 − p2)

AP SQQ

32(1 − p2)
(

15p8 + 40p6 + 38p4 + 32p2 + 3
)

(p4 + 10p2 + 5)3

LP SQQ

32
(

−p4 + 2p2 + 3
)

(p2 + 5)3

RP SQQ

32(1 − p2)
(

−3p4 + 8p2 + 3
)

(5 − p2)3

TABLE I: The analytic formulas for the case of a molecular spin S = 1/2, when only the triplet state of the occupied dot
(with a spin S = 1) lies in the bias window. The first column shows the type of polarizations in the leads : P for parallel
(PL = PR = p), AP for anti-parallel (PL = −PR = p), LP (PL = p, PR = 0) for left lead polarized only and RP (PR = p,
PL = 0) for right lead polarized only. The second column shows the quantity whose analytical formula is given in the third
column

current is then constant (value 3/10), and the polarization of the leads has thus no effect. Note that the fact that the
current is constant is related to the choice we made for the density of states ρ↑/↓,j = (1 ± pj)/2 (j = L, R). Indeed,
we see that the total densitiy of states (spin up + spin down) in each electrode is constant.

Consider next the anti-parallel case (AP). We see (full curve on Fig. 3) that the mean current has a maximum for
zero polarization, and decreases to zero when p approaches ±1. This behavior can be understood simply: when |p| is



8

-1 -0.5 0 0.5 1

p

0

0.1

0.2

0.3

0.4

I AP 
P
LP
RP

-1 -0.5 0 0.5 1

p

0

0.1

0.2

0.3

0.4

0.5

S
II AP 

P
LP
RP

-0.5 0 0.5
0

10

20

30

FIG. 3: The mean current Ī (left panel) and its flucutations SII (right panel) for the case of a molecular spinS = 1/2, for the
four different cases of electrodes polarizations. The inset in the right panel shows the behavior of SII in the parallel case (P )
on a larger scale.

large (let us take for example p close to 1), the electrons coming from the left electrode have preferentially a spin up,
while the electrons going to the right electrode have preferentially a spin down; the transport of such an electron from
the left to the right electrode implies thus a flip of the electron spin, and thus an increase of 1 of the z component
of the molecular spin. However, this will lead quickly to a maximally polarized molecular spin, for which such a spin
exchange will be impossible. The only processes contributing to transport will then involve the electrons with a low
density of state (spin down in the left lead or spin up in the right one), for which the current goes to 0 when |p| goes
to 1. This behavior is a case of spin blockade: for |p| = 1, an electron is blocked on the dot because its spin does not
fit the collecting electrode spin.

The case where the right electrode only is polarized (RP, dash-dotted curve on Fig. 3) is similar. For p = 1, the
system reaches a state where the z component of the molecular spin is maximally negative (Sz = −S for the empty
dot). In this state, spin-up electron can tunnel from the left electrode to the right electrode without any splin-flip,
but as soon as a spin-down electron is tunneling from the left electrode, it is blocked on the dot because it cannot flip
to a spin-up electron and tunnel to the right electrode. Because of the very large Coulomb repulsion on the molecular
level, the presence of this spin-down electron forbids any further transport of spin-up electron. This case is thus also
a case of spin blockade, as in the AP case, but the Coulomb repulsion on the molecular level plays here a central role.
The decrease of the mean current with p is a bit slower than in the AP case, as the process where an electron tunnel
without any spin flip, and without involving small densities of states, is always possible when |p| < 1.

Finally, the case where the left electrode only is polarized (LP, dashed curve on Fig. 3) has a totally different
behavior. There, the current is slowly increasing when |p| increases, and there is no spin blockade. Indeed, as the
density of states of both spins are important in the right electrode, it is always possible to have transport of an
electron without spin flip, and involving large densitites of states.

Let us now consider the zero-frequency current fluctuations, shown on the right panel of Fig. 3. Again, we observe
very different behavior for the four different cases of electrode polarizations. At p = 0, the value of SII is 39/125 =
0.312. In the parallel case (P, dotted curve), SII increases with p, and diverges as (1 − p2)−1 as |p| approaches 1
(see the inset in the figure). On the other hand, in the anti-parallel case (AP, full curve), the current fluctuations are
nearly maximal at p = 0 (with small shoulders near |p| = 0.3), and decrease to 0 as |p| → 1. This huge difference in
behavior can be understood using the segment picture; let us take for example p close to 1. In the parallel case, the
most probable process contributing to transport is simply the transport of one spin-up electron, without any spin flip,
and thus without exchanging angular momentum with the molecular spin. The most probable segment is thus a very
short one, with a single electron transfered. However, an exchange of angular momentum (spin flip for the electron,
and modification of the z component of the molecular spin) can happen with a small probability; when this happen,
the system will then transfer again a very large number of electrons without any spin flip, and it will take a very
long time before the z component of the molecular spin recover its inital value. There is thus a small probability to
have a very long segment, with many electrons transfered - the smaller the probability, the longer the segment. This
presence of rare but arbitrary long segment when p goes to 1, in a “background” of very short segments, explains the
divergence of SII in the parallel case. The situation is different for the anti-parallel case: for p close to 1, the molecular
spin is with a high probability in a maximaly polarized state (Sz = S for the empty dot). The most probable process
is again the transfer of a single electron without spin flip (this produces a low current as it involves a small density of
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FIG. 4: The mean value of the z component of the molecular spin, J̄z (left panel) and its flucutations SJzJz
(right panel) for

the case of a molecular spin S = 1/2, for the four different cases of electrodes polarizations.

state in one of the electrodes). There is again a small probability of a spin-flip, which will bring the molecular spin
in the state Sz = S − 1. However, at this point, the most probable process (involving large densities of state in both
electrodes) tends to bring the molecular spin back to the Sz = S state. The resulting segment is thus also short, with
2 (or at most a few) electrons tranferred. As this probability for such longer segments goes to zero when p → 1, and
as the length of these segments is quite short, we understand why the current fluctuations SII go to 0 when |p| → 1.

In the case where the right electrode only is polarized (RP, dash-dotted curve), the current fluctuations also go to 0
as |p| → 1. Note however the presence of broad shoulders, with a maximum of the fluctuations near |p| = 0.6. Finally,
in the case where the left electrode only is polarized (LP, dashed curve), the fluctuations have a behavior similar to
the one of the mean current, with a slow increase when |p| increases.

B. J̄z and the Jz fluctuations

In many works about electronic transport in the incoherent regime, the emphasis is put on the statistics of the
electronic current, and little attention is given to the statistics of other quantities (see however Ref. [12]). Here we
study the statistics of the total spin of the molecule (i.e. its z component Jz), which gives us precious information on
the impact of the electronic current on the molecular spin.

The results for the mean value of the z component of the molecular spin, J̄z, and the Jz fluctuations SJzJz
, are

shown on Fig. 4. Note that these two quantities involve both the molecular spin when the dot is full (Jz) and the
molecular spin for the empty dot (which is noted Sz, but as the intrinsic molecular spin S is also the total spin for
an empty dot, Jz reduces to Sz for an empty dot). The mean value J̄z is an important quantity, as it shows how
the current through the molecule is changing the polarization of its spin (as without any current, one has simply
J̄z = 0). The fluctuations SJzJz

show how the molecular spin fluctuates around its mean value, it gives thus precious
information on how precisely one could control the molecular spin polarization by applying a current.

In the parallel case (P, dotted curve on the left panel of Fig. 4), the mean value J̄z is simply 0 for all p. In the
anti-parallel case (AP, full curve), J̄z is an non-linear odd function of p, going from 0 to 1 for p going from 0 to 1.
This behavior is easily understood. For p > 0 for example, the spin-up electrons have a larger density of state than
spin-down electrons in the left electrode, and it is the opposite in the right electrode. The system thus favors the
transport of a spin-up electron from the left electrode into a spin-down electron in the right electrode (compared to
the process with the spins exchanged), and this process increase Jz by 1. On average J̄z will thus be positive for
p > 1. For p = 1, we have seen that current is 0 because of spin blockade. In this case, the system is frozen in the
state where the dot is full, with Jz = 1, hence one has J̄z = 1.

The behavior is quite similar in the case where the left electrode only is polarized (LP, dashed curve): J̄z is an odd
function of p, positive for p > 1. There are two main differences with the anti-parallel case. First, the slope at p = 0
is smaller (it is 1 for LP, and 2 for AP). Next, J̄z does not reach 1 (but 5/6) for p = 1. This is because the current is
non-zero even for p = 1 (no spin-blockade), and thus the molecular spin oscillates from the value Jz = 1 (filled dot)
and Sz = 1/2 (empty dot). Finally, the case where the right electrode only is polarized (RP, dahs-dotted curve) has
an opposite sign, and the behaviour is simply linear, with J̄z = −p. The fact that the sign is the opposite from the
sign of the other cases (J̄z = −1 for p = 1) is due to the fact the tunneling of a spin-up electron to the right electrode
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(dominant for p > 1) is done either without spin flip (if the electron coming from the left electrode is also a spin-up
electron), or with a spin-flip which decreases Jz by 1 (if the electron coming from the left electrode is a spin-down
electron). The fact that J̄z reaches the value −1 for p = 1 is again due to spin blockade, as in the anti-parallel case.

Let us now consider the fluctuations of Jz around its mean value, SJzJz
(right panel of Fig. 4). Note first that the

value of SJzJz
for p = 0 is 88/5 = 17.6. This value, which determines the overall scale of the fluctuations, is extremely

large, and is discussed in more details below. In the parallel case (P), SJzJz
is increasing as |p| increases, and has the

same (1−p2)−1 divergence as the current noise (for the same reasons). In the other three cases, SJzJz
is maximum at

p = 0, and decreases as |p| increases, with a much broader shapes for the cases with only one electrode polarized (LP
and RP) compared to the anti-parallel case (AP). In the anti-parallel case, and in the case where the right electrode
only is polarized (RP), SJzJz

is 0 for |p| = 1, because of spin-blockade (current is zero). But in the case where the left
electrode only is polarized (LP), SJzJz

= 4/27 for |p| = 1 because there is no-spin blockade: for p = 1 the molecular
spin oscillates between the values Sz = 1/2 and Jz = 1, leading to these non-zero fluctuations. Finally, we note that
the behavior of SJzJz

is very similar in the two cases where there is only one electrode polarized (LP and RP); this
is quite remarkable, as the currents (and the current noises) in these two cases have a completely different behavior
(see Fig. 3).

As said above, the scale of these Jz fluctuations is very large, with a value SJzJz
= 88/5 for p = 0. A natural

normalization of these fluctuations, to take into account the value of the molecular spin, is to divide by (2S + 1)2

(note that ~ = 1). Here, S = 1/2, which gives a normalized value of 22/5. This value has the dimension of a time,
and should be compared with a typical time in the system. Here, the natural time is just the inverse transtion rate

1/Γ
(0)
L,R = 1, which gives the scale of the time to transfer an electron. The value of the Jz fluctuations at p = 0 is

quite larger than this time scale. Comparison with the value for the charge fluctuations SQQ, which is 96/125 ≃ 0.77
(see table I) shows also that the normalized Jz fluctuations for p = 0 are extremey large. Even if these fluctuations
decrease with increasing |p| (except in the parallel case), they remain quite large when |p| is not close to 1. One can
thus speak of colossal spin fluctuations, and this implies that it is difficult to control the molecular spin with the
current, except with electrodes having polarizations p close to 1.

In this respect, the anti-parallel case is much more favourable than the case where only one electrode is polarized.
One could for example think to use a setup with only one polarized electrode, to flip the molecular spin by reversing
the current in the setup. Indeed, reversing the voltage bias will make the system go from the LP case to the RP case.
If p = 0.5 for the polarized electrode, we see on the left panel of Fig. 4 that J̄z would change from approximatively
0.5 (case LP) to −0.5 (case RP) when the bias voltage is reversed. However, as the Jz fluctuations are very large (the
normalized value is ≃ 5), it is difficult to say that the molecular spin is controlled. Performing the same with two
polarized electrodes in the anti-parallel polarization configuration would be more effective: reversing the bias voltage
is then equivalent to the change p → −p, and with p = 0.5 it would change 〈Jz〉 from approximatively 0.75 to −0.75.
The normalized value of the Jz fluctuations is then approximatively 1.3, which is much lower than in the previous
case.

IV. BEHAVIOR FOR LARGER MOLECULAR SPIN

In the previous section, we have shown the results obtained in the case of a molecular spin S = 1/2. The method
we have presented is of course not limited to this value of the spin, and we discuss in this section how the results are
changed when the molecular spin is larger than 1/2. Note that the analytical results for S = 1 are given in table II,
in appendix C. The plots one obtains with these results are qualitatively similar to the ones for S = 1/2.

In order to discuss the behavior at larger S, one should distinguish between the mean current (and the current
fluctuations) on the one hand, and the mean value of Jz (and the Jz fluctuations) on the other hand. For the mean
current, and the current fluctuations, there is very little change as one increases the spin, and the physical explanations
we have given for S = 1/2 apply for arbitrary spin. This is illustrated on Fig. 5, which shows the mean current Ī (left
panel) and the current fluctuations SII (right panel) as a function of the polarization p, for the anti-parallel (AP)
configuration, and for the values of the spin S = 1/2, S = 1 and S = 3/2. One can see that both the mean current
and the current fluctuations decrease a little bit as the spin is increased, with very little change in the p dependence.
For larger values of S, the curves will slowly converge towards a “classical curve”, obtained by considering a classical
(fixed) spin.

The situation for the mean of Jz and its fluctuations is slightly different. First, as J = S + 1/2, it is natural to
normalize the results for the different S to compare them; we normalize J̄z by S + 1/2, and the Jz fluctuations by
(2S + 1)2. The normalized mean of Jz is shown on the left panel of Fig 6, for the case of anti-parallel polarizations
(AP), and for the values of the spin S = 1/2, S = 1 and S = 3/2. When p → 1, the molecular spin is maximaly
polarized, and thus each curve reaches the value 1 for p = 1. However, the slope at p = 0 increases when S increases.
By inspection of the formulas, we see that the slope at p = 0 is given by 4/3 ∗ (S + 1). The molecular spin is thus
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panel), in the anti-parallel configuration of the electrodes, for the values of the spin S = 1/2, S = 1 and S = 3/2 as a function
of the electrodes polarizations p.

more easily polarized when S increases. When the molecular spin becomes large, we expect that it becomes more
sensitive to the electrodes magnetizations, reaching even for small |p| highly polarized states.

The Jz fluctuations, SJzJz
, normalized by (2S + 1)2, are shown on the right panel of Fig 6. Two important

characteristics appear on this figure. First, the maximum value of the normalized fluctuations, for p = 0, increase
strongly when S increase. This maximum is already very large for S = 1/2 (see the discussion in the previous
section), but it is still much larger for larger S. At p = 0, SJzJz

= 88/5 for S = 1/2, SJzJz
= 552/7 for S = 1, and

SJzJz
= 2080/9 for S = 3/2, · · · . Secondly, the width of the curves as a function of p decreases as S increases: the

full width at half maximum is ≃ 0.6 for S = 1/2, ≃ 0.45 for S=1 and ≃ 0.35 for S = 3/2. This means that for |p|
large enough, the normalized fluctuations decrease when S is increased. For example, on the figure, we see that for
|p| & 0.4, the normalized Jz fluctuations for S = 3/2 are smaller than those for S = 1/2. We expect this tendency
to continue when S is increased, with the normalized Jz fluctuations for a large spin S having the shape of a narrow
peak with a very large maximum value. As soon as the electrodes have some magnetization, a larger spin is thus
relatively easier to control than a small spin S, as the normalized Jz fluctuations can be much smaller.

V. ALTERNATIVE METHOD OF CALCULATION

We discuss here shorlty another method of calculation, which can also be used to obtain analytical formulas for
the averages and fluctuations of different quantities, and which can even give access to analytic expression for the
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higher moments. It is derived from the master equation approach to the full counting statistics, which was introduced
in Ref.[13], and adapted for a molecular quantum dot magnet (placed between normal electrodes) in Ref.[7]. A full
explanation of the method can be found in these two references.

In the master equation approach, a n × n matrix L determines the time evolution of the populations of the n
different states of the system :

dp(t)

dt
= L p(t) (17)

where p(t) is the vector containing the populations. Any off-diagonal element Lij of the matrix L gives the transition
probability from state i to state j. To obtain the full counting statistics of a given physical quantity, a counting field
ξ is introduced in the matrix L, by making the appropriate replacements of diagonal and non-diagonal elements. The
eigenvalues of the matrix L(ξ) then give access to the full counting statistics, as the cumulant generating function
is simply proportionnal to the eigenvalue λ(ξ) which satisfies limξ→0 λ(ξ) = 0. The full counting statistics is thus
obtained by solving the equation:

λn + fn−1(ξ)λ
n−1 + · · · + f1(ξ)λ + f0(ξ) = 0, (18)

where the functions fi(ξ) (i = 0, . . . , n − 1) depend on the matrix L modified by the counting field ξ. The solution
λ(ξ) which satisfies limξ→0 λ(ξ) = 0 then gives access to the cumulants Cn(X) of the quantity X associated with the
counting field ξ:

Cn(X) =
∂nλ(ξ)

∂ξn

∣

∣

∣

∣

ξ=0

. (19)

Note that the first two cumulants (C1 and C2) are simply the average and the fluctuations which have been calculated
in the previous sections. In general, the cumulant of order n can be expressed as a combination of the centered
moments of order ≤ n.14 T is the measuring time, which must be larger than all typical times in the system. It is in
general impossible to solve Eq. (18) analytically (except in special cases which can be reduced to small n, as in Ref.[7]).
However, if one is interested in the cumulants up to a finite order nmax only, then one can expand the function λ(ξ)
in power of ξ, and keep only the terms up to the order nmax. It is then possible to solve Eq. (18) by expanding all the
terms in powers of ξ, and by solving order by order, starting from order 1, up to order nmax. Specifically, to compute
the average and fluctuations (of the chosen quantity) only, it is enough to write λ(ξ) = C1ξ + (C2/2)ξ2, to develop
f0(ξ), f1(ξ) and f2(ξ) up to order 2 in ξ, and then to solve Eq. (18) first for C1 (terms in ξ) and then for C2 (terms
in ξ2).

There are two kinds of observable with different types of countings fields. First, charge-like operators, which have
a given value for each state of the dot (for example the charge Q, or Jz). In this case, the counting field is simply
introduced by adding +cαξ to each diagonal element Lαα, where cα is the value of the observable (for example Jz) in
state α. Secondly, current-like operators, which are associated with transitions between different states (the charge
current being the main example). In this case, the counting field is introduced by multiplying the off-diagonal elements
Lαβ which are associated to transitions contributing to the current by eiξ. For this second kind of observable, there
is an additional factor in on the right hand side of Eq.(19).

With this alternative method, we have computed all the quantities shown in the previous sections of this article, and
we verified that we could indeed recover the same formulas. This method allow to compute quite easily cumulants of
order higher than 2. We do not provide here a complete exploration of the higher cumulants of the physical quantities
we are interested in, but as an example Fig.7 shows the third and fourth cumulant of the current for the four possible
cases of electrode magnetizations. We see on these plots that some of the features present for the current fluctuations
(Fig.3) are more pronounced on the third and fourth cumulant. In the right-lead polarized case (RP), peaks for
large p are becoming more pronounced, while in the left lead polarized case (LP), the variations of the cumulant as a
function of p are extremely small.

VI. CONCLUSION

In this paper, we have studied the incoherent transport between ferromagnetic electrodes through a magnetic
molecule with an isotropic spin. The molecule is modeled as a single resonant level, with large electronic interaction
forbidding double occupancy of the level. There is an exchange coupling between the molecular spin and the electronic
spin on the molecular level. By extending an original method (which was first introduced by Korotkov in the study
of noise of the singe-electron transistor11), we have shown that it is possible to obtain analytical formulas for the
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average and fluctuations of all physical quantities of interest. The idea of the method is to separate the transport
process in statistically independent segments, and to compute the average and fluctutations using the properties of
individual segments and then averaging using the statistical distribution of all segments. We have focused on the
current through the molecule and its fluctuations, and on the total spin of the molecule and its fluctuations. We
limited the calculations to the case of a temperature Θ much smaller than the bias voltage, and with only the level
J = S + 1/2 in the bias window, but using the same method it would be quite easy to generalize the results to higher
temperatures, or to the case where the two levels J = S ± 1/2 are inside the bias window.

By considering several configurations of the magnetization of the electrodes (both electrodes polarized with parallel
or anti-parallel polarizations, or only one electrode polarized), we have shown that there is a rich variety of behaviors.
Depending on the electrode polarizations, the current can decrease or increase with the electrodes polarization; for
maximally polarized electrodes, it can be blocked due to spin blockade. The current fluctuations can show a non-
monotonic behavior as polarization is increased.

With the study of Jz (the z component of the total spin of the molecule), we have been able to characterize how
the electronic transport affects the molecular spin. If the results for the average of Jz show, as expected, that it
is possible to polarize the molecular spin by using magnetic electrodes (non-zero average of Jz whose sign depends
on the sign of the current), the results for the fluctuations of Jz show that these fluctuations are very large. This
shows that it is effectively difficult to control the molecular spin with the current, except with electrodes having
polarizations close enough to 1. We have shown how these results evolve when increasing the bare molecular spin: the
polarizability of the molecular spin increases near p = 0, and the fluctuations of Jz are more peaked around p = 0.
These large fluctuations of the molecular spin are of course a direct consequence of the isotropy of the molecular spin.
The fluctuations would be severly reduced in molecular magnets, where a strong spin-anisotropy is present.

We have also shown that we can obtain the same results using a different calculation, based on an extension of the
method introduced by Bagrets and Nazarov13 to compute the full counting statitics in Coulomb blockade systems.
In contrast to the segment method, this second method offers the possibility to compute the higher cumulants of the
physical quantities, and we have shown as an example the results for the third and fourth cumulant of the electronic
current. This second method gives however less information for the physical interpretation of the results, compared
to the segment method.
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APPENDIX A: EXPLICIT FORMULAS I: FIRST AVERAGE — AN AVERAGE IN A GIVEN SEGMENT

In the segment picture, the statistical average X̄ and the fluctuations SXX of a given random variable X(t), reduces
to an average of quantities in a single segment, such as, 〈X 〉, 〈τ〉, 〈X τ〉, · · · , and its lowest order examples are, Eqs.
(5,7). In these formulas, the average in a single segment is done in two steps, i.e., first a Poissonian average over a given
segments is taken, and then one takes an average over different segments with suitable weights. One may denote the
first average for a given segment ζ as 〈· · · 〉1. The probability with which in a given segment ζ = (α1, α2, · · · , αM−1),
the m-th state happens to survive during a period τm is proportional to exp[−Γmτm], where 1/Γm is the average
lifetime of the m-th state. The probability with which ζ is characterized by a set of transition times (τ0, τ1, · · · , τM−1)
thus obeys to a Poissonian distribution,

P1(τ0, τ1, · · · , τM−1) = Γ0Γ1 · · ·ΓM−1e
−Γ0τ0e−Γ1τ1 · · · e−ΓM−1τM−1 , (A1)

and in that case, one can rewrite the probability P [ζ] of the segment ζ as P [ζ] = P1(τ0, τ1, · · · , τM−1)P2[ζ]. Then,
together with the explicit definition of the first average,

〈X [ζ]〉1 =

∫

dτ0dτ1 · · · dτM−1X [ζ]P1(τ0, τ1, · · · , τM−1), (A2)

one indeed arrives at Eq. (8). In Eq. (A2), X [ζ] is, e.g., Jz [ζ] defined as Eq. (3). As for the second average, Section
II B demonstrates how to construct explicitly P2[ζ] in the case of molecular quantum dot magnet.

At linear order, the role of 〈· · · 〉1 is nothing more than a replacement τm → 〈τm〉1 = 1/Γm, e.g.,

〈Jz [ζ]〉1 =

M−1
∑

m=0

Jz
m〈τm〉1 =

M−1
∑

m=0

Jz
m

Γm
. (A3)

At second order, one may also use the following mathematical trick11 Let us attempt to calculate, e.g., 〈Jz[ζ]τ [ζ]〉1 :

〈Jz[ζ]τ [ζ]〉1 =

〈

M−1
∑

m=0

Jz
mτm

M−1
∑

m′=0

τm′

〉

1

=

〈

M−1
∑

m=0

Jz
m(τm)2 +

∑

m 6=m′

Jz
mτmτm′

〉

1

=

M−1
∑

m=0

Jz
m〈(τm)2〉1 +

∑

m 6=m′

Jz
m〈τmτm′〉1

=
M−1
∑

m=0

Jz
m

2

Γ2
m

+
∑

m 6=m′

Jz
m

1

Γm

1

Γm′

=

M−1
∑

m=0

Jz
m

Γ2
m

+ 〈Jz[ζ]〉1〈τ [ζ]〉1 (A4)

At the second identity, we divided the double summation into diagonal and off-diagonal parts. To give some concrete
examples, in the case of segments ζ = A and ζ = B∗(i1, i2, · · · , i4S) defined in Section II, the final expression reads
explicitly as,

〈Jz [A]τ [A]〉1 =
S

[

ΓQ=0(Sz = S)
]2 +

S + 1/2
[

ΓQ=1(Jz = S + 1/2)
]2 + 〈Jz [A]〉1〈τ [A]〉1,

〈Jz [B
∗]τ [B∗]〉1 =

S
[

ΓQ=0
Sz=S

]2 +
S − 1/2

[

ΓQ=1
Sz=S−1/2

]2 (A5)

+

2s
∑

l=1

i2l−1





S − l + 1/2
[

ΓQ=1
Jz=S−l+1/2

]2 +
S − l

[

ΓQ=0
Sz=S−l

]2



+

2s
∑

l=1

i2l





S − l
[

ΓQ=0
Sz=S−l

]2 +
S − l − 1/2

[

ΓQ=1
Jz=S−l−1/2

]2





+ 〈Jz [B
∗]〉1〈τ [B∗]〉1, (A6)

where we used an abbreviated notation, ΓQ=0
Sz

= ΓQ=0(Sz) = Γ+
Q=0(Sz) + Γ−

Q=0(Sz), and ΓQ=1
Jz

= ΓQ=1(Jz) =

Γ+
Q=1(Jz) + Γ−

Q=1(Jz). Substituting Eqs. (A5,A6) into Eq. (8) in Section II A, and together with P2[A] and P2[B
∗]

constructed in Section II B (Eqs. (13,15)), one finds 〈Jzτ〉 appearing in Eq. (7) for X = Jz. Evaluating other
averages in a single segment, such as 〈τ〉, 〈Jz〉, 〈τ

2〉, and 〈J 2
z 〉, one finally finds the expression for SJzJz

= 2µ2[Jz].
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APPENDIX B: EXPLICIT FORMULAS II: SECOND AVERAGE — AVERAGE OVER DIFFERENT

SEGMENTS AND CONSISTENCY WITH THE FCS GENERATING FUNCTION

To illustrate how to evaluate the average over different segments, let us give here some explicit formulas, which
typically appear in the calculation. For simplicity, we consider here only the case of S = 1/2, and parallel (P) or
anti-parallel (AP) spin alignment of the electrodes: PL = PR = p for P, and PL = −PR = p for AP. Using Eq. (8)
in Section II A, and some explicit formulas in Appendix A and in Section II B (expressions for P2[A] and P2[B

∗], in
particular, i.e., Eqs. (13,15)), one finds the average duration of a segment as,

〈τ〉P =
2

3 + p

3ΓL + 2ΓR

ΓLΓR
,

〈τ〉AP =
2(3 + 10p2 + 3p4)ΓL + 4(1 − p4)ΓR

(1 + p)3(3 − 2p − p2)ΓLΓR
. (B1)

Here, we used a slightly different convention from the body of the paper, so that we can compare our results directly

with that of Ref. [7]. The convention here is Γ↑
L,R = ΓL(1 + pL,R) and Γ↓

L,R = ΓL(1− pL,R). Note that Eqs. (B1) are
not symmetric functions of p, and this reflects the choice of the reference state. The average net charge on the dot is,

〈Q〉P =
6

3 + p
, 〈Q〉AP =

2(3 + 10p2 + 3p4)

(1 + p)3(3 − 2p − p2)ΓR
, (B2)

no longer a symmetric function of p. On the other hand, the average charge normalized by the average duration of a
segment, which is the physically measurable average charge, is a symmetric function of p, indepedent of the choice of
the reference state:

Q̄P =
〈Q〉P
〈τ〉P

=
3ΓL

3ΓL + 2ΓR
,

Q̄AP =
〈Q〉AP

〈τ〉AP
=

(3 + 10p2 + 3p4)ΓL

(3 + 10p2 + 3p4)ΓL + 2(1 − p4)ΓR
. (B3)

As for the current, one has to evaluate similarly, 〈k〉P or 〈k〉AP to find,

ĪP =
〈k〉P
〈τ〉P

=
3ΓLΓR

3ΓL + 2ΓR
,

ĪAP =
〈k〉AP

〈τ〉AP
=

(1 − p2)(3 + 5p2)ΓLΓR

(3 + 10p2 + 3p4)ΓL + 2(1 − p4)ΓR
. (B4)

Here, we used the same notation k as Ref.11 to ease the comparison. Observable quantities, i.e., the charge, current,
or spin averaged over measurement time, are either a symmetric (even) or an antisymmetric (odd) function of p
depending on their symmetry properties under spin reversal. One can verify, for example, that Jz averaged over the
measurement time is an odd function of p.

J̄zP = 0,

J̄zAP =
〈Jz〉AP

〈τ〉AP
=

2p{4(1 + p2)ΓL + (1 − p2)ΓR}

(3 + 10p2 + 3p4)ΓL + 2(1 − p4)ΓR
. (B5)

Note that the average Jz vanishes for P-alignment.
At second order, one finds expressions, such as (µ2 is the centered moment of second order)

µ2[Q]P =
24ΓLΓR

(1 − p2)(3ΓL + 2ΓR)3
,

µ2[Q]AP =
8(1 − p2)(3 + 32p2 + 38p4 + 40p6 + 15p8)ΓLΓR

{(3 + 10p2 + 3p4)ΓL + 2(1 − p4)ΓR}3
. (B6)

Note the these correlation functions are actually cumulants or fluctuations around the mean value. At this order,
expressions start to be lengthy, so that we list here only a few examples of our results:

µ2[I]P =
ΓLΓR{27(1 + 3p2)Γ2

L + 48p2ΓLΓR + 4(3 + p2)Γ2
R

(1 − p2)(3ΓL + 2ΓR)3
(B7)

µ2[Jz]AP =
2(6Γ2

L + 4ΓLΓR + Γ2
R)

(1 − p2)ΓLΓR(3ΓL + 2ΓR)
(B8)
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In order to check the consistency of these results, let us compare them with the FCS generating function Ω(ξ, η).
For non-magnetic electrodes (p = 0), the analytic expression for Ω(ξ, η) is given in Ref.7 as,15

Ω(ξ, η) = T

[

ξ − zΓL − ΓR

2
+

1

2

√

(zΓL − ΓR + ξ)2 + 4zΓLΓReη

]

, (B9)

where z = (2S + 2)/(2S + 1), i.e., z = 3/2 for S = 1/2. Taking derivatives of Eq. (B9) with respect to counting fields
ξ or η, one can, in principle, obtain any correlation function associated with Q and I, i.e.,

κm,n[Q, I] =
1

T
〈〈QmIn〉〉c

∣

∣

∣

∣

p=0

=
1

T

∂m

∂ξm

∂n

∂ηn
Ω(ξ, η)

∣

∣

∣

∣

ξ→0,η→0

. (B10)

At lowest orders, this gives,

κ1[Q]p=0 = Q̄p=0 =
3ΓL

3ΓL + 2ΓR
, κ1[I]p=0 = Īp=0 =

3ΓLΓR

3ΓL + 2ΓR

κ2[Q]p=0 = µ2[Q]p=0 =
24ΓLΓR

(3ΓL + 2ΓR)3
, κ2[I]p=0 = µ2[I]p=0 =

3ΓLΓR (9Γ2
L + 4Γ2

R)

(3ΓL + 2ΓR)3
. (B11)

One can, therefore, check the consistency between Eqs. (B3,B4,B6,B7) and Eq. (B9), by verifying the formulas given
in Eqs. (B11). The formulas (B3,B4,B5,B6,B7,B8) are also listed in Table I in the limit of ΓL → 1 and ΓR → 1.
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P 〈I〉 2/7

AP 〈I〉 −
2(p − 1)(p + 1)

(

7p4 + 14p2 + 3
)

3 (p6 + 21p4 + 35p2 + 7)

LP 〈I〉
2
(

p2 + 1
)

5p2 + 7

RP 〈I〉
2
(

p4 + 2p2 − 3
)

3 (p4 − 2p2 − 7)

P SII −
4
(

539p2 + 75
)

1029 (p2 − 1)

AP SII

4(p − 1)(p + 1)
(

357p16 − 2698p14 − 24654p12 − 71634p10 − 100500p8 − 68254p6 − 23458p4 − 3846p2 − 225
)

9 (p6 + 21p4 + 35p2 + 7)3

LP SII

4
(

27p6 + 27p4 + 81p2 + 25
)

(5p2 + 7)3

RP SII

4(p − 1)(p + 1)
(

3p10 + 85p8 + 270p6 − 518p4 + 1215p2 + 225
)

9 (p4 − 2p2 − 7)3

P 〈Jz〉 0

AP 〈Jz〉
4p
(

3p4 + 14p2 + 7
)

p6 + 21p4 + 35p2 + 7

LP 〈Jz〉
2p
(

p2 + 7
)

5p2 + 7

RP 〈Jz〉 −
2p
(

p2 − 7
)

p4 − 2p2 − 7

P SJzJz

552

7 − 7p2

AP SJzJz

8(p − 1)(p + 1)
(

105p14 − 63p12 − 471p10 + 8617p8 − 7021p6 − 3381p4 − 2597p2 − 3381
)

(p6 + 21p4 + 35p2 + 7)3

LP SJzJz
−

8
(

24p8 + 367p6 − 1963p4 + 4921p2 − 3381
)

(5p2 + 7)3

RP SJzJz

8(p − 1)(p + 1)
(

3p10 + 30p8 − 673p6 + 3321p4 − 5614p2 + 3381
)

(p4 − 2p2 − 7)3

P 〈Q〉 4/7

AP 〈Q〉
4
(

p6 + 7p4 + 7p2 + 1
)

p6 + 21p4 + 35p2 + 7

LP 〈Q〉 −
4
(

p2 + 1
)

p4 − 2p2 − 7

RP 〈Q〉
4
(

p2 + 1
)

5p2 + 7

P SQQ −
288

343 (p2 − 1)

AP SQQ −
32
(

63p16 + 420p14 + 980p12 + 1388p10 − 622p8 − 1348p6 − 668p4 − 204p2 − 9
)

(p6 + 21p4 + 35p2 + 7)3

LP SQQ

32
(

2p10 + 7p8 − 16p6 + 58p4 − 42p2 − 9
)

(p4 − 2p2 − 7)3

RP SQQ

32
(

6p6 − 7p4 + 24p2 + 9
)

(5p2 + 7)3

TABLE II: The analytic formulas for the case of a molecular spin S = 1, when the state J = 3/2 of the occupied dot lies in the
bias window. The first column shows the type of polarizations in the leads : P for parallel (PL = PR = p), AP for anti-parallel
(PL = −PR = p), LP (PL = p, PR = 0) for left lead polarized only and RP (PR = p, PL = 0) for right lead polarized only. The
second column shows the quantity whose analytical formula is given in the third column.


