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Abstract

We consider a repeated quantum interaction model describing a small system
HS in interaction with each one of the identical copies of the chain

⊗
N∗ C

n+1,
modeling a heat bath, one after another during the same short time intervals [0, h].
We suppose that the repeated quantum interaction Hamiltonian is split in two
parts: a free part and an interaction part with time scale of order h. After giving
the GNS representation, we establish the relation between the time scale h and
the classical low density limit. We introduce a chemical potential µ related to the
time h as follows: h2 = eβµ. We further prove that the solution of the associated
discrete evolution equation converges strongly, when h tends to 0, to the unitary
solution of a quantum Langevin equation directed by Poisson processes.

1 Introduction

In the quantum theory of open systems, two different approaches have usually been
considered by physicists as well as mathematicians: The Hamiltonian and Markovian
approaches.

The first approach consists in giving a full Hamiltonian description for the interac-
tions of a quantum system with a quantum field (reservoir, heat bath...) and studying
ergodic properties of the associated dynamical system.

The second approach consists of giving up the idea of modeling the quantum field
and concentrating on the effective dynamics of the quantum system. The dynamics are
then described by a Lindblad generator, which dilates a quantum Langevin equation (or
quantum stochastic differential equation (cf [P])).

It is worthwhile to note that the quantum Langevin equation (or Lindblad generator)
associated to the combined system can be derived from its Hamiltonian description by
the classical weak coupling and low density limits (cf [AFL], [APV], [Dav], [D1], [Pe]...).
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Recently, Attal and Pautrat describe the interaction between a quantum system and
a quantum field by a repeated quantum interaction model (cf [AtP]): The exterior system
is modeled by an infinite chain of identical copies H (H is an Hilbert space) and the
interaction is described as follows: The small system interacts with each one of the
identical pieces of the exterior system one after another during the same time intervals
[0, h]. They prove, in the continuous limit (h tends to 0), that this discrete description
of the combined system gives rise to a quantum Langevin equation.

In [AtP], we observe three time scales, which appear in a repeated quantum interac-
tion Hamiltonian H = H(h), with respectively order 1,

√
h and h.

In [AtJ], the authors have studied the time scale of order
√

h. They prove that,
in the continuous limit, we get a quantum diffusion equation where new noises, called
thermal noises, appear. This normalization is used for modeling some physical systems
(cf [D1], [D2]).

In this paper we prove that the time scale of order h corresponds to the classical low
density limit. For this purpose, we consider a repeated interaction model associated to
a small system HS, with Hamiltonian HS, which interacts with a chain

⊗
N∗ Cn+1 of a

heat bath, so that the Hamiltonian of each piece of the chain is the operator HR on C
n+1.

The associated repeated quantum interaction Hamiltonian is defined on HS ⊗ Cn+1 by

H = HS ⊗ I + I ⊗ HR +
1

h

n∑

i,j=1

Dij ⊗ ai
j , (1)

where the Dij are the interaction operators associated to the small system and the ai
j are

the discrete quantum noises in B(Cn+1), the algebra of all bounded operators on Cn+1.
The thermodynamical equilibrium state of the small system is defined by the density
matrix

ρβ =
e−β(HS−µN)

Tr(e−β(HS−µN))
,

where N is the number operator defined on Cn+1 and µ is a chemical potential (µ < 0).
The length of the time interaction h between the small system and each piece of the

heat bath is supposed to be related to the chemical potential by the relation

h2 = eβµ.

Obviously, h tends to 0 if and only if µ tends to −∞.
After giving the GNS representation and taking into account the above assumption,

we prove that in the continuous time limit we get a quantum stochastic differential
equation directed by Poisson processes.

This paper is organized as follows. In Section 2 we introduce the discrete model which
presents the repeated interaction model describing a small system in interaction with a
heat bath. Also, we give a description of the GNS representation of the pair (Cn+1, ρβ).
In Section 3 we describe the tools used to obtain the continuous limit: Guichardet inter-
pretation of a Fock space, quantum noises and quantum Langevin equations. Finally, in
Section 4 we prove that the discrete solution of the associated discrete evolution equa-
tion with repeated quantum interaction Hamiltonian, given by (1), converges strongly
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to the unitary solution of a quantum Langevin equation. In this equation only Poisson
processes appear in its noise part.

2 The discrete model

In this section we start by describing the discrete atom chain modeling an exterior
system (reservoir, heat bath...). We further give the repeated quantum interaction
model, which is the object of our study. In the last part we describe the associated GNS
representation.

2.1 The atom chain

Let us give a brief description of the algebraic structure of the atom chain. We refer
the interested reader to [At2] for more details. Let H be a Hilbert space, where we fix
an orthonormal basis {ek, k ∈ J = I ∪ {0}}. The vector e0 = Ω defines the vacuum
state. Now, consider the atom chain TΦ = ⊗N∗H defined with respect to the stabilizing
sequence (Ω)n∈N∗ and denote by PN∗,J the set of finite subsets {(n1, i1), ..., (nk, ik)} of
N∗ × J such that ni 6= nj for all i 6= j. Then, an orthonormal basis of TΦ is given by
the family

{eσ, σ ∈ PN∗,J},
where eσ, σ = {(n1, i1), ..., (nk, ik)}, is the infinite tensor product of elements of the basis
{ek, k ∈ J = I ∪ {0}} such that eim (1 ≤ m ≤ k) appears in the nim-th copy of H and
Ω appears in the other copies of H in the tensor product ⊗N∗H.

Let {ai
j , i, j ∈ J} be the basis of B(H) defined by

ai
jek = δikej .

Denote by ai
j(k) the operators on TΦ, which act as ai

j on the k-th copy of H in the
atom chain ⊗N∗H and the identity elsewhere. The operators ai

j(k) are called discrete
quantum noises and they act on elements of the basis {eσ, σ ∈ PN∗,J} as follows

ai
j(k)eσ = 1(k,i)∈σeσ\(k,i)∪(k,j), for all i 6= 0 and j 6= 0,

ai
0(k)eσ = 1(k,i)∈σeσ\(k,i), for all i 6= 0,

a0
j (k)eσ = 1{(k,i)/∈σ,∀i∈J}eσ∪(k,j), for all j 6= 0,

a0
0(k)eσ = 1{(k,i)/∈σ,∀i∈I}eσ.

2.2 Small system in interaction with a heat bath

Now, we consider a small system described by a Hilbert space HS in interaction with
a heat bath modeled by the atom chain

⊗
N∗ C

n+1, where B = {e0, e1, ..., en} is an
orthonormal basis of H = Cn+1 and e0 = Ω is the vacuum state. The interaction
between the two systems is described as follows: the small system interacts with each
of the identical copies Cn+1 of the heat bath one after another during the same short
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time intervals [0, h]. Therefore, the total interaction between the small system and the
chain of identical pieces is described by the Hilbert space HS ⊗ ⊗

N∗ Cn+1.
Consider the orthonormal basis {ai

j , 0 ≤ i, j ≤ n} of B(Cn+1) where

ai
jek = δikej .

The respective Hamiltonians of the small system and one piece of the heat bath are
given by a self-adjoint operator HS defined on HS and the operator HR defined on Cn+1

by

HR =

n∑

i=0

γia
0
i a

i
0,

where γi are real numbers.
The full Hamiltonian of the small system interacting with one piece is the self-adjoint

operator H defined on HS ⊗ Cn+1 by

H = HS ⊗ I + I ⊗ HR +
1

h

n∑

i,j=1

Dij ⊗ ai
j , (2)

where Dij = (Dji)
∗. Note that the operators ai

j describe the transition of a non-empty
state of one piece to another non-empty state, where the total number of particles is
preserved.

The associated unitary evolution during the time interval [0, h] is the operator

U = e−ihH .

Denote by C
n+1
k the k-copy of Cn+1 in the chain

⊗
N∗ Cn+1. Then we define the

operator Uk on HS ⊗ ⊗
N∗ Cn+1 by

Uk =

{
U on HS ⊗ C

n+1
k

I elsewhere .

Hence, the discrete evolution equation, describing the repeated interactions of the small
system with the heat bath, is given by the sequence (Vk)k∈N in B(HS ⊗ ⊗

N∗ C
n+1)

satisfying
{

Vk+1 = Uk+1Vk

V0 = I.
(3)

Note that the operator U can be written as

U =

n∑

i,j=0

U i
j ⊗ ai

j ,

where U i
j are operators on HS. They are the coefficients of the matrix (U i

j)0≤i,j≤n of U
with respect to the basis B. Therefore, the equation (3) is written in terms of discrete
quantum noises as follows:

{
Vk+1 =

∑n
i,j=0 U i

jVka
i
j(k + 1)

V0 = I.
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Next, we give the matrix representation of the operator U with respect to the basis
B, which will be used. Set D = (Dij)1≤i,j≤n and consider the matrix M = (Mij)1≤i,j≤n,
where Mij = δij(HS + γiI). Note that the unitary evolution U can be written as

U = e−ihH =
∑

m≥0

(−i)m

m!
hmHm.

Moreover, HR is a diagonal operator with respect to the basis B

HR = diag (γ0, γ1, ..., γn),

and the full Hamiltonian H is given by

H =

(
HS + γ0I 0

0 M + 1
h
D

)
.

This implies that

(hH)2 =

(
O(h2) 0

0 D2 + O(h)

)
.

Furthermore, for all m ≥ 3 we get

(hH)m =

(
o(h2) 0

0 Dm + O(h)

)
.

Thus, we obtain

U =

(
I − ih(HS + γ0I) + O(h2) 0

0 I − ihM + (e−iD − I) + O(h)

)
. (4)

This gives the coefficients U i
j of the matrix of U with respect to the basis B with precision

O(h) and O(h2).

2.3 GNS representation

The aim of this subsection is to describe the GNS representation of the pair (Cn+1, ρβ),
where ρβ is the thermodynamical state at inverse temperature β ( β > 0) of one piece
of the heat bath. It is given by

ρβ =
1

Z
e−β(HR−µN),

where

- Z = Tr(e−β(HR−µN)),

- N =
∑n

j=0 |ej〉〈ej| is the number operator defined on Cn+1,

- µ is a scalar, called chemical potential.
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Note that, with respect to the basis B, the density matrix ρβ has the form

ρβ = diag (β0, β1, ..., βn),

where

βj =
ejµβe−βγj

e−βγ0 + eµβe−βγ1 + ... + enµβe−βγn
, (5)

for all j ∈ {0, 1, ..., n}.
Now, denote by H̃ = B(Cn+1), the algebra of all bounded operators on Cn+1 equipped

with the scalar product
〈A, B〉 = Tr(ρβA∗B).

Hence, the GNS representation of the pair (Cn+1, ρβ) is the triple (π, H̃, ΩR), where

- ΩR = I,

- π : H̃ −→ B(H̃) such that π(M)A = MA for all M, A ∈ H̃.

Set
Ũ = π(U)

and denote by H̃k the k-copy of H̃ in the chain
⊗

N∗ H̃. Then, it is easy to check

that Ũk = π(Uk) acts as Ũ on HS ⊗ H̃k and the identity elsewhere. Moreover, if we

denote by Ṽk = π(Vk), then it is straightforward to check that the sequence (Ṽk)k∈N in

B(HS ⊗ ⊗
N∗ H̃) satisfies the following equation:

{
Ṽk+1 = Ũk+1Ṽk

Ṽ0 = I.
(6)

3 The atom field

The space TΦ given in subsection 2.1 has a continuous version whose structure we
describe below. We refer the interested reader to [At1] for more details.

In what follows, we preserve the same notations as in subsection 2.1 and denote by
H′ the closed subspace of H generated by vectors (ei)i∈J . The symmetric Fock space
constructed over the Hilbert space L2(R+,H′) is denoted by Φ = ΓS(L2(R+,H′)) with
vacuum vector Ω. The space H′ is called the multiplicity space and dimH′ is called
the multiplicity of the Fock space ΓS(L2(R+,H′)). Now, in order to justify the equality
Φ =

⊗
R+

H, we introduce the so called Guichardet interpretation of the Fock space Φ.

3.1 Guichardet interpretation of the Fock space ΓS(L2(R+,H))

Note that we have the following identification

L2(R+,H′) = L2(R+ × J, C),
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obtained by identifying a vector f in the former space with the function on R+ × J
defined by (t, j) 7→ fj(t) = 〈vj/f(t)〉. Therefore, the symmetric Fock space is identified
to ∞⊕

k=0

L2
sym((R+ × J)k, C)

consisting of vectors Ψ = (Ψk)k≥0 such that Ψk ∈ L2
sym((R+ × J)k, C) and

‖Ψ‖2
Γs(L2(R+,H′)) =

∑

k≥0

1

k!
‖Ψk‖2

L2
sym

((R+ × J)k, C).

Denote by Σk the k-standard simplex in R
k. Then, it is straightforward to check that

∞⊕

k=0

L2
sym((R+ × J)k, C) ≃

∞⊕

k=0

L2(Σk × Jk)

and
‖Ψ‖2

Γs(L2(R+,H′)) =
∑

k≥0

‖Ψk‖2
L2(Σk×Jk,C).

Let Pk be the set of k-element σ of R+ × J such that each σ takes the following form

σ = {(t1, i1), ..., (tk, ik)},

where ti 6= tj for all i 6= j. It is interesting to note that there is isomorphism from
Pk into Σk × Jk given by ((t1, i1), ..., (tk, ik)) 7−→ ((t1, t2, ..., tk), (i1, i2, ..., ik)) such that
t1 < t2 < ... < tk. Hence, Pk inherits a measured space structure of Σk × Jk.

Set P0 = {∅} for which we associate the measure δ∅ and denote by dσ the measure
on P = ∪kPk. Let F be the associated σ-field. Then, the Fock space ΓS(L2(R+,H′)) is
the space L2(P,F , dσ) and the elements of ΓS(L2(R+,H′)) are the measurable functions
f ′s from P into C such that

‖f‖2 =

∫

P
|f(σ)|2dσ < ∞.

In the following, any element σ ∈ P is identified with a family (σi)1≤i≤N of subsets
of R+ such that

σi = {s ∈ R+, (s, i) ∈ σ}.
In order to justify that Φ is the continuous version of the atom chain TΦ, we need

to describe an important representation in the Fock space Φ. For this purpose, we
introduce the curve family χi

t defined by

χi
t(σ) :=

{ 1[0,t](s) if σ = {(s, i)}
0 elsewhere .

This family satisfies the following:

- χi
t ∈ Φ(0,t) = Γs(L

2((0, t),H′)),
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- χi
t − χi

s ∈ Φ(s,t) = Γs(L
2((s, t),H′)) for all s, t such that s ≤ t.

- χi
t and χj

s are orthogonal elements Φ for all i, j such that i 6= j.

The above properties of the family χi
t allow us to define the Ito integral in Φ. Consider

a family g = {gi
t, t ≥ 0, i ∈ J} of elements in Φ which satisfies the following:

i) t 7→ ‖gi
t‖ is measurable, for all i,

ii) gi
t ∈ Φ(0,t) for all t,

iii)
∑

i∈J

∫ ∞
0

‖gi
t‖2dt < ∞.

Such a family is called an Ito integrable family. Then, if we consider a partition {tj , j ∈
N} of R+ with diameter δ and if we denote by Pt the orthogonal projection on Φ(0,t),
the Ito integral of g, I(g) =

∑
i∈J

∫ ∞
0

gi
tdχi

t, is the limit in Φ of

∑

i∈J

∞∑

j=0

1

tj+1 − tj

∫ tj+1

tj

Ptj g
i
s ds ⊗ (χi

tj+1 − χi
tj
),

when δ tends to 0.

Theorem 3.1 The Ito integral I(g) =
∑

i∈J

∫ ∞
0

gi
tdχi

t of an Ito integrable family g =
{gi

t, t ≥ 0, i ∈ J} is the element of Φ, given by

I(g)(σ) =

{
gi
∨σ(σ−) if ∨ σ ∈ σi

0 elsewhere ,

where ∨σ = sup
{
t ∈ R+ s.t there exists k which satisfies (t, k) ∈ σ

}
and

σ− = σ \ (∨σ, i) if (∨σ, i) ∈ σ. Moreover, the following isometry formula holds

‖I(g)‖2 =
∥∥ ∑

i

∫ ∞

0

gi
tdχi

t

∥∥2
=

∑

i

∫ ∞

0

‖gi
t‖2dt.

Now, consider a family f = (f i)i∈J of elements of L2(P1) = L2(R+×J). It is obvious
that {f i(t)Ω, t ∈ R+, i ∈ J} is an Ito integrable family with Ito integral is given by

I(f) =
∑

i∈J

∫ ∞

0

f i(t)Ωdχi
t

and we have

I(f)(σ) =

{
f i(s) if σ = {s}i

0 elsewhere .

In the same way, we define the Ito integral of a family f ∈ L2(Pk) recursively as:

Ik(f) =
N∑

i1,...,ik=1

∫ ∞

0

∫ tk

0

...

∫ t2

0

fi1,...,ik(t1, ..., tk)Ω dχi1
t1 ... dχik

tk

=

∫

Pk

f(σ)dχi1
tt ...dχik

tk
.
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Moreover, we have

[Ik(f)](σ) =

{
fi1,...,ik(t1, ..., tk) if σ = {(t1, i1) ∪ ... ∪ (t1, ik)}
0 elsewhere .

Finally, if f = (fk)k∈N ∈ L2(P), then I(f) is given by

f(∅)Ω +
∞∑

k=1

Ik(f).

The following theorem gives the chaotic representation of an element f in Φ (cf
[At1]).

Theorem 3.2 Every element f of Φ has a unique chaotic representation

f =

∫

P
f(σ)dχσ

which satisfies the isometry formula

‖f‖2 =

∫

P
|f(σ)|2dχσ.

From the above theorem, the space Φ is interpreted as the continuous version of the
space TΦ, where the countable orthonormal basis {XA, A ∈ PN∗,J} of TΦ is replaced
by the continuous orthonormal basis {dχσ, σ ∈ P} of Φ.

3.2 Continuous quantum noises

The symmetric Fock space Φ = ΓS(L2(R+,H) =
⊗

R+
H is the natural space in which we

define the annihilation, creation and conservation operators, which are called continuous
quantum noises. These operators are merely considered as a source of noise, which occurs
during the interaction of a quantum system and an exterior system. They are defined
by

[a0
i (t)f ](σ) =

∑

s∈σi, s≤t

f(σ \ {s}i),

[ai
0(t)f ](σ) =

∫ t

0

f(σ ∪ {s}i) ds,

[ai
j(t)f ](σ) =

∑

s∈σj , s≤t

f(σ \ {s}j ∪ {s}i),

[a0
i (t)f ](σ) = tf(σ).

A common domain of these operators is given by

D = {f ∈ Φ,

∫

P
|σ||f(σ)|dσ < ∞}.
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The coherent vector e(f) of an element f ∈ L2(R+,H′) is defined by

[e(f)](σ) =
∏

i∈J

∏

s∈σi

fi(s).

In [At2], it is proved that the continuous quantum noises satisfy the following relation

〈e(f), ai
j(t)e(g)〉 =

∫ t

0

f̄i(s)g(s) ds 〈e(f), e(g)〉,

where a0
0(t) = tI, h0(t) = 1, t ≥ 0 and h ∈ L2(R+, H′). We also have the following table

Ω dχi
t dχj

t , i 6= j
da0

i (t) dχi
t 0 0

dai
0(t) dtI 0 0

dai
j(t) 0 dχi

t 0

As a corollary of the above table, it is easy to show that the actions of the continuous
quantum noises daj

i (t), i, j ∈ J ∪{0} on the element of the orthonormal basis {dχσ, σ ∈
P} of Φ are similar to the ones of the discrete quantum noises on the elements of the
basis {XA, A ∈ PN∗,J} of TΦ. We then have

dai
j(t)dχσ = dχσ\{(t,i)}∪{(t,j)} 1(t,i)∈σ, for all i 6= 0, j 6= 0,

dai
0(t)dχσ = dχσ\{(t,i)}dt1(t,i)∈σ,

da0
j (t)dχσ = dχσ∪{(t,j)} 1(t,0)∈σ,

da0
0(t)dχσ = dχσdt1{(n,k)/∈A,∀k∈J}.

3.3 Quantum Langevin equation

The quantum Langevin equations or Hudson-Parthasarathy equations play an important
role in describing the irreversible evolution of a quantum system in interaction with an
exterior system. The ingredients of these equations are quantum noises, which are
defined in the previous subsection, and system operators, which control the interaction
between the two physical systems.

Let H, Li
j be bounded operators on a separable Hilbert space H0 such that H = H∗.

The sum
∑

k L0∗
k L0

k is assumed to be strongly convergent to a bounded operator. Suppose
that the operators Li

j satisfy

L0
0 = −(iH +

1

2

∑

k

L0∗
k L0

k),

L0
j = Lj ,

Li
0 = −

∑

k

L∗
kS

k
i , (7)

Lj
i = Sj

i − δijI,

where the matrix (Sj
i )i,j is unitary. The operators Lj , Sj

i are called system operators.
Actually, the following theorem holds (cf [M], [P]).
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Theorem 3.3 Suppose that the system operators satisfy H = H∗ and the matrix (Sj
i )i,j

is unitary. Then there exists a unique strongly continuous unitary process Ut, which
satisfies the quantum Langevin equation

Ut = I +
∑

i,j

∫ t

0

Lj
iUsdaj

i (s),

where the operators Lj
i are given by (7).

4 The continuous limit

In this section we state the main result, which allows us to obtain the quantum Langevin
equations from discrete models. We further study the convergence to a quantum
Langevin equation of the repeated quantum interaction model, describing a small sys-
tem in interaction with an exterior system, which is introduced in subsection 2.2. Hence,
we establish the relation between the time scale h, given in (2), and the classical low
density limit.

4.1 Convergence to quantum Langevin equation

Consider a repeated quantum interaction model of a small system HS in interaction
with an atom chain

⊗
N∗ H, where {ei, i ∈ I ∪ {0}} is an orthonormal basis of the

Hilbert space H. Let U = e−ihH be the unitary evolution describing the small system in
interaction with a single piece of the chain where H is the associated repeated quantum
interaction Hamiltonian. Hence, the discrete evolution equation is given by the sequence
(Vk)k∈N in B(HS ⊗ ⊗

N∗ H) which satisfies

{
Vk+1 = Uk+1Vk

V0 = I.
(8)

Let (U i
j)i,j be the matrix of U with respect to the basis {ei, i ∈ I ∪ {0}}. Then, we

have the following result (cf [AtP]).

Theorem 4.1 Assume that there exist bounded operators Lj
i , i, j ∈ I ∪{0} on HS such

that

lim
h→0

U j
i (h) − δijI

hεij
= Lj

i ,

where εij = 1
2
(δi0 + δ0j). Assume that the quantum Langevin equation

{
dV (t) =

∑
i,j Lj

iV (t)daj
i (t)

V (0) = I

has a unique unitary solution (Vt)t≥0. Then for almost all t, the solution V[t/h] of (8)
converges strongly to Vt, when h tends to 0.
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4.2 Low density limit

All this subsection is devoted to study the continuous limit of the small system in
interaction with a heat bath which is presented in subsection 2.2. The main assumption,
according to which we suppose that the length of the time interaction between the small
system and one piece of the heat bath is related to the chemical potential as follows

h2 = eβµ.

Therefore, it is clear that h tends to 0 if and only if the fugacity eβµ tends to 0, that is
the chemical potential µ converges to −∞.

Now, we give an orthonormal basis of H̃ = B(Cn+1). Put

νk = 1 − β1 − β2 − ... − βk, for all k ∈ {1, ..., n}.

Consider the family {X i
j , i, j ∈ {0, 1, ..., n}} such that

- X0
0 = I,

- X i
j = 1√

βi
ai

j , for all i 6= j,

- Xk
k = diag (λ0

k, λ
1
k, ..., λ

k−1
k , λk

k, ..., λ
n
k),

where

λ0
1 = λ2

1 = ... = λn
1 =

−√
β1√

ν1

, λ1
1 =

√
ν1√
β1

, (9)

and for all k ∈ {2, ..., n}, we have

λ0
k = λk+1

k = ... = λn
k =

−√
βk√

νk−1
√

νk
, (10)

λk
k =

√
νk√

νk−1

√
βk

, (11)

λ1
k = λ2

k = ... = λk−1
k = 0. (12)

Hence, it is straightforward to show that the family {X i
j, i, j ∈ {0, 1, ..., n}} is an

orthonormal basis of H̃, equipped with the scalar product 〈A, B〉 = Tr(ρβA
∗B).

Note that in [AtJ], the authors only need to give explicitly the elements X0
0 and X i

j,
i 6= j, because the vectors Xk

k do not contribute in the proof of their main theorem.
However, this is not the case here, so we have computed explicitly the elements Xk

k

which play an important role in the proof of our result.
As a consequence of the relations (5) and (9)–(12), we prove the following.
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Lemma 4.2 The following hold:

β0λ
0
1 = O(h),

β0λ
0
i = o(h), for all i ≥ 2,

β1λ
1
1 = O(h),

βkλ
k
i = o(h), for all i ≥ 1, k ≥ 1 such that (i, k) 6= (1, 1),

βkλ
k
i λ

k
j = o(h), for all i, j ≥ 1 such that i 6= j,

βk(λ
k
i )

2 = o(h), for all i, k ≥ 1 such that i 6= k,

lim
h→0

βk(λ
k
k)

2 = 1, for all k ≥ 1.

In order to study the continuous limit of the discrete solution of equation (6), we

consider the matrix representation (Ũ i,j
k,l)i,j,k,l∈{0,1,...,n} of Ũ with respect to the basis

{X i
j, i, j = 0, 1, ..., n}. Therefore, it is obvious that

Ũ i,j
k,l = TrH̃(ρβ(Xk

l )∗UX i
j). (13)

In the sequel, we suppose that the matrix of the unitary operator e−iD, defined by
(3), with respect to the basis B, is given by

e−iD = (Sk
l )1≤l,k≤n.

Now, we prove the following.

Theorem 4.3 The solution Ṽ[t/h] of (6) converges strongly, when h tends to 0, to the
unitary solution of the quantum Langevin equation

dṼt = − i(HS + γ0I)Ṽtdt

+
N∑

j,k=1

(Sj
k − δjkI)Ṽt

( n∑

i=1

dai,j
i,k(t)

)
, (14)

with initial condition Ṽ0 = I and where dai,j
l,k(t), i, j, k, l = 0, 1, ..., n are the associated

quantum noises of the symmetric Fock space Γs(L
2(R+, C(n+1)2−1)) with respect to the

basis {X i
j , i, j = 0, 1, ..., n}.

Proof From relation (13) we have

Ũ0,0
0,0 = TrH̃(ρβU).

Hence, by using (4) we get

Ũ0,0
0,0 = β0(I − ihHS + γ0hI) + β1(I − ihHS)

+ β2(I − ihHS) + ... + βn(I − ihHS) + O(h2).

This gives
Ũ0,0

0,0 = I − ih(HS + β0γ0I) + o(h). (15)

13



Now, for all i, j ∈ {0, 1, ..., n} such that (i, j) 6= (0, 0) and i 6= j, we have

Ũ i,j
0,0 = TrH̃(ρβUX i

j)

=
1√
βi

〈ei, ρβUej〉

=
√

βi〈ei, Uej〉.

Therefore, we distinguish the following two cases:

- If i = 0 or j = 0, then we have

Ũ i,0
0,0 = Ũ0,j

0,0 = 0. (16)

- If i 6= 0 and j 6= 0, then we have

Ũ i,j
0,0 =

{
O(h) if i = 1
o(h) if i 6= 1.

(17)

In the same way, we prove that

Ũ0,0
0,l = Ũ0,0

k,0 = 0, ∀k, l ∈ {1, ..., n}, (18)

and for all k, l ∈ {1, ..., n} such that k 6= l, we get

Ũ0,0
k,l =

{
O(h) if k = 1
o(h) if k 6= 1.

(19)

It is worthwhile to note that for all i 6= j, k 6= l and i, j, k, l ∈ {1, ..., n}, we have

Ũ i,j
k,l = δik〈el, Uej〉,

from which follows that
Ũ i,j

k,l = 0, ∀i 6= k (20)

and
Ũ i,j

i,l = 〈el, Uej〉 = Sj
l + O(h). (21)

For all i ∈ {1, ..., n}, the coefficient Ũ i,i
0,0 is given by

Ũ i,i
0,0 = TrH̃(ρβUX i

i )

=
∑

j

βjλ
j
i 〈ej, Uej〉.

Note that from Lemma 4.2, we have the following

β0λ
0
1 = O(h), β1λ

1
1 = O(h),

β0λ
0
i = o(h), for all i ≥ 2,

βjλ
j
i = o(h), for all i ≥ 1, j ≥ 1 such that (i, j) 6= (1, 1).
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Hence, we obtain

Ũ i,i
0,0 =

{
O(h) if i = 1
o(h) if i ≥ 2.

(22)

Similar as a above, we show that

Ũ0,0
k,k =

{
O(h) if k = 1
o(h) if k ≥ 2.

(23)

Now, for all i, k l ∈ {1, ..., n} such that k 6= l, we have

Ũ i,i
k,l = TrH̃(ρβ(Xk

l )∗UX i
i )

=
∑

j

βj√
βk

λj
iδkj〈el, Uej〉

=
√

βkλ
k
i 〈el, Uek〉.

Note that
√

βk = o(h), ∀k ∈ {1, ..., n}. Therefore, we get

Ũ i,i
k,l = o(h), ∀ i 6= k (24)

and

Ũ i,i
i,l =

√
νk√

νk−1

Si
l + O(h). (25)

In the same way, we prove that for all i, j, k ∈ {1, ..., n} such that i 6= j, we have

Ũ i,j
k,k = o(h), ∀i 6= k (26)

and

Ũ i,j
i,i =

√
νk√

νk−1

Sj
i + O(h). (27)

Let i, k ∈ {1, ..., n}. We then have

Ũ i,i
k,k = TrH̃(ρβXk

kUX i
i )

=
∑

j

βjλ
j
kλ

j
i 〈ej , Uej〉

=

N∑

j=1

βjλ
j
kλ

j
i (S

j
j − I) +

n∑

j=1

βjλ
j
kλ

j
i I + β0λ

0
kλ

0
i I + o(h).

Note that

〈X i
i , X

k
k 〉 =

n∑

j=0

βjλ
j
kλ

j
i = δik.

This implies that

Ũ i,i
k,k = δikI +

N∑

j=1

βjλ
j
kλ

j
i (S

j
j − I) + o(h).
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Thus, we obtain
Ũ i,i

k,k = o(h), ∀ i 6= k (28)

and
Ũ i,i

i,i = I + βi(λ
i
i)

2(Si
i − I) + o(h). (29)

Now, in order to apply Theorem 4.1, we will compute the following limits

s − lim
h→0

Ũ i,j
k,l − δ(i,j),(k,l)I

hεi,j
k,l

,

where ε0,0
0,0 = 1, ε0,0

k,l = εi,j
0,0 = 1/2 and εi,j

k,l = 0.

Note that from equalities (16), (18) and (20), we have Ũ i,0
0,0 = Ũ0,j

0,0 = 0 for all

i, j ∈ {1, ..., n} and Ũ i,j
k,l = 0 for all i, j, k, l ∈ {1, ..., n} such that i 6= k. Moreover, the

equalities (17), (19), (22) and (23) imply that

lim
h→0

Ũ0,0
k,l√
h

= lim
h→0

Ũ i,j
0,0√
h

= 0,

∀i, j, k, l ∈ {1, ..., n}.
By using relations (21), (25) and (27,) we have

lim
h→0

Ũ i,j
i,l = Sj

l ,

for all i, j, l ∈ {1, ..., n} such that j 6= l. Furthermore, by taking into account equalities
(24), (26) and (28), we get

lim
h→0

Ũ i,i
k,l = lim

h→0
Ũ i,j

k,l = lim
h→0

Ũ i,i
k,k = 0,

∀i, j, k, l ∈ {1, ..., n} such that i 6= k.
The equality (15) implies that

lim
h→0

Ũ0,0
0,0 − I

h
= −i(HS + γ0I).

Finally, from (21) and (29), we have

lim
h→0

(Ũ i,j
i,j − I) = Sj

j − I, ∀i, j ∈ {1, ..., n}.

Hence, by using Theorem 4.1, the solution of equation (6) converges strongly to the
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unitary solution of the quantum stochastic differential equation

dṼt = −i(HS + γ0I) Ṽtdt

+

n∑

j, k = 1
j 6= k

Sj
kṼt

n∑

i=1

dai,j
i,k(t)

+
n∑

j=1

(Sj
j − I) Ṽt

n∑

i=1

dai,j
i,j(t)

= −i(HS + γ0I) Ṽtdt

+

n∑

j,k

(Sj
k − δj,kI)Ṽt

n∑

i=1

dai,j
i,k(t),

with initial condition Ṽ0 = I. This completes the proof. �

Remark The result of Theorem 4.2 is still true if we assume that

hν = eβµ,

for all ν > 1.
Setting

dAj
k(t) =

n∑

i=1

dai,j
i,k(t), for all j, k ≥ 1,

we prove the following.

Proposition 4.4 For all i, j ≥ 1 we have

dAj
k(t)dAm

l (t) = δjldAm
k (t).

Proof We have

dAj
k(t)dAm

l (t) =
( n∑

i=1

dai,j
i,k(t)

)( n∑

i=1

dai,m
i,l (t)

)

=

n∑

i1,i2=1

dai1,j
i1,k(t)dai2,m

i2,l (t)

=
n∑

i1,i2=1

δ(i1,j),(i2,l)dai2,m
i1,k (t)

= δjl

n∑

i=1

dai,m
i,k (t)

= δjldAm
k (t).

�
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Therefore, from the above proposition the quantum noises dAj
k(t) satisfy the well-

known Ito formula. Moreover, the equation (14) can be identified to a quantum Langevin
equation defined on a Fock space with multiplicity n2. Hence, on the Fock space HS ⊗
Γs(L

2(R+, Cn2

)), this equation is written in terms of quantum noises dAj
k(t), i, j ≥ 1 as

dṼt = −i(HS + γ0I) Ṽtdt

+

n∑

j,k

(Sj
k − δjkI)ṼtdAj

k(t).

It is worth noticing that in [AtJ], the repeated quantum interaction Hamiltonian
studied by the authors is composed of a free part and a dipole Hamiltonian interaction
with time scale

√
h. They prove that, in the continuous limit, we get a quantum diffusion

equation, where new noises appear, called the thermal noises. Moreover, these noises
satisfy a specified commutation relation, which depends on the temperature β. In our
paper, after taking the continuous limit of the repeated quantum interaction model with
time scale h, we obtain a quantum Langevin equation directed by Poisson processes.
Furthermore, the noises, which appear in this equation, have the same properties as the
canonical continuous quantum noises.
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Communications in Mathematical Physics 93 (1984), p. 301-323.

[M] P. A. Meyer: Quantum Probability for Probabilists , Second edition. Lect Not. Math. 1538,
Berlin: Springer-Verlag 1995.

[P] K. R. Parthasarathy: An Introduction to Quantum Stochastic Calculus, Birkhäuser Ver-
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