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Numerical study of heat transfer over banks of rods in small
Reynolds number cross-flow

Gabriel Gamrat, Michel Favre-Marinet *, Stéphane Le Person

Laboratoire des Ecoulements Ge´ophysiques et Industriels, CNRS-UJF-INPG, 1025 rue de la Piscine, BP 53 X, 38041 Grenoble Cedex, France
This work presents numerical computations of heat transfer over banks of square rods in aligned and staggered arrangements with
porosity in the range 0.44–0.98. It is focused on low Reynolds number flows (0.05–40). Two thermal boundary conditions were inves-
tigated, namely constant wall temperature and constant volumetric heat source. The effects of bank arrangements and porosity as well as
the effects of Prandtl and Reynolds numbers on the Nusselt number are examined. In the case of constant volumetric heat source, the
results are approximated with a power equation adapted for the case of low Re number flows. This study shows that the thermal bound-
ary condition on the solid surface influences heat transfer when thermal equilibrium is reached in the bank of rods.

Keywords: Bank of rods; Laminar flow; Thermal boundary condition; Thermal equilibrium
1. Introduction

Much work has been done in the past on convective heat
transfer in banks of tubes or rods in cross-flow. One of the
most extensive reviews in the field of cross-flow heat
exchanger is that of Zukauskas [1], who proposed correla-
tions between the Nusselt, Reynolds and Prandtl numbers
for various arrangements of cylindrical tube banks. These
correlations are available for moderate to high values of
the Reynolds number ð1 < Re < 2� 106Þ.

On the other hand, banks of rods have very often been
used as a geometrical model for low Reynolds number
flows through porous media. Spatially periodic models
have been considered to compute the permeability of the
medium as a function of porosity and Reynolds number
[2–10]. These models are very attractive for numerical sim-
ulations, since the computations may be restricted to a sim-
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ple cell extracted from the periodic pattern. The role of
finite Reynolds number flow and the deviation due to
non-linearities from the original Darcy’s law have been
extensively discussed in the literature. There are much less
numerical works on heat transfer over banks of rods in low
Reynolds number cross-flow [11–16]. In the context of por-
ous media, one of the issues is that of local thermal equilib-
rium of the fluid and the solid matrix constituting the
porous medium. This problem is much more complex than
the isothermal one, since heat transfer not only depends on
the porosity and the Reynolds number, but also on the Pra-
ndtl number and on the thermal conditions on the solid
surfaces. The range of parameters and boundary condi-
tions found in [11–16] are shown in Table 1.

The objective of our work was to establish a database
for the heat exchange coefficient in banks of squared rods
with the thermal condition of uniform volume source heat-
ing and for low Reynolds number flows. The motivations
were twofold. Firstly, the thermal condition in heat
exchangers is often neither uniform flux nor uniform tem-
perature heating. The influence of this condition on the
heat transfer coefficient is negligible in turbulent flows,
but may be significant for low Reynolds number flows,



Nomenclature

asf interfacial surface area per unit length, m
Cd drag coefficient
CF Forchheimer coefficient
cp Specific heat at constant pressure, J kg�1 K�1

Cr resistance factor
Da Darcy number
d solid element size, m
e channel width, m
h convective heat transfer coefficient, W m�2 K�1

K permeability, m2

Kapp apparent permeability, m2

k thermal conductivity, W m�1 K�1

L longitudinal and transversal pitch, m
_M mass flow rate per unit length, kg s�1 m�1

Nu2e Nusselt number based on the mean fluid temper-
ature (Eq. (17))

Nu2e;b Nusselt number based on the bulk fluid temper-
ature

Nu2e;x local Nusselt number based on the bulk fluid
temperature

Nud Nusselt number (Eq. (11))
Pe Peclet number (=Re2ePr)
Po Poiseuille number
Pr Prandtl number
qv volumetric heat source, W/m3

Re2e Reynolds number in a channel (Eq. (18))
Red Reynolds number (Eq. (9))
ReD Darcian Reynolds number (Eq. (10))
T temperature, K
uD Darcy velocity, m s�1

x* dimensionless distance ¼ x
2e

1
Pe

� �

Greek symbols

e porosity
q density, kg m�3

l dynamic viscosity, kg m�1 s�1

u heat flux density, W m�2

r0 dimensionless temperature
h dimensionless temperature

Subscripts

b bulk
D Darcy
f fluid
max maximal
min minimal
p pressure
s solid
w wall
which are predominant in the field of microheat transfer. It
is then important to test the sensitivity of the heat transfer
coefficient to the thermal condition for the design of micro-
heat exchangers. Additionally, the situation of uniform
volume source heating is encountered in experimental
works on arrays of cylinders with cross-flow convection
where the cylinders are electrically heated at uniformly dis-
tributed rate [17].

Secondly, we are developing a numerical model for
roughness effects on microchannel flows using a discrete-
element method initially proposed by Taylor et al. [18,19]
for predicting the rough-wall skin friction and heat transfer
coefficient in turbulent flows. This method needs correla-
Table 1
Conditions from the literature for heat transfer computations in periodic arra

References Rod cross-section Geometrical arrangem

Martin et al. [11] Cylindrical Aligned in squared
or triangular arrays

Kuwahara et al. [12] Squared Staggered
Ghosh Roychowdhury et al. [13] Cylindrical Aligned or staggered
Mandhani et al. [14] Cylindrical Staggered

Nakayama et al. [15] Squared Aligned or cylinders
in yaw

Saito and de Lemos [16] Squared Staggered

a Re is based on the mean velocity at the minimum cross-sectional area in [
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tions for the drag coefficient and the heat exchange coeffi-
cient of a cylinder in two-dimensional cross-flow.
Following this approach, Bavière et al. [20] considered a
rough-wall consisting in periodically distributed parallel-
epipeds of square cross-section. They estimated the drag
coefficient by using the formula for the drag force on very
slender prolate spheroids in creeping flows. Their work was
restricted to isothermal flows and is currently being
extended to improve the determination of the drag coeffi-
cient and to take into account heat transfer in the micro-
channel. The present paper is therefore devoted to
numerical computations of the flow and heat exchange in
banks of rods of square cross-section heated by volume
ys of rods

ent Re Pr Porosity Thermal conditions

3–160 0.72 0.8–0.99 Constant wall temperature
or heat flux

2� 10�3–103 10�2–102 0.36–0.91 Constant wall temperature
40–1000a Not given 0.5–0.8 Constant wall temperature
1–500 0.1–10 0.4–0.99 Constant wall temperature

or heat flux
10�2–6�103 1 0.25–0.875 Constant wall temperature

4–400 1 0.44–0.9 Constant wall temperature

13].



sources uniformly distributed inside the rods. Computa-
tions were also performed with the condition of uniform
temperature heating for comparison with published data.
2. Numerical model

2.1. Computation domain, physical equations and boundary

conditions

The geometrical pattern considered in this study consists
of infinitely long rods of square cross-section periodically
distributed either in the aligned or in the staggered arrange-
ment (Fig. 1). This configuration is characterized by the
side d of the square solid elements and by equal transverse
and longitudinal pitch L. The porosity of both arrange-
ments is expressed by e ¼ 1� d2

L2. The flow is considered
as two-dimensional with the mean direction along the x-
axis. The x-and y-directions are called longitudinal and
transverse hereafter.

The maximum value of the Reynolds number based on
the Darcy velocity and the size of the solid elements Red

is equal to 40 in the present study. It is well known that
the two-dimensional flow around a single circular cylinder
is stable in this low-range of Red [21]. It is most likely that
the case of an array of cylinders is more stable than an iso-
lated cylinder. Dybbs and Edwards [22] cited by Kaviany
[23] investigated the flow through packing of spheres and
for complex arrangements of cylinders. They observed
the onset of instabilities for Rep > 150, where the Reynolds
number Rep is based on the average pore velocity and an
average characteristic length scale for the pores. This criti-
cal value corresponds to Red much larger than 40 for the
low-range of porosity. It was then assumed that instabili-
ties did not occur for the present low values of Red and that
the flow around the solid elements was symmetrical with
respect to the x-direction. Considering the above assump-
tion, the computational domain as depicted in Fig. 1, there-
fore, consists of one wavelength kx in the main flow
direction along the x-axis and of only one half wavelength
ky in the y-direction (kx ¼ L or 2L for the aligned or the
staggered arrangements, respectively). The flow was
assumed to be laminar and incompressible with constant
physical properties. Viscous dissipation was neglected.
Fig. 1. Computat
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With the above simplifications, the governing equations
are:

Continuity equation r � ~U ¼ 0; ð1Þ
Momentum equation qð~U � r~UÞ ¼ �rp þ lr2~U ; ð2Þ
Energy equation for the fluid phase qcpð~U � rT Þ ¼ kfr2T :

ð3Þ

Most computations were performed with the condition of
uniform volumetric heat source within the rods. In this
case, the energy equation for the solid phase was

r2T þ qv

ks

¼ 0; ð4Þ

where qv is the volumetric heat source.
The flow was supposed to be fully developed at the scale

of the rods array, which allows assuming periodical condi-
tions for the velocity field in the stream direction. The con-
dition of uniform volumetric heat source also allows
assuming periodical conditions for the heat transfer prob-
lem. The periodicity conditions are

~Hðx; yÞ ¼ ~Hðxþ kx; yÞ ð5Þ
for any flux (velocity, heat flux). Since this condition could
not be accounted for within the solid by the software used
in this study, the control domain was defined with the inlet
and outlet boundaries within the fluid (domain ‘‘a” in
Fig. 1).

Due to periodicity, state variables as pressure and tem-
perature can be written as the sum of a mean linear gradi-
ent and a periodic component

/ðx; yÞ ¼ d/
dx

xþ ~/ðx; yÞ ð6Þ

with ~/ðx; yÞ ¼ ~/ðxþ kx; yÞ: ð7Þ

The term dp=dx is deduced from our computations while
the term dT=dx is determined by the energy conservation
in the fluid domain. It was then assumed that dT=dx in
the solid and fluid phases is equal to qvd2=2

_McpL
, where _M is

the mass flow rate in the control domain per unit length
in the spanwise direction.

Symmetry boundary conditions were assumed at the
surfaces of the computational domain parallel to the main
flow direction. They are written in form
ional domain.



r~H �~n ¼ 0; ~H �~n ¼ 0; r/ �~n ¼ 0; ð8Þ

where~n is the vector normal to the symmetry surface. The
no-slip velocity condition and the continuity of tempera-
ture were assumed at all fluid–solid interfaces.

For the case of uniform temperature heating, qv was set
to zero in Eq. (4) and a uniform temperature was pre-
scribed at all fluid–solid interfaces. The thermal boundary
condition in the fluid in x-direction was modified as
explained later.

The flow may be defined by the Darcy velocity uD

obtained by averaging the velocity over the total surface
L2 of an elementary cell. The Reynolds number Red is
based on uD and the size of the rods

Red ¼
uDd
m
: ð9Þ

Additionally, the Darcian Reynolds number is defined by

ReD ¼
uDK0:5

m
; ð10Þ

where K is the permeability in the limit of creeping flow.
Note that K is a function of d and e.

The Nusselt number is defined by

Nud ¼
ud

ðT s � T fÞkf

; ð11Þ

where u; T s and Tf are the heat flux density averaged over
the fluid/solid interface, the temperature averaged over the
solid surface and the fluid temperature averaged over the
surface open to flow (L2 � d2Þ, respectively.
Fig. 2. Axial conduction effect on the fully-developed Nusselt number in a
two-dimensional channel.
2.2. Numerical scheme, meshing and numerical accuracy

The set of equations was solved with Fluent 6.1.22 by
means of a second order upwind finite volume scheme.
The SIMPLEC algorithm was used in order to improve
convergence with regard to pressure–velocity coupling.
The double precision solver was used and the convergence
of results was assumed when the average pressure gradi-
ent and the average heat flux reached a constant value.
The typical level of scaled residuals decreased below
10�8 for the continuity equation and 10�11 for the energy
equation. An orthogonal grid generated by Gambit 2.1.2,
was used with the size of the mesh cells equal to L=200.
The grid then contained 400 � 100 cells in x; y directions,
respectively, for the staggered arrangement. This mesh
size was deduced from tests conducted for three different
grids A, B, C, namely 200� 50, 400� 100, 800� 200.
The three meshes were tested with the porosity equal to
0.985 and the Red number equal to 20. The pressure gra-
dient and the Nu number converged to their asymptotic
values when the mesh size was decreased. The difference
in the pressure gradient was equal to 0.5% between grids
B and C and increased up to 0.7% between B and A. The
difference in the Nusselt number was equal to 0.5%
4

between grids B and C and increased up to 2% between
grids B and A.

2.3. Model validation

Computations were carried out for various cases of iso-
thermal flows across banks of cylinders. The permeability
was found in perfect agreement with the results of Martin
et al. [11] for aligned cylinders of circular cross-section
and with the results of Nakayama et al. [15] for aligned cyl-
inders of square cross-section and zero yaw angle.

The numerical model was checked for laminar thermally
and hydraulically fully-developed flow along a two-dimen-
sional channel of height e with symmetrical uniform tem-
perature surfaces. For this thermal condition, the
periodic condition for energy equation could not be kept
in the form of Eqs. (1) and (2). According to the procedure
recommended in [12], it was replaced by the condition of
identical profiles of dimensionless temperature at inlet
and outlet of the computation domain

hðyÞ ¼ T � T w

T b � T w

����
x¼0

¼ T � T w

T b � T w

����
x¼2L

: ð12Þ

Iterative computations consisted in re-injecting at the chan-
nel inlet the temperature profile shape found at the outlet
until convergence was obtained. The Nusselt number
Nu2e;b was normalized with the hydraulic diameter 2e, the
wall and fluid bulk temperatures. The results are compared
with those of Ash quoted by Shah and London [24] and
those of Kuwahara et al. [12] in Fig. 2. The asymptotic
trends, as given by Pahor and Strand [25] and Grosjean
et al. [26] also quoted by Shah and London [24] are plotted
in the same figure. The general trend of the variation
Nu2e;b ¼ f ðPeÞ is well recovered by the present computa-
tions. The agreement with the constant value of Nu2e;b

(=7.54) observed for high Pe is excellent. Axial conduction
affects the convective heat transfer in the channel when the
Peclet number is decreased. Nu2e;b departs from 7.54 for
Pe � 10–40, depending on the authors and increases up



Fig. 3. Normalized permeability as a function of ReD number for different
porosities; (a) aligned arrangement and (b) staggered arrangement.

Fig. 4. Variations of the Forchheimer coefficient as a function of porosity.
to about 8.1 for the low Pe-range. The present results are
slightly higher than those of the literature. However, the
discrepancy is only 1.2% for Pe ¼ 0:14. The largest differ-
ence with the results of Ash (+3.5%) is observed for
Pe = 7. Our result is however in good agreement with the
formulas of Pahor and Strand [25] and Grosjean et al. [26].

3. Results

3.1. Hydrodynamics

For 2D cross-flow through an array of rods, the momen-
tum equation is reduced to

0 ¼ dp
dx
þ l

K
uD; ð13Þ

when inertia is neglected. In the limit of creeping flow, the
permeability does not depend on the flow velocity and may
be related to e by the Carman–Kozeny equation

K ¼ d2e3

Cð1� eÞ2
: ð14Þ

Bejan [27] reported that the Kozeny constant C = 150 for
the cross-flow through the staggered arrangement of cylin-
ders. The present computations relate the Darcy velocity
uD to the pressure gradient for given geometric properties
of the array. An ‘‘apparent” permeability Kapp and the cor-
responding value of 1=C are deduced from these results by
using successively Eqs. (15) and (14)

Kapp ¼
luDcomp:

� dp
dxcomp :

: ð15Þ

The dimensionless parameter 1=C is plotted in Fig. 3 for
the aligned and staggered arrangements. It is seen that
1=C is independent of ReD, regardless the porosity, so that
the linear Darcy’s law is satisfied for the low ReD number
flows, as expected. For the low range of ReD, the constant
C is equal to 130 for the staggered arrangement when the
porosity e ¼ 0:44. However, 1=C significantly decreases
when e is increased beyond e ¼ 0:8. The similar trend is ob-
served for the aligned arrangement, although the perme-
ability is generally higher for this situation. However, the
difference between the two sets of results only changes from
about 2% for e ¼ 0:98 up to 24% for e ¼ 0:44 with respect
to the staggered arrangement. Fig. 3 shows that inertia
influences the flow when ReD is increased. With the choice
of K1=2 as length scale for the Reynolds number, this effect
appears at a value of ReD (�1–10) roughly independent of
e. This limit value of ReD is slightly smaller for the stag-
gered arrangement, as expected.

For the high Re number flows, the Forchheimer modifi-
cation of Darcy’s law has to be used

0 ¼ dp
dx
þ l

K
uD þ

CF

K0:5
qu2

D; ð16Þ

where CF is the Forchheimer coefficient. Fig. 4 presents the
variations of the Forchheimer coefficient as a function of
5

porosity for the aligned and staggered arrangements. For
both cases, the Forchheimer coefficient slightly increases
when the porosity is decreased. Fig. 4 shows that the inertia
effects are more pronounced for the staggered arrange-
ment. This is obviously due to the many changes of direc-
tion of the stream in this configuration. Nakayama et al.



Fig. 5. Dimensionless pressure gradient across the bank of rods. Com-
parison with Nakayama and Zukauskas results. Aligned arrangement.
e ¼ 0:875.
[15] investigated the effects of yaw on the pressure drop
across a bank of cylinders of square cross-section and com-
pared their results with those of Zukauskas [1]. Their re-
sults are plotted in Fig. 5 for the case of zero yaw angle
and aligned arrangement together with the data of Zukaus-
kas [1] presented in their paper. The model of the present
study was used with the same value of porosity as that of
Nakayama et al. [15]. Fig. 5 shows that the present results
are in good agreement with the data obtained by these
authors in the same conditions.
Fig. 6. Constant temperature heating. Comparison of the numerical
results with two extreme cases of heat transfer in channel flow.
3.2. Uniform temperature heating

Computations were carried out with the constant wall
temperature boundary condition and the staggered
arrangement in order to compare the present results with
previously published data. The calculation procedure
described by Kuwahara et al. [12] was adopted in the cur-
rent simulations. The computation domain was therefore
shifted by L=2 in the x-direction as depicted in Fig. 1 (com-
putational domain ‘‘b”). The periodic condition for the
thermal field was taken into account as described in the
previous section.

In the case of small porosity, the surface open to flow
can be regarded as a series of narrow two-dimensional
channels of width e (=L � d) following one another. The
fluid domain may then be modelled by a succession of such
channels, forming a ‘‘S–Z”-shaped channel about 3d in
length in the computational domain (Fig. 1. Note that only
one half of the longitudinal channels is included in the
computational domain). This suggests to introduce the
Nusselt number Nu2e and the Reynolds number Re2e based
on the hydraulic diameter 2e of a two-dimensional plane
channel and to compare the results with those of a single
plane channel of dimensionless length d=e. Re2e is defined
with the bulk velocity in a channel. The new dimensionless
numbers are related to Nud and Red by
6

Nu2e ¼ Nud

2e
d
; ð17Þ

Re2e ¼
2Redffiffiffiffiffiffiffiffiffiffiffi
1� e
p : ð18Þ

The results of Kuwahara et al. [12] were processed in this
way for Pr = 1 and are drawn in Fig. 6 together with the
present ones. Nu2e is normalized by T s � T f , like in Eq.
(11) in order to do the comparison with [12].

Although the same trend is observed for the variation of
Nu2e versus Re2e, the current results are significantly higher
(by about 40%) than those of Kuwahara et al. [12]. The
small value of e used for this comparison (=0.36) corre-
sponds to d=e ¼ 4 for each channel located between the
solid elements, which is not high enough to prevent an
entrance effect at each channel inlet. Hence we carried
out computations for a single channel of dimensionless
length d=e ¼ 4 in the two extreme cases when the flow is
hydraulically and thermally fully-developed from the chan-
nel inlet (Case A) or oppositely when the velocity and tem-
perature profiles are flat at the channel inlet (Case B). The
results of these computations (Fig. 6) show that Case B
gives rise to an enhanced axial conduction effect for low
values of Pe. The data of the fully-developed situation
are slightly higher than in Fig. 2 because the reference tem-
perature is now the mean temperature Tf instead of the
bulk temperature Tb. The actual situation is obviously
intermediate between Cases A and B because the distribu-
tion of velocity and temperature is more or less rearranged
in the space between two consecutive channels of the con-
trol domain. The results of the computations carried out
with the actual situation of a staggered arrangement are
in good agreement with Case A for the lowest values of
Pe and follow the trend of Case B when Pe > 100. On
the contrary, the results of Kuwahara et al. [12] are signif-
icantly lower than those of the two limiting cases. It is
therefore concluded that they underestimate the Nusselt
number for the low values of the porosity.

The computations were not possible for very low values
of Pe owing to results accuracy. For fully-developed flow



through constant temperature parallel plates, it is well
known (see for example, Bejan [27]) that the difference
between the wall and fluid bulk temperatures decreases
exponentially along the flow direction

r0 ¼
T w � T bðxÞ
T w � T bjx¼0

¼ expð�4x�Nu0�xÞ; ð19Þ

where x* is the dimensionless distance along the channel
defined by x� ¼ x

2e
1
Pe and Nu0�x ¼ 7:54. The dimensionless

temperature r0 at the exit of the computation domain
may be estimated by Eq. (19) with x ¼ 3d. The parameter
r0 therefore decreases very rapidly and becomes vanish-
ingly small when Pe is decreased. As a consequence, it is
very difficult to carry out the computation for low values
of Pe because the boundary condition Eq. (12) cannot be
verified with sufficient accuracy. If we assume that the com-
putations keep an accuracy at the level of a, we can com-
pute from Eq. (19) the value of Pe giving r0 ¼ a. We can
then estimate the order of magnitude of the minimal Pe

for which the computations are possible

Pemin ¼
�6� 7:54

ln a

ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

1�
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p : ð20Þ

The result is not very sensitive to a. The present numerical
experiments suggested to take a � 10�5. For this value, Eq.
(20) gives Pemin � 15 for e ¼ 0:36.

This analysis shows that the computations are limited to
a range of Pe larger than about 10, especially for low values
of e. Hence it is very surprising that Kuwahara et al. [12]
were able to obtain results for values of Re2e as low as
10�2, since Eq. (19) already gives r0 ¼ 2:6� 10�79 for
x ¼ 3d, Re2e ¼ 1, e ¼ 0:36 and Pr = 1.

Fig. 7 shows the distribution of the local Nusselt num-
ber normalized with the fluid bulk temperature along the
walls of the rods for the first half of the control domain.
As explained above, the control domain inlet (point A) cor-
responds to the middle of a channel. For the transverse
channel, Nu2e;x was obtained with the averaged heat flux
on the opposite sides BD and CE of this channel. Fig. 7
Fig. 7. Distribution of local Nusselt number along the fluid/solid interface
(constant wall temperature); Pe = 14, Pr = 7, e ¼ 0:36.
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confirms that the entrance effect is weak in consecutive
channels for a moderate value of Pe (=14), since the Nus-
selt number rapidly decreases from the high values
observed near the corners B and E to the constant 7.54
of the fully-developed regime.

3.3. Uniform volumetric source heating

The heating method by volumetric heat source in the
solid elements avoids the computation difficulties encoun-
tered in the previous case. Instead of a continuously
decreasing difference between the fluid and the wall temper-
ature along the stream, the heat balance applied to the fluid
contained in the control volume now implies a positive lin-
ear temperature gradient in the x-direction. The tempera-
ture field is then composed of this mean gradient
superposed to local variations in the control domain. The
periodicity condition implies the same longitudinal heat
flux in the fluid and in the solid. However, the temperature
is nearly uniform in each rod of the control domain if the
conductivity of the solid is much higher than that of the
fluid as in the present work ðks=kf ¼ 195Þ. The bank of rods
then consists of successive nearly isothermal elements with
increasing temperature from one element to the following
one. As a result, the temperature jump between two adjoin-
ing elements gives rise to a significant heat transfer rate
between the blocks and the fluid in the transverse channels.
Contrary to the previous case, this region significantly con-
tributes to the total heat exchange.

3.3.1. Influence of the geometrical arrangement

For sake of clarity, the same definition of Reynolds
number ReD as in the previous section was used to plot
the heat transfer results. Fig. 8 shows that the Nud varia-
tions are weak for low values of ReD and intensify when
ReD is increased for both arrangements. This increase of
Nud is obviously due to an enhanced convective effect. It
is observed that the Nusselt number Nud, similarly to the
permeability with regard to inertia effects, is more influ-
enced by this convective effect for the staggered arrange-
ment (Fig. 8b).

3.3.2. Influence of Prandtl number

The influence of Prandtl number is very important due
to the wide range of this parameter used for flows through
tube banks. The experimental and numerical results are
commonly approximated by the power equation

Nud ¼ bRem
d Prn: ð21Þ

For low values of Red the exponent of the Prandtl number
varies around the level of n ¼ 1=3 which is the theoretical
value for a laminar boundary layer on a flat plate. Zukaus-
kas [1] proposed n ¼ 0:36 as sufficiently accurate for tube
banks in various arrangements.

For low Reynolds number flows, the power formula Eq.
(21) must be slightly modified by adding a constant value,
which obviously accounts for the case of creeping flow



Fig. 8. Uniform volumetric source heating. Variation of Nusselt number
as a function of ReD number; Pr = 7, (a) aligned arrangement and (b)
staggered arrangement.

Fig. 9. Effect of Red and Pr on Nusselt number; (a) aligned arrangement
and (b) staggered arrangement.

Fig. 10. Constants of Eq. (22) as a function of porosity.
Nud ¼ aþ bRem
d Prn: ð22Þ

Computations were carried out for Pr in the range 1–100.
Fig. 9 shows the variations of Nud as a function of
Rem

d Prn for aligned and staggered arrangements, respec-
tively. For both arrangements the exponent of Red was
found to fit well the results for m ¼ 0:5. On the other hand,
the best agreement with the computed data was found with
different values of the exponent of Pr for the aligned
(n ¼ 0:2Þ and the staggered (n ¼ 0:3Þ arrangements. For
the aligned arrangement, thermal boundary layers are
forming only on the longitudinal walls of a block while
the heat transfer on the front and rear walls is partially sup-
pressed by an effect of ‘‘shading”, which could explain the
lower exponent of the Prandtl number for the aligned
arrangement. It is worth noting that the ‘‘a” and ‘‘b” con-
stants of Eq. (22) depend on the porosity of the banks as
shown in Fig. 10. In the limit of creeping flow, the differ-
ence between the values of Nud for the two arrangements
decays, since the constant ‘‘a” is nearly the same for both
arrangements. The results were approximated by the least
square method and are given by the following empirical
expressions
8

Nud ¼ 3:02ð1� eÞ0:278 expð2:54ð1� eÞÞ
þ ðð1� eÞ0:44þ 0:092ÞRe0:5

d Pr0:2; ð23Þ
Nud ¼ 3:02ð1� eÞ0:278 expð2:54ð1� eÞÞ

þ ðð1� eÞ1:093þ 0:357ÞRe0:5
d Pr0:3 ð24Þ

for the aligned and staggered arrangements, respectively.



In order to assess the heat performance of banks it is
interesting to relate the Nud number to the hydraulic resis-
tance. The Colburn analogy between the wall friction and
the heat transfer coefficient may be written: 2St

Cd
¼ Pr�2=3,

where St ¼ Nud

RedPr is the Stanton number and Cd is the dimen-
sionless resistance force exerting on the cylinders inside the
control domain. Writing the permeability Kapp ¼ 2L2

CdRed
, one

obtains the expression

NudKapp

L2Pr1=3
¼ 1: ð25Þ

When regarding the flow on a flat plate, the ratio 2St
Cd

is re-
lated to the heat transfer rate obtainable per unit of pump-
ing power and the Colburn analogy is valid both for
laminar and turbulent boundary layer in absence of pres-
sure forces. The flow through banks of tubes differs from
the flow on a flat plate because the main part of hydraulic
resistance is due to the pressure forces. This could explain
why the current results are lower than the theoretical value
1 for the left-hand term of Eq. (25) (Fig. 11).

As can be seen in Fig. 11, the heat transfer performance
curves exhibit a maximum. It occurs in the range of ReD,
where the inertial force is negligible (Fig. 3) but the heat
Fig. 11. Thermal performance of tube banks in staggered arrangement;
(a) Pr = 1 and (b) Pr = 7.
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transfer is already affected by the convection effect. For
Pr = 7 the hydrodynamic entrance region formed at the
inlet of each channel between neighbouring solid elements
is considerably shorter than the thermal one, which
explains the increase of thermal performance with ReD

number. The maximum heat transfer performance is
observed when the thermal boundary layers meet at the
end of a channel as in the works of Bejan [27,28] on heat
transfer optimization. For Pr = 1 the maximum is less pro-
nounced than in the other case. Fig. 12 presents the com-
parison between aligned and staggered arrangements for
Pr = 7. The heat transfer performance is slightly higher
for the staggered arrangement. This effect is more pro-
nounced for the small values of the porosity.
3.4. Influence of the thermal boundary condition

In most industrial situations, convection heat transfer in
banks of tubes in cross-flow at moderate and high Rey-
nolds numbers can be effectively modelled with a boundary
condition of constant temperature surface. In fact, the tem-
perature distribution in the cross-section of the tubes is
almost uniform and the large heat capacity of the outer
cooling fluid maintains its temperature at a constant level
in the flow direction. This situation changes however when
the outer flow is characterized by a low Reynolds number.
In such case the low thermal capacity of the outer flow is
responsible of a strong temperature gradient in the flow
direction. In the conditions of the present study, the resi-
dence time of the fluid in a channel is long enough to ensure
that the fluid reaches the temperature of the solid. In other
words, the fluid reaches thermal equilibrium with the solid.
This situation is illustrated by Fig. 13, which shows that the
fluid rapidly reaches the solid temperature in each longitu-
dinal channel. As a result the average temperature gradient
(as in Eq. (6)) is the same for the solid and fluid
phases. However, the local temperature gradient varies
Fig. 12. Thermal performance. Comparison between aligned and stag-
gered arrangements for Pr = 7.



Fig. 13. Dimensionless temperature distribution ðT �T minÞ=ðT max�T minÞ;
Tmin and Tmax are the temperatures at inlet and outlet of the visualization
window, respectively. Uniform volumetric source heating. Pr = 7, Red¼
0:5, e¼ 0:44.

Fig. 15. Influence of the thermal boundary condition on heat transfer,
Red ¼ 5.
substantially along the flow direction for rods of high ther-
mal conductivity. As noted early, fluid regions of high tem-
perature gradient then separate nearly constant
temperature solid elements. On the other hand, writing
the convection term of Eq. (3) in the form

k~UkkrTk cosð~U ;rT Þ; ð26Þ
one can conclude that the angle between the two vectors is
close to 90� so that the convection term is almost negligible
in a transverse channel despite the strong temperature gra-
dient krTk. In the absence of convection, an elementary
calculation shows that the local Nusselt number Nu2e;x

should be equal to 4. This is confirmed by Fig. 14, which
shows that Nu2e;x is close to 4 in the transverse channel
BDEC. Two determinations of Nu2e;x were defined in the
transverse channel by using the local wall temperature
and heat flux on each side of the channel and the fluid bulk
temperature. Like in the case of uniform temperature heat-
ing previously presented in Fig. 7, Nu2e;x rapidly ap-
proaches a constant value in the longitudinal channels.
Since the boundary condition at the channel walls is not ex-
actly constant temperature, the Nu2e;x asymptotic value is
slightly above 7.54.
Fig. 14. Distribution of local Nusselt number along the fluid/solid
interface (constant volumetric heat source).
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Fig. 15 presents the global Nusselt number Nu2e

obtained for the two thermal conditions considered in
this study and for Red ¼ 5. The difference between the
two cases is essentially due to the different contribution
of the lateral walls BD and CE to the global heat trans-
fer, as it is clearly shown in Figs. 7 and 14. For the case
of constant temperature, the local Nu2e;x rapidly tends to
the asymptotic value of 7.54, corresponding to fully-
developed flow and heat transfer in a transverse channel
with the walls BD and CE at the same temperature. In
the case of constant volumetric heat flux, the heat trans-
fer in a transverse channel is dominated by the conduc-
tion flux between the two walls BD and CE, as
remarked before (see also Fig. 13) so that Nu2e;x tends
to 4. This explains why the global Nu2e is slightly higher
for uniform temperature heating than in the other case.
This difference due to the thermal boundary condition
disappears for the high range of Reynolds number where
the outer fluid is always colder than the adjacent solid
phase. On the contrary, low Re number flows are charac-
terized by thermal equilibrium of the fluid and solid
phases in the successive channels. As demonstrated by
Fig. 13 for constant volumetric heat flux, the fluid tem-
perature is thus equal to that of the adjacent solid at
the outlet of a longitudinal channel and exhibits a contin-
uous distribution intermediate between the temperatures
of two successive solid elements within a transverse chan-
nel. It is concluded that the difference in heat transfer for
the two boundary conditions is directly related to the
condition of thermal equilibrium of the fluid and solid
phases.

Since a compact solid matrix in a porous medium
favours thermal equilibrium of the fluid and solid phases,
it is obvious that the difference in Nu2e for the two bound-
ary conditions is more pronounced for the small values of
porosity. Fig. 15 also shows that the difference between the
boundary conditions is higher when Pr is decreased. Kim
and Jang [29] proposed the criteria of local thermal equilib-
rium in the form



_Mcp

hasf

� 1; ð27Þ

where h and asf are the convective heat transfer coefficient
and interfacial surface area per unit length in the spanwise
direction, respectively. Eq. (27) can be equivalently written
in the following dimensionless form

RedPr
Nu2e

1

2
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p 1ffiffiffiffiffiffiffiffiffiffiffi

1� e
p � 1

� �
� 1; ð28Þ

which shows that local thermal equilibrium is favoured by
low values of Red, Pr, e and high values of Nu2e. In fact, the
present results (Fig. 15) show that the Nusselt number ob-
tained with the two boundary conditions starts to depart
when the left-hand side of Eq. (28) is about 1.5.

Finally, it may be remarked that the global Nusselt
number Nud (or Nu2eÞ is normalized with the solid average
temperature in the case of constant volumetric heat flux. It
thus includes the thermal resistance due to internal conduc-
tion inside the solid elements. We can therefore expect that
Nud decreases with the solid conductivity. The decreased
solid conductivity could also change the interfacial heat
transfer coefficient but we have verified that it has a minor
effect on the Nusselt number when compared with that of
increased thermal resistance in the solid elements.

4. Conclusions

The present work is devoted to numerical simulations of
the flow and associated heat transfer through banks of rods
with different arrangements. The work focuses on the
hydrodynamic resistance and more specifically on the heat
transfer coefficient for low Reynolds number flows. This
situation is of special interest because little data is available
on this problem in the open literature. This study is also
related to the problem of thermal equilibrium in a porous
medium. The hydrodynamic resistance presented in term
of permeability was found to agree well with published
results. The present results show that the bank of rods
can be modelled as a succession of narrow channels for
estimating the Nusselt number in the case of tightly packed
rods or equivalently for small values of porosity. Two dif-
ferent boundary conditions were investigated, namely con-
stant wall temperature and constant volumetric heat source
inside the solid elements. The convective heat transfer coef-
ficient obtained with the former one was found significantly
higher than previously published results [12]. However, the
present results are in good agreement with the capillary
model presented for a tightly packed bank of rods. A
power equation was proposed in order to approximate
the results obtained for the constant volumetric heat source
condition. Finally the difference between the two thermal
boundary conditions was discussed. It was shown that heat
transfer in the array of rods was insensitive to this condi-
tion for the highest values of Red, Pr, e and the lowest val-
ues of Nu2e. To our best knowledge, it was not possible to
compare these numerical computations with published
11
well-documented experimental data. Experiments on this
topic are therefore keenly encouraged.
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