
HAL Id: hal-00265817
https://hal.science/hal-00265817

Preprint submitted on 20 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algebra for structured documents in the context of
the object-oriented approach

Sylviane R. Schwer, Haider Hamza, André Flory

To cite this version:
Sylviane R. Schwer, Haider Hamza, André Flory. An algebra for structured documents in the context
of the object-oriented approach. 1999. �hal-00265817�

https://hal.science/hal-00265817
https://hal.archives-ouvertes.fr

Rapport interne LIPN 1999

1

An algebra for structured documents

in the context of the object-oriented approach
Haider Hamza

INSA, LISI, 20, Avenue Albert Einstein 69621 Villeurbanne France

e-mail : hamza@lisiflory.insa-lyon.fr

Sylviane R. Schwer

Université Paris 13, LIPN, av. J. B.. Clément, 93430 Villetaneuse, France

e-mail:schwer@lipn.univ-paris13.fr

André Flory

INSA, LISI, 20, Avenue Albert Einstein 69621 Villeurbanne France

e-mail : flory@lisiflory.insa-lyon.fr

Summary

The aim of this paper consists in defining an algebra allowing the request of structured documents in the

context of object oriented approach. The operators of this algebra are defined in conformity with the concepts of the

object model. It takes into consideration not only the embedding of structures and links between them, but also the

informational aspect of the document as well as its structural aspect.

The operands of the proposed algebra are only one type: they are subdatabases. A subdatabase is made of a

collection of the databases objects, grouped in classes and interconnected through links. This algebra responds to two

objectives. Firstly, it represents a basic nucleus of a declarative query system; it contains the whole of the elementary

operations which will be used in the resolution of the request. Secondly, it provides facilities to users to formulate

their requests and manipulate the documentary database.

Key Words : Structured documents, Object oriented, Documentary database, Query, Algebra

1. Introduction

Since the emergence of the relational model, many researches have addressed the problem of the

development of documentary databases using the technology of database management relational systems (RDBMS).

For the development of documentary applications, the interest of this approach lies in the possibility of taking

advantage of all the functionality of RDBMSs. Nevertheless the capacities of abstraction and the expressiveness of

the relational model are insufficient for handling structured documents. Indeed, the representation of the fragments of

the documents by several tables results in a heavy modeling and decreases considerably the performance of the

system.

Researches aiming at a new generation of DBMS has been carried out to extend the models of data

representation and to increase the power of manipulation languages. Indeed, new needs have emerged requiring

references to the stocked information in terms of the perception of the user and not simply according to their model

inside the database . The object oriented DBMSs gives nowadays a quite rich model capable of representing

complex data. A document can be modeled by a complex object the components of which may be formed by other

objects belonging to different classes. The classes are organized in a hierarchy of inheritance in which the objects of

different classes do respect the relations of inclusion between them. The technology of OODBMS is well adapted to

the management of structured documents such as arborescences of objects with associated methods [Amgh89,

Bens89, Moua89, Hamz96].

The retrieval of informations is one of the most important functionality of a management system of

documentary databases. By system of retrieval of information, we mean the whole mechanisms which allows the

user to select documentary information. One of the essential objectives of a retrieval system of informations is to

make easy the restitution of a portion of information from a documentary database, in response to a user's request.

Different strategies of information retrieval were developed, and most of them were built around an algebra. In fact,

G� ting [Guti89] has proposed an algebra made of a set of operators which permits to take into account the different

informational aspects of a document. But this algebra is not well adapted to an object-oriented system, because it

doesn't consider the inter-objects relationships. In the case of the algebra for the OODBMSs, several works were

carried out [Alha93, Clue90, Hamz95, Liu93, Stan93, Shaw90, Su93, Subr95]. However, these algebra are not really

adapted to structured documents, since they only take into consideration the informational aspect of the data, and not

at all their structural aspect. This is the case, for instance, of the algebra of Show and Zdonik, which is an extension

Rapport interne LIPN 1999

2

of the algebra of the denormalized models that takes into account some object-oriented concepts. The EXCESS

algebra [vand91], is a many-sort algebra i.e. the operators are defined by types of operands. Such an approach in a

documentary retrieval context puts in question the uniformity of the operators and the reusing of the results of the

requests for a new query. The algebra of Liu [Liu93] is based on a clear distinction between links of association and

links of aggregation. We think that in fact this distinction is not relevant: two conceptors can have different visions

of the same reality. While one can model a relation as a link of composition, most models among the reviewed

aboved treat it as a link of association.

The objective of our work consists in defining an algebra that allows the interrogation of documents in the

context of an object-oriented approach. The basis of manipulation is the embedding of structures and the links

between structures [Schw97]. This algebra permits to take into account the informational aspect as well as the

structural aspect of documentary databases.

This paper is divided into 5 sections. The first one being this introduction, section 2 is devoted to the basic

concepts of the proposed algebra. Section 3 is dedicated to the description of the algebraic operators and section 4 to

examples of the algebraic operations. The last section consists in our conclusion and perspectives.

2. Formalization of a documentary database

In this part we define the basis of our algebra. Starting from a clean definition of what is a documentary

database, we defined what is a subdatabase, the single type of our algebra and their operands which fit to the object-

oriented ontology.

2.1. Documentary database

As usual in database theory, a documentary database is defined y a schema and an instance of this schema.

Definition 1: Documentary database schema

 The documentary database schema can be defined by a finite acyclic connect graph. Formally, a schema ! of

documentary database is defined by the triplet (, ,)C ! " where:

 - C= {ci} is a set of classes, where each class ci is characterized by some properties (pi1, pi2, ... , pin).

 - ! : C C" #" 2 is an hierarchy function which associates a set of classes to a given class. We note by !"1

the inverse relation of the hierarchy function, ! n the transitive hierarchy function of order n, !* the transitive

hierarchy function and !+ the strict transitive hierarchy function which are defined as follows:

- !0 ()c c=

- ! ! !n n ic x() (())=
"

- ! !* ()c
n

n
= "

#0

- ! !+

>

= "()c
n

n

0

 - ! :C x C R
" #" 2 is a Roll function which associates a set of rolls to a pair of classes. The schema is

endowed by the following properties :

1) { }Root c C c C c c() / , ()! = " # $ " $ % & '((due to the fact that the graph is acyclic and finite)

2) (), (())! " # +c C c c$ (due to acyclism)

3) (()), (())! " # $%c Root c& ' 1 (this is the definition of the Root)

4) (, ()), (() ())* *! " # $ " % &c c Root c c' (((this is due to the connection property)

Example:

Let ! = (, ,)C " # be the schema of the documentary database represented by fig. 1. The graph which corresponds to

this schema is represented by fig. 2.

Rapport interne LIPN 1999

3

publication

title creation-

date
pictures

Document

title type creation-

date
introduction co-authorsmain-

author

conclusion references

sections
conclusion

reference

introduction picture

Chapter

bitmap

content

text type

Author

first-name name address

Publication

authors title type date

creation-

date

title

title

body

Picture

Fig. 1. Example of a schema of a documentary database

C={Document (title, type, date-creation), Chapter (title, date-creation), Reference (reference), Section (title, date-

creation), Content (text, type), Image (title, bitmap), Author (nom, name, address)}

"(Document) = { Author, Content, Chapter, Reference }

"(Chapter) = { Content, Section, Picture }

"(Section) = { Content, Picture }

"(Reference) = { Publication }

"(Publication) ={ Author (authors) }

"(Content) = #

"(Picture) = #

"(Author) = #

$(Document, Author) = {main-author, co-authors}

$(Document, Content) = {introduction, conclusion}

$(Chapter, content) = {introduction, conclusion}

$(Section, content) = {body}

$(Section, Picture) = {pictures}

$(Reference, Publication) = {publication}

$(Chapter, Picture) = {pictures}

$(Publication, Author) = {authors}

 The documentary database schema can also be defined by a finite acyclic connected graph. We denoted it a
! " graph

Rapport interne LIPN 1999

4

Document

Chapter

Section

Picture

Author

Reference

Publication

Content

title

type

creation-date

reference

title

type

date

title

creation-date

title

creation-date

title

bitmap

title

type

name

first-name

address

{main-authors,

co-authors}

{introduction,

conclusion}

link

class

property

role

Fig. 2. Representation of the schema of the documentary database

under the form of a connect acyclic graph

 A documentary database is defined by a schema and by an instance of this schema.

Definition 2 : Documentary database

 A documentary database is defined by. ()! , ,O A where ! = (, ,)C " # is a schema of the database, O is a set

of objects and A a set of inter-objects links A O O! " . If we note by ! the total function (! :O" #" C) which

returns for every object its class, then ()! , ,O A must verify the following constraint:

 - ! " "(,) , () (())o o o oi j j iA # $ #

p1
• p2

• p3
• p4

• p5
• p6

•

i1
• i2

• i3
• i4

• i5
• i6

• i7 •

Picture

a1
• a2

• a3
• a4

• a5
• a6

• r1
• r2

• r3
• r4

• r5
• r6

• r7 •

d1
• d2

• d3
• d4

•

s1
• s2

• s3
• s4

• s5
• s6

• s7 • s8 • s9 • s10 • s11 • s12 •

Publication

Author

Reference

Document

Chapter

Section

• • • • • • • •
c1 c2 c3 c4 c5 c6 c7 c8

Fig. 3. Example of a partiel view of an instance of a documentary database

2.2. Documentary subdatabase

 A user who wants to formulate queries on a database, is rarely interested by the whole entities in the database.

In most cases, he wants to formulate queries on a portion of this database. For example, a user would like to

formulate queries only on the Author class and Document class of our illustration.

Rapport interne LIPN 1999

5

 We defined a subdatabase of a database D as a database which is merged into the database D.

Definition 3 : Subschema

 A subschema ! " #! ! != (, ,)C of a schema ! ! ! != (, ,)C " # is included in the ! graph, such that :

 - C C! " #

 - ! " #c C c c$ $% %() ()&

 - ! " #c c C c c c c1 2 1 2 1 2, (,) (,)$ $% %&

Remarks:

 - a schema is a subschema of itself.

 - a class of a schema is a subschema of the schema.

 - ! = ! ! !(, ,)C " # (, ,)C! ! !=! =! =!" # is a subschema of any schema.

Example:

Fig. 4 represents the graph of the subschema ! " #! ! != (, ,)C which is defined as:

C! = { Document (title, type, creation-date), Chapter (title, creation-date), Reference (reference) }

!" (Document) = {Chapter, Reference}

!" (Chapter) = #

!" (Reference) = #

Document

Chapter Reference

title

type

creation-date

referencetitle

creation-date

Fig. 4. : graphical representation of a subschema

Definition 4 : An instance of a subschema

 An instance of a subschema ! " #! ! != (, ,)C is a set of objects and a set of links between objects which

respectively correspond to the classes in the subschema and to the links between classes. Formally, an instance is

defined by the pair:

(,)O A

where O is a set of objects and A a set of inter-objects links A O O! " with the following constraint:

 - ! " "(,) , () (())x y A y x# $ #

Example:

Fig. 5 gives a graphical representations of an instance of the subschema that is represented in fig. 4.

c1
• c2

• c3
• c4

• c5
•

d1
• d2

•

a1
• a2

• a3
•

Fig. 5 : An example of an instance of a subschema

Definition 5 : Subdatabase

 A subdatabase is defined by a subschema and by an instance of this subschema. Formally, a subdatabase is

defined by the triple:

(, ,)! O A

Example :

Rapport interne LIPN 1999

6

An example of a subdatabase is shown in fig. 6.

Document

Chapter Reference

title

type

creation-date

referencetitle

creation-date c1
• c2

• c3
• c4

• c5
•

d1
• d2

•

a1
• a2

• a3
•

Fig. 6 : A graphical representation of a subdatabase.

Definition 6: path between two classes

 Given a schema ! ! ! != (, ,)C " # and two classes a, b of C! , a path P(a, b), is defined as a sequence

a c c c bn.1 2 ()n ! 1 where:

 - c Ci ! "

 - c c or c c i ni i i! ! " "# #$ $() ()1 1 1

We can define alternatively a path as a subschema P(a, b) CP= (,)! P where:

 - { }C a b c cP n= , , , ... ,1

 - { } { }! " = =+
#

+c C c c or c ci P P i i P i i, () ()$ $1
1

1 depending of !

 The number of classes a long path P is equal to Length(P)= Card CP() . The path length indicates the number

of classes, including a and b, that must be traversed to reach the class b. Two classes can have several paths between

them as of (Document, Reference).

Example :

P(Document, Reference) = {P1, P2}

 P1 = Document.Reference Len(P1) = 2

 P2 = Document.Author.Publication.Reference Len(P2) = 4

P1 can be defined as a subschema: P1=({Document, Reference}, {"(Document)={Référence}, !")

Definition 7 : Set of paths between two subschemas

 Given a schema ! ! ! != (, ,)C " # , and two subschemas! " #! ! !1 1 1 1
= (, ,)C and ! " #! ! !2 2 2 2

= (, ,)C , the

set of paths between !
1

 and !
2

 denoted by SP(! !1 2,), is the set of all paths between ! 1 and ! 2 . It is defined

as follows:

 { }SP P c c c C and c Ci j i j(,) (,) / ()! ! ! !1 2 1 2
= " "

Num(SP(! !1 2,)) denotes the number of paths that exists between two subschemas !
1

 and !
2

.

Example:

The following is a set of paths for the subschemas !1 and ! 2 shown in fig. 6:

 SP(,)! !1 2 = {Document.Reference, Document.Author.Publication}

Rapport interne LIPN 1999

7

•

Document

Chapter

Section

Picture

Author

Reference

Publication

Content

title

type

date-creation

reference

titre

type

date

title

type

title

creation-date

title

bitmap

title

type

first-name

name

address

!1

!2

Fig. 7. Representation of two subschemas and paths between them

Definition 8: Distance between two subschemas

 Given two subschemas ! " #! ! !1 1 1 1
= (, ,)C and ! " #! ! !2 2 2 2

= (, ,)C , the distance between !
1

 and !
2

,

denoted by D(! !1 2,), is defined as :

 { }D Min Len P P SP(,) () / (,)! ! ! !1 2 1 2= "

Example:

The following is a distance between subschemas !1 and ! 2 shown in figure 6:

 D(,)! !1 2 = Min {Len(Document.Reference), Len (Document.Author.Publication)} = 2

Definition 9: The upper limit of two subschemas

 Given two subschemas ! " #! ! !1 1 1 1
= (, ,)C and ! " #! ! !2 2 2 2

= (, ,)C , the upper limit ! !1 2" is

the least subschema containing ! 1 and ! 2 . The upper limit can be defined as the union of !1 , ! 2 and all the

paths between ! 1 and ! 2 that have their lengths equal to D(! !1 2,). Let us consider the set S of all the paths

between ! 1 and ! 2 that have their lengths equal to D(! !1 2,). The set S is defined as :

 { }S C C SP Len C DP P P P P P= ! =" " "(, ,) / (, ,) (,) : ((, ,)) (,)# $ # $ % % # $ % %1 2 1 2

Formally, the upper limit of two subschemas ! " #! ! !1 1 1 1
= (, ,)C and ! " #! ! !2 2 2 2

= (, ,)C , is defined as:

 ! ! ! " #! ! !3 1 2 3 3 3
= $ = (, ,)C where :

 ! = "
=

C C C CP
i

n

i# # #3 1 2
1

U

 ! " # = $
=

c C c c c cP
i

n

i% % % %& & & &
3 3 1 2

1

, () () () ()U

 - ! " = #c c C c c c c c c1 2 1 2 1 2 1 23 3 1 2
, (,) (,) (,)$ $ $ $% % %

Example :

An example of an upper limit of two subschemas is shown in fig. 8.

Rapport interne LIPN 1999

8

!1

!2

Document

Section

Picture

Author

Reference

Publication

Content

title

type

creation-date

reference

title

type

date

title

type

title

creation-date

title

bitmap

title

type

first-name

name

address

"
1 v "2

Chapter

Fig. 8. An example of an upper limit of two subschemas

Definition 10 : Lower limit of two subschemas

 The lower limit of two subschemas ! 1 et ! 2 of a schema ! is the greatest subschema which is contained

both in ! 1 and ! 2 . Formally, the lower limit of two subschemas ! " #! ! !1 1 1 1
= (, ,)C and

! " #! ! !2 2 2 2
= (, ,)C , denoted by ! !1 2" , is defined as:

 ! ! ! " #! ! !3 1 2 3 3 3
= $ = (, ,)C where :

 ! = "C C C# # #3 1 2

 ! " # = $c C c c c% % % %& & &
3 3 1 2
, () () ()

 !" # = $c c C c c c c c c1 2 1 2 1 2 1 23 3 1 2
, (,) (,) (,)% % % %& & &

Example:

An example of a lower limit is shown in fig. 9.

Document

Section

Picture

Auteur

Reference

Publication

Contenu

title
type

date-création

reference

title
type
édition

title
date

title
date-création

title
bitmap

titre
type

first_name
name
address

!1

!2

"
1
#"

2

Chapter

Fig. 9. An example of a lower limit of two subschemas

3. Algebraic operators

 We have shown that the set of subdatabase of a database is closed under ! "and . We now prove that this set

is also closed under algebraic operators: select, project, associate, union, intersection, difference, join, grouping,

split, distribution.

Rapport interne LIPN 1999

9

 The algebraic operators have as operands a subdatabase and produce a new subdatabase. In this algebra, the

closure property is maintained, because the results produced by the queries are structured in the same manner as the

operands. Also, this algebra allows to produce a new class of objects that enriches the existing database.

 The algebraic operators will be formally defined in the appendix. The examples used to explain these

operators will make use of the database shown in fig. 1 and 3. We extend algebraic operators to subdatabases.

3.1. Select (#)

 The Select is a unary operator, which operates on a subdatabase to produce a new subdatabase in which

objects and inter-objects links satisfy a specified predicate. The resultant subdatabase has the same schema as the

operand subschema, and the instances of the result is a subset of the instances of the operands which satisfy the

predicate. The select operation is denoted # (X) [P] where X is an operand subdatabase and P is a predicate. The

predicate P is a logical expression that is evaluated to true or false. This logical expression is composed by terms

interconnected by logic operators (and, or, not). Each term can be, either a condition on an attribute value, or a

condition on an inter-object link. The condition on the attribute values have the following form:

a ' constant, or a ' b

where a and b represent attributes.

- If a, b and constant are integer, then ' can be: =, $, %, &, <, >

- If a, b and constant are Boolean, then ' can be: =, $

- If a, b and constant are string, then ' can be : =, $, %, &, <, >

- If a is a text and constant is a string, then ' can be: contains, notcontains

 To express the conditions on the cardinalities of links, we use the symbol "!". The conditions on the

cardinalities of links have the following form: A!B ' cst, where A and B are classes, ' is a comparison operator that

can be: =, $, %, &, <, > and cst is a numeric constant. For example, the predicate "Document!Author = 2" means that

the object of the Document class must be linked to only two objects of the Author class.

Example:

« Find the documents which are written by two authors only, whose titles contain the word ‘computer’ and which

are composed of at least two chapters ». (cf. fig. 1 and 2)

The algebraic expression of this query is:

X := ({Document, Author, Chapter}, {(Document, Author), (Document, Chapter) })

Y:=((X) [(Document.title contains "Computer") and (Document!Chapter > 2)

 and (Document!Author = 2)]

If we suppose that the values of the title attribute (cf fig. 2) are:

d
1
.title = "Computer and medicine", d

2
.title = "Data and Computer",

d
3
.title = "Data Processing", d

4
.title = "Computer Science"

The result of the select operation is shown in fig. 11.

Document

Author Chapter

title

type

creation-date

title

creation-date

first-name

name

address

d1 ! d2 !

a1 ! a2 ! a3 ! c1 ! c2 ! c3 ! c4 ! c5 !

Document

Author Chapter

title

type

creation-date

title

creation-date

first-name

name

address

Y

d1 ! d2 ! d3 ! d4 !

a1! a2! a3! a4! c1! c2! c3! c4! c5! c6! c7! c8!

X

Fig. 11. Representation of the subdatabase Y resulting from a select operation

Rapport interne LIPN 1999

10

3.2. Projection (!)

 The project is a unary operator, which operates on a subdatabase to produce a new subdatabase reduced to a

subset of classes, a subset of inter-class links, and a subset of attributes. The project operation is denoted

! (X) [c1(p11, p12, ..., p1n), c2(p21, p22, ..., p2n), ..., cm(pm1, pm2, ..., pmn)], where X is the subdatabase operand and the

set {c1, c2, ..., cn} represents the different classes of the projected subdatabase. The set {pi1, pi2,, pin} represents the

properties of the projection of the ci class.

 The project operation is valid only if the subschema ! " #Y Y Y YC= (, ,) is such as :

 - C CY X!

 - ! " # $c C c c CY Y X Y% %() (())

Example:

An example of project operation is shown in fig. 12. The expression of this project operation is:

 Y := % (X) [Document (title), Author (first-name, name)]

X

Document title

Author
first-name
name

d1! d2!

a1! a2! a3!

d1 ! d2 !

a1! a2! a3! c1! c2! c3! c4! c5!

Y

Document

Author Chapitre

title
creation-date

creation-date
first-name

name
address

Fig. 12. An example of a project operation

3.3. Associate (")

 The associate operator is a binary operator which constructs a new subdatabase by concatenating two

subdatabases. The subschema of the result subdatabase is a concatenation of the subschemas of operands

subdatabases through some inter-classes links. The instance of result subdatabase is constituted by the objects of the

operands which are connected together. Since two subdatabase may have more than one link, it is necessary to

specify through which links the concatenation is made. The associate operation between subdatabase X and Y

through the links L is denoted X"[L]Y, where L={(ci, cj)} is included in the set C CX Y! .

Example:

Let X and Y be the subdatabases represented by fig. 13, an example of associate operation is:

Z := X & [(Section, Picture)] Y

The result subdatabase of this query is shown in fig. 13. In this example, the object i1 of the Picture class is not

represented in the result because it is not linked to any objet of the set {s1, s2, s3, s4, s5, s6, s7 } (cf. fig. 2). For the

same reason, the objects{s2, s3, s6, s7} are not present in the result, because they are not linked to any object of the set

{i1, i2, i3, i4, i5}. Consequently, the objects {c2, c5} of the Chapter class are also omitted from the result because they

are not linked to any of the objects of the Section class.

Rapport interne LIPN 1999

11

Document

Chapter

Section

Picture

title
type
creation-date

title
creation-date

title
creation-date

titre
bitmap

Document

Chapter

Section

title
type
creation-date

title
creation-date

title
creation-date

i1 ! i2 ! i3 ! i4 ! i5 !
Picture

title

bitmap

X

d1 ! d2 !

c1! c2! c3! c4! c5!

s1! s2! s3! s4! s5! s6! s7!

d1 ! d2 !

c1! c3! c4!

s1! s4! s5!

i2! i3! i4! i5!

Y

Z

Fig. 13. An example of associate operation (Z := X & [(Section, Picture)] Y)

3.4. Union, Intersection and Difference(+, !, -)

 The union operator is a binary operator which constructs a new subdatabase by combining two subdatabases.

The subschema of the result subdatabase is defined as the upper limit of the subschemas of the operands

subdatabases. The instance of the result subdatabase is constituted by the union of the set of instances of operands

which are extended to the subschema of the result subdatabase. The union operation is denoted X+Y.

 The intersection operator, as the union operator, is a binary operator which constructs a new subdatabase by

combining two subdatabases. The subschema of the result subdatabase is defined as the lower limit of the

subschemas of the operands subdatabases. The instance of the result subdatabase is constituted by the intersection of

the set of instances of the subdatabases operands. The intersection operation is denoted X•Y

 The difference operator, as the union and intersection operators, is a binary operator which constructs a new

subdatabase by subtracting from a subdatabase X of an other subdatabase Y. The subschema of the result subdatabase

is defined as the subschema of X. The instance of the result subdatabase is constituted by the instance of X to which

is subtracted the instances of the objects of Y. The difference operation is denoted X-Y

Example:

Examples of union, intersection and difference operations are shown in fig. 14.

Rapport interne LIPN 1999

12

Document

Author Chapter

title

title

first-name

name

address

Document

Author Chapter

Section

title

creation-date

title

creation-date

first-name

name

X

c3 • c4 • c5
•

d2 •

a2
• a3

•

c1 • c2 •

d1 •

a1 • a2 •

s1 • s2 • s3
•

Document

Author Chapter

Section

title

title

creation-date

title

creation-date

first-name

name

Document

Author Chapter

Section

title

title

creation-date

title

creation-date

first-name

name

address

Document

Author Chapter

title

title
first-name

name

d2 • d3 •

a2
• a3

• a4
• c3

• c4
• c5

• c6
• c7

•

d1 • d2 •

a1
• a2

• a3
• c1

• c2
• c3

• c4
• c5

•

s1
• s2

• s3
• s4

• s5
• s6

• s7
•

d1 • d2 • d3 •

a1
• a2

• a3
• a4

• c1
• c2

• c3
• c4

• c5
• c6

• c7
•

s1
• s2

• s3
• s4

• s5
• s6

• s7
• s8

• s9
• s10

• s11
• s12

•

Y

X+Y

Y-X

X•Y

Fig. 14. Examples of union, intersection and difference operations

3. 5. Join

 Unlike the relationnel data model, in object-oriented models many relationships between objects can be

represented within the objects themselves. Hence the join operations are used less frequently in the object algebra

than in the relationnel algebra. However, the existing objects in a database may not explicitly reflect all relationships

required by the queries. An explicit join is still needed to handle the cases when the relationship being queried upon

is not defined within the object classes. Such relationship is called values-based relationship in contrast with those

specified explicitly in the object model. For example, suppose we have a layer document class and a technical

document class. A query « Find the layer document which has the same key words as the technical document »,

requires a value-based join between the classes layer document and technical document through the attribute key-

words.

 The join condition links the properties of only one class of X and the properties of only one class in Y. The

subschema of the result subdatabase is defined as the concatenation of the subschemas of the subdatabases operands

through a new class c. This new class is defined as a set of tuples. The tuple is made of two attributes, the first

attribute is a set of references to the class c1 of X, the second attribute is a set of references to a class c2 of Y. The

graphical structure of class c is shown in fig 15. The instance of the result subdatabase is constituted of a portion of X

that satisfies the join condition, a portion of Y that satisfies the join condition, and the union of the instances of

Rapport interne LIPN 1999

13

operands which are extended to the subschema of the result subdatabase. The Join operation is denoted by X) [P]

Y where X and Y are the subdatabases operands and P represents the join predicate.

C

a b

C1 C2

Fig 15. The graphic representation of the structure of the class C

Example:

Let X and Y be the subdatabases represented by the fig. 16. An example of join operation is :

X) [Chapter.date-creation = Part.date-creation] Y

if, we suppose that the values of the attributes date-creation of the reference-guide class and of the user-guide class

are:

c
1
.creation-date = "26-03-62", c

2
.creation-date ="26-03-62",

c
3
.creation-date = "05-07-62", c

4
.creation-date = "19-03-62",

p
1
.creation-date = "26-03-62", p

2
.creation-date ="26-03-62",

p
3
.creation-date ="05-07-62", p

4
.creation-date = "05-07-62".

The result of the join operation is shown in fig. 16. The subschema of the result subdatabase is composed of the

subschema of X and of Y, and of a new Chapter-Part class which refer to Chapter class and Part Class. The

Chapter-Part class is composed of two objects f1 and f2. The object f1 is linked to the objects {c1, c2} of the Chapter

class and it is also linked to the objects {p1, p2} because the two sets of objects have the same value of the date-

creation attribute and the join condition is fulfilled. For the same raison, the object f2 is linked to the objects {p3, p4}.

However, the object c4 of Chapter class is not present in the result, because it doesn’t fulfill the join condition.

consequently, the objects {s7,s8} of the Selection class are also omitted from the result.

Rapport interne LIPN 1999

14

User-reference
title

creation-date

Part

Subpart
title

creation-date

title

creation-date

User-guide

Chapter

Section

title

creation-date

title

creation-date

title

body

Chapter-Part

X

Y

Z

r1
• r2

• r3
•

p1
• p2

• p3
• p4

•

o1
• o2

• o3
• o4

• o5
• o6

• o7
• o8

•

User-guide

Chapter

Section

title

creation-date

titre

creation-date

title

body

c1
• c2

• c3
• c4

•

s1
• s2

• s2
• s4

• s5
• s6

• s7
• s8

•

u1
• u2

•

title

creation-date

title

creation-date

title

creation-date

Rereference-guide

Part

Subpart

u1
• u2

•

c1 • c2 • c3
•

s1
• s2

• s3
• s4

• s5
• s6

•

r1
• r2

• r3
•

p1
• p2

• p3
• p4

•

o1
• o2

• o3
• o4

• o5
• o6

• o7
• o8

•

f1
• f2

•

Fig. 16 Representation of the subdatabases X, Y and Z

3.6 Grouping (')

 The grouping is an unary operator. This operator is also used in NST-Algebra [Guti89]. It is used to transform

an association relationship to an aggregation relationship. The grouping operation is defined as '(X)[c1, c2, a] where

X is an operand subdatabase and [c1, c2, a] is the association relationship to be transformed to an aggregation

relationship.

Example:

An example of a grouping operation is shown in fig 17.

Document

Author

title

creation-date

first-name

name

address

main-author

Document

Author

title

creation-date

first-name

name

address

![Document, Author, main-author]

Fig. 17 Example of the grouping operation

3.7. Split (()

 The split operation is the inverse of the grouping operation. Indeed, the split operation is used to transform an

aggregation relationship to an association relationship. The split operation is defined as ((X)[c1, c2, a] where X is an

operand subdatabase and [c1, c2, a] is the aggregation relationship to be transformed to an association relationship.

Example:

An example of the split operation is shown in fig 18.

Rapport interne LIPN 1999

15

![Document, Chapter, chapters]

Document

Chapter
title

creation-date

chapters

title

creation-date
Document

Chapter
tilte

creation-date

title

creation-date

Fig. 18 Example of the split operation

3.8 Distribution (*)

 The distribution operator is used to restructure a subdatabase. This restructuration is made by distributing a

property of class c1 to a class c2. The distribution is valid, if there exists a link between c1 and c2. The distribution

operation is defined as *(X)[c1, c2, p] where X is a subdatabase operand, p is the property of c1 to be distributed to

class c2.

Example:

An example of the distribution operation is shown in figure 19.

![Document, Chapter, type]

Document

Chapter

title

creation-date

title

creation-date

type

Document

Chaptre
title

creation-date

title

creation-date

type

Fig. 19 Example of the distribution operation

4. Examples of expressions of algebraic queries

 A storage and a query system of structured documents using the OODBMS technology was proposed in

[Chri94]. This system was developed in the Verso project of INRIA. It is based on an extension of the model and

query language of O2 OODBMS [Odeu90]. In order to request documents by their structure and content, O2SQL was

extended to:

- take into account new functions of modeling like the ordered n-tuples and unions of types

- include predicates of textual retrieval like contains.

We will present examples of queries to compare our algebraic approach with the O2SQL query language.

Example 1:

«Find the documents containing the word Computer in the title and which are constituted of two chapters.»

The request is written as follows in the O2SQL query language:

Select x

From x in Document

 y in x.Chapter

Where x.title contains « computer » and count (x.chapter) =2

The algebraic expressions of the request are :

R1 := % [Document, Chapter] ((Document.title contains « computer »)

 * (Document!Chapter = 2))

R2 := % [R1] (Document)

R1 := ([Document, Chapter] (Document.title contains « computer »)

R2 := ([R1] (Document!Chapter = 2)

Rapport interne LIPN 1999

16

This example represents an interrogation on the content of the document as well as its structure. The formulation of

such a query under an algebraic form allows a uniform specification of the condition on the content and on the

structure. However, the interrogation, using O2SQL, can only be made by using key words such as: Count.

Example 2:

« Find the documents that are only constituted of two chapters with the following condition: each chapter belonging

to three documents.».

The algebraic expression of the query is :

R1 := ([Document, Chapter] (Document!Chapter = 2)

R2 := ([Document, Chapter] (Chapter!Document = 3)

R3 := R1 • R2

R4 := % [R3] (Document)

To our knowledge, this query cannot be expressed in O2SQL. Indeed, such a query expresses a condition on the

structure starting from the document to chapters and inversely, from chapters to the document.

5. Conclusion

 We have presented in this paper an algebra for structured documents in an object-oriented approach. We have

defined the concept of subdatabase on which is based the definition of algebraic operators. Indeed, the operands and

the query result are subdatabases, as a consequence, the closing condition and the operators orthogonality conditions

are respected because the operands and the results of the query operators are structured in the same way. The

operators can be regrouped into two categories. A first category that deals with information retrieval operators

(select, project, associate, union, intersection, difference and join operators). A second category that deals with

information restructurating operators (grouping, split, distribution operators).

Appendix

 The formal definition of the algebraic operators are given below :

- Select

Let us consider a subdatabase X O AX X X= (, ,)! (! " #X X X XC= (, ,)). The select operation is defined as:

 Y X P O A where CX Y Y Y Y Y Y= = =! " " # $()[] (, ,) (, ,) such as :

 - C C
Y X
= ,

 - ! " =c C c c
Y Y X
, () ()# # ,

 - ! " =c c C c c c c
Y Y X1 2 1 2 1 2, , (,) (,)# #

 - { }O o o O P o trueY X= ! =/ : ()

 - { }A x y x y A P x true and P y trueY X= ! = =(,) / (,) : () ()

- Project

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)). The project operation is defined as:

 Y X c c c O A where C
n X Y Y Y Y Y Y

= = =! " " # $()[, , ...,] (, ,) (, ,)1 2 such as:

 - { }C c c c
Y n
= 1 2, , ...,

 - ! " = #c C c c C
Y Y X Y

$ $() ()

 - ! " #c c C c c c c
Y Y X1 2 1 2 1 2, , (,) (,)$ $

 - { }O o o O o CY X Y= ! !/ : ()"

 - { }A x y x y A y xY X Y= ! !(,) / (,) : () (())" # "

- Associate

Rapport interne LIPN 1999

17

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)), Y O A
Y Y Y

= (, ,)! (! " #
Y Y Y Y

C= (, ,))

and a database D = (, ,)! O A . The association operation is defined as:

Z X L Y O A where C
Z Z Z Z Z Z Z

= <!> = =[] (, ,) (, ,)" " # $ such as:

 - C C C
Z X Y
= !

 - { }! " = # # $ "c C c c c c c c L
Z Z X Y
, () () () '/(,)% % %

 - ! "
" # =

" # =

$
%
&

'
(
)

c c C
if c c C C then c c c c

if c c C C then c c c ci j Z
i j X X Z i j X i j

i j Y Y Z i j Y i j
,

(,) () (,) (,)

(,) () (,) (,)

* *

* *

 - {O o o O O o o O O O O such that
Z X Y X Y X Y
= ! " # $! " % "/ () : (,) (() ()) :

 }if o o L then o o if o o then o o (A AZ X Y((), ()) (, ') () (()) (, '))! ! ! " !# $ $ # $ $ %A or

 - { } { }A x y x y A x O and y O x y x y A x O and y OZ X Z Z Y Z Z= ! ! ! " ! ! ! "(,) / (,) : (,) / (,) :

 { }(,) / (,) : ((), ())x y x y x y L and x O and y OZ Z! ! ! !A " "

- Union

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)) and Y O A
Y Y Y

= (, ,)!

(! " #
Y Y Y Y

C= (, ,)). The union operation is defined as:

Z X Y O A where C
Z Z Z Z Z Z Z

= + = =(, ,) (, ,)! ! " # such that :

 - ! ! !
Z X Y
= "

 - Let X such as: if ! !X Z" , then X O A
X X X

= (, ,)! such that ! !
X Z
= and ! ()()X C X

X
=

 else X X=

 - Let Y such as: if ! !Y Z" , then Y O A
Y Y Y

= (, ,)! such that ! !
Y Z
= and ! ()()Y C Y

Y
=

 else Y Y=

 - O O O
Z X Y
= !

 - A A A
Z X Y
= !

- Intersection

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)) and Y O A
Y Y Y

= (, ,)!

(! " #
Y Y Y Y

C= (, ,)). The intersection operation is defined as:

Z X Y O A where C
Z Z Z Z Z Z Z

= • = =(, ,) (, ,)! ! " # such as:

 - ! ! !
Z X Y
= "

 - O O O
Z X Y
= !

 - A A A
Z X Y
= !

- Difference

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)) and Y O A
Y Y Y

= (, ,)!

(! " #
Y Y Y Y

C= (, ,)). The difference operation is defined as:

Z X Y O A where C
Z Z Z Z Z Z Z

= ! = =(, ,) (, ,)" " # $ such as:

 - ! !
Z X
=

 - O O O
Z X Y
= !

 - A A A
Z X Y
= !

- Join

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)) and Y O A
Y Y Y

= (, ,)!

(! " #
Y Y Y Y

C= (, ,)). The join operation is defined as:

Z X P c c Y O A where C
Z Z Z Z Z Z Z

= ! = =[(,)] (, ,) (, ,)1 2 " " # $ such as :

Rapport interne LIPN 1999

18

 - { }C C C c
Z X Y
= ! ! , where c is the new class created by the join operation

 -

{ }
! "

" =

" =

= =

#

$
%

&
%

'

(
%

)
%

x C

if x C then x x

if x C then x x

if x c then x c c

Z

X Z X

Y Z Y

Z

, () ()

, () ()

, () ,

* *

* *

* 1 2

 - ! "
" # =

" # =

$
%
&

'
(
)

c c C
if c c C C then c c c c

if c c C C then c c c ci j Z

i j X X Z i j X i j

i j Y Y Z i j Y i j

,
(,) () (,) (,)

(,) () (,) (,)

* *

* *

 - { }O o o O O if o c then P o True and if o c then P o TrueZ X Y= ! " = = = =/ () : (() ()) (() ())# #1 2

 - { }A x y x y A A P x True and P y TrueZ X Y= ! " = = "(,) / (,) () : () ()

 { }(,) / () () ()x y y c and x c and P y True! != = = "1

 { }(,) / () () ()x y y c and x c and P y True! != = =2

- Grouping

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)). The grouping operation is defined as:

 Y X c c a O A where C
Y Y Y Y Y Y Y

= = =! " " # $()[, ,] (, ,) (, ,)1 2 such as:

 - C C
Y X
=

 - ! " =c C c c
Y Y X
, () ()# #

 -
{ }

! "
=

= $

%
&
'

(
)
*

c c C
if c c and c c then c c c c

else c c c c ai j Y
i j Y X

Y X

,
(,) (,)

(,) (,)

1 2 1 2 1 2

1 2 1 2

+ +

+ +

 - O O
Y X
=

- A A
Y X
=

- Split

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)). The split operation is defined as:

 Y X c c a O A where C
Y Y Y Y Y Y Y

= = =! " " # $()[, ,] (, ,) (, ,)1 2 such as:

 - C C
Y X
=

 - ! " =c C c c
Y Y X
, () ()# #

 -
{ }

! "
=

= $

%
&
'

(
)
*

c c C
if c c and c c then c c c c

else c c c c ai j Y
i j Y X

Y X

,
(,) (,)

(,) (,)

1 2 1 2 1 2

1 2 1 2

+ +

+ +

 - O O
Y X
=

 - A A
Y X
=

- Distribution

Let us consider a subdatabase X O A
X X X

= (, ,)! (! " #
X X X X

C= (, ,)). The distribution operation is defined as:

 Y X c c p O A where Ci Y Y Y Y Y Y Y= = =! " " # $()[, ,] (, ,) (, ,)1 2 1 such as:

 - { }C C c p p p p p p c p p pY X i i i n m= ! "! +1 11 12 1 1 1 1 1 1 2 21 22 2(, , ..., , , , ...,), (, , ...,)() ()

 { }c p p p p p c p p p pi i n m i1 11 12 1 1 1 1 2 21 22 2 1(, ,..., , ,...,), (, ,..., ,)() ()! +

 - ! " =c C c c
Y Y X
, () ()# #

 - ! " =c c C c c c ci j Y Y i j X i j, , (,) (,)# #

 - O O
Y X
=

 - A A
Y X
=

References

Rapport interne LIPN 1999

19

[Alha93] Alhajj, R. and Arkun, M.E. "An Object Algebra For Object-Oriented Database Systems". Database, 1993,

Vol. 24, N°3, p. 13-22

[Amgh89] Amghar, Y. « Base d’Objets Documentaires Modélisation-Manipulation-Stockage de Documents Codés

Selon ODA », Ph D. these, INSA de Lyon, 1989, 189 p.

[Bens89] Bensadoun, O. & Chrisment, C. & Pujolle, G. and Zurfluh, G. "Aspects Dynamiques dans les bases de

documents". Actes de 5éme Journées Base de Données Avancées, Geneve (Swizerland), September 26-28, 1989, p.

291-308.

[Clue90] Cluet, S. & Delobel, C. & Lecluse, C. and Richard, P. "RELOOP: An Algebra Based Query Language For

Object-Oriented Database System". Data and Knowledge Enginnering, 1990, Vol. 5, p. 333-351.

[Chri94] Christophides, V. & Abiteboul, S. & Cluet, S. And Scholl, M. « From Structured Documents to Novel

Query Facilities ». SIGMOD’94, Minneapolis, May 1994, p.313-324.

[Flor82] Flory, A. and Metzger, J.O. " Exemples d'application du modèle relationnel à des bases textuelles". Inforsid

82, Toulouse, Mai, 1982, 23 p.

[Guo93] Guo, M. "An object-oriented SQL(OSQL) Based on Association Patten Query Formulation". In

Proceedings of the Phecnix Conference On Computers and Communications, Tempe (California), March, 1993, p.

231-237.

[Guti89] Güting, R.H. & Zicari, R. and Choy, D.M. "An Algebra for Structured Office Documents". ACM

Transaction on Office Information Systems, 1989, Vol. 7, N° 2, p. 123-157.

[Hamz95] Hamza, H "An Object Algebra Based on Relationships Between Objects". In Proceedings of the Tenth

International Symposium on Computer and Information Sciences, Ephesus (Izmir, Turkey), October 30-November

1, 1995, 305-312.

[Hamz96] Hamza, H. « An algebra for structured documents in the context of object-oriented approach », Ph D.

these, INSA de Lyon, 1996, 200 p.

[Liu93] Liu, L. "A Recursive Object Algebra Based on aggregation abstract For manipulating Complex Objects".

Data and Knowledge Engineering, August, 1993, Vol. 11, N° 1, p. 21-60.

[Macl91] Macleod, I. & Narnard, D. & Hamilton, D. and Levison, M. "SGML Documents and Non-Lnear Text

Retrieval". RIAO'91, Barcelona (Spain), April 2-5, 1991, p.226-244.

 [Mira84] Miranda, S. "Système Documentaire et SGBD Relationnel l'approche MINIDOC". INFORSID84, May,

1984, Bandol, p. 129-148.

[Odeu90] O-Deux et Al « The story of O2 ». IEEE Transaction On Knowledge and Data Engineering, 1990, Vol. 2,

N°1, p. 91-108.

[Osbo88] Osborn, S. "Identity, Equality and Query Optimization". Advances in Object-Oriented Database, 2nd

International Workshop on Object-Oriented Database System, Bad Münster am (Germany), September 27-30, 1988,

p. 346-351.

[Schw96] Schwer, S.R. « Trees in informations Systems ». Internal report, CRI 1997, Sorbonne university ParisI.

[Shaw90] Shaw, G.M. and Zdonik, S.B. "A Query Algebra For Object-Oriented Databases". In Proceedings of the

International Conference on Data Engineering, Los Angeles (California), February 5-9, 1990, p. 154-162.

[Ston88] Stonebraker, M. & Stettner, H. & Lynn, N. & Kalash, J. and Guttman, A. "Document Processing in a

Relational Database System". ACM Transactions on Office Information Systems, 1988, Vol. 1, N°2, p. 143-158.

Rapport interne LIPN 1999

20

[Su93] Su, S.Y.W. & Guo, M. and Lam, H."Association Algebra: A Mathematical Foundation for Object-Oriented

Databases". IEEE Transactions on Knowledge and Data Engineering, 1993, Vol. 5, N°5, p. 775-798.

[Subr95] Subramanian, B. & Leung, T.W. & Vandenberg, S.L. and Zdonik, S.B. "The AQUA Approch to Querying

Lists and Trees in Object-Oriented Databases". In Proceedings of the International Conference on Data Engineering,

Taipei (Taiwan), March 6-10, 1995, p. 80-89.

[Vand91] Vandenberg, S.L. and Dewitt D.J. "Algebraic Support for Complex Objects with Arrays, Identity, and

Inheritance". In Proceedings of the International Conference on Management of Data, Denver (Colorado), May 29-

31, 1991, p. 158-167.

