Haider Hamza
email: hamza@lisiflory.insa-lyon.fr

Sylviane R Schwer
email: schwer@lipn.univ-paris13.fr

André Flory
email: flory@lisiflory.insa-lyon.fr

An algebra for structured documents in the context of the object-oriented approach

Keywords: Structured documents, Object oriented, Documentary database, Query, Algebra

The aim of this paper consists in defining an algebra allowing the request of structured documents in the context of object oriented approach. The operators of this algebra are defined in conformity with the concepts of the object model. It takes into consideration not only the embedding of structures and links between them, but also the informational aspect of the document as well as its structural aspect.

The operands of the proposed algebra are only one type: they are subdatabases. A subdatabase is made of a collection of the databases objects, grouped in classes and interconnected through links. This algebra responds to two objectives. Firstly, it represents a basic nucleus of a declarative query system; it contains the whole of the elementary operations which will be used in the resolution of the request. Secondly, it provides facilities to users to formulate their requests and manipulate the documentary database.

Introduction

Since the emergence of the relational model, many researches have addressed the problem of the development of documentary databases using the technology of database management relational systems (RDBMS). For the development of documentary applications, the interest of this approach lies in the possibility of taking advantage of all the functionality of RDBMSs. Nevertheless the capacities of abstraction and the expressiveness of the relational model are insufficient for handling structured documents. Indeed, the representation of the fragments of the documents by several tables results in a heavy modeling and decreases considerably the performance of the system.

Researches aiming at a new generation of DBMS has been carried out to extend the models of data representation and to increase the power of manipulation languages. Indeed, new needs have emerged requiring references to the stocked information in terms of the perception of the user and not simply according to their model inside the database . The object oriented DBMSs gives nowadays a quite rich model capable of representing complex data. A document can be modeled by a complex object the components of which may be formed by other objects belonging to different classes. The classes are organized in a hierarchy of inheritance in which the objects of different classes do respect the relations of inclusion between them. The technology of OODBMS is well adapted to the management of structured documents such as arborescences of objects with associated methods [START_REF] Amghar | Base d'Objets Documentaires Modélisation-Manipulation-Stockage de Documents Codés Selon ODA[END_REF][START_REF] Bensadoun | Aspects Dynamiques dans les bases de documents[END_REF]Moua89,[START_REF] Hamza | An algebra for structured documents in the context of object-oriented approach[END_REF].

The retrieval of informations is one of the most important functionality of a management system of documentary databases. By system of retrieval of information, we mean the whole mechanisms which allows the user to select documentary information. One of the essential objectives of a retrieval system of informations is to make easy the restitution of a portion of information from a documentary database, in response to a user's request. Different strategies of information retrieval were developed, and most of them were built around an algebra. In fact, G ting [START_REF] Güting | An Algebra for Structured Office Documents[END_REF] has proposed an algebra made of a set of operators which permits to take into account the different informational aspects of a document. But this algebra is not well adapted to an object-oriented system, because it doesn't consider the inter-objects relationships. In the case of the algebra for the OODBMSs, several works were carried out [START_REF] Alhajj | An Object Algebra For Object-Oriented Database Systems[END_REF][START_REF] Cluet | RELOOP: An Algebra Based Query Language For Object-Oriented Database System[END_REF][START_REF] Hamza | An Object Algebra Based on Relationships Between Objects[END_REF][START_REF] Liu | A Recursive Object Algebra Based on aggregation abstract For manipulating Complex Objects[END_REF]Stan93,[START_REF] Shaw | A Query Algebra For Object-Oriented Databases[END_REF][START_REF] Su | Association Algebra: A Mathematical Foundation for Object-Oriented Databases[END_REF][START_REF] Subramanian | The AQUA Approch to Querying Lists and Trees in Object-Oriented Databases[END_REF]. However, these algebra are not really adapted to structured documents, since they only take into consideration the informational aspect of the data, and not at all their structural aspect. This is the case, for instance, of the algebra of Show and Zdonik, which is an extension Rapport interne LIPN 1999 2 of the algebra of the denormalized models that takes into account some object-oriented concepts. The EXCESS algebra [vand91], is a many-sort algebra i.e. the operators are defined by types of operands. Such an approach in a documentary retrieval context puts in question the uniformity of the operators and the reusing of the results of the requests for a new query. The algebra of Liu [START_REF] Liu | A Recursive Object Algebra Based on aggregation abstract For manipulating Complex Objects[END_REF] is based on a clear distinction between links of association and links of aggregation. We think that in fact this distinction is not relevant: two conceptors can have different visions of the same reality. While one can model a relation as a link of composition, most models among the reviewed aboved treat it as a link of association.

The objective of our work consists in defining an algebra that allows the interrogation of documents in the context of an object-oriented approach. The basis of manipulation is the embedding of structures and the links between structures [Schw97]. This algebra permits to take into account the informational aspect as well as the structural aspect of documentary databases.

This paper is divided into 5 sections. The first one being this introduction, section 2 is devoted to the basic concepts of the proposed algebra. Section 3 is dedicated to the description of the algebraic operators and section 4 to examples of the algebraic operations. The last section consists in our conclusion and perspectives.

Formalization of a documentary database

In this part we define the basis of our algebra. Starting from a clean definition of what is a documentary database, we defined what is a subdatabase, the single type of our algebra and their operands which fit to the objectoriented ontology.

Documentary database

As usual in database theory, a documentary database is defined y a schema and an instance of this schema.

Definition 1: Documentary database schema

The documentary database schema can be defined by a finite acyclic connect graph. Formally, a schema ! of documentary database is defined by the triplet (, ,)

C ! " where: -C= {ci} is a set of classes, where each class ci is characterized by some properties (pi1, pi2, ... , pin).

-! : C C " # " 2 is an hierarchy function which associates a set of classes to a given class. We note by ! "1 the inverse relation of the hierarchy function, ! n the transitive hierarchy function of order n, ! * the transitive hierarchy function and ! + the strict transitive hierarchy function which are defined as follows:

-! 0 () c c = -! ! ! n n i c x () (()) = " -! ! * () c n n = " #0 -! ! + > = " () c n n 0 -! : C x C R " #
" 2 is a Roll function which associates a set of rolls to a pair of classes. The schema is endowed by the following properties : 1)

{ } Root c C c C c c () / , () ! = " # $ " $ % & ' (
(due to the fact that the graph is acyclic and finite)

2) (), (()) ! " # + c C c c $ (due to acyclism) 3) (()), (()) ! " # $ % c Root c & ' 1 (this is the definition of the Root) 4) (, ()), (() ())
"(Document) = { Author, Content, Chapter, Reference } "(Chapter) = { Content, Section, Picture } "(Section) = { Content, Picture } "(Reference) = { Publication } "(Publication) ={ Author (authors) } "(Content) = # "(Picture) = # "(Author) = # $(Document, Author) = {main-author, co-authors} $(Document, Content) = {introduction, conclusion} $(Chapter, content) = {introduction, conclusion} $(Section, content) = {body} $(Section, Picture) = {pictures} $(Reference, Publication) = {publication} $(Chapter, Picture) = {pictures} $(Publication, Author) = {authors}
The documentary database schema can also be defined by a finite acyclic connected graph. We denoted it a

! " " (,) , () (()) o o o o i j j i A # $ # p1 • p2 • p3 • p4 • p5 • p6 • i1 • i2 • i3 • i4 • i5 • i6 • i7 • Picture a1 • a2 • a3 • a4 • a5 • a6 • r1 • r2 • r3 • r4 • r5 • r6 • r7 • d1 • d2 • d3 • d4 • s1 • s2 • s3 • s4 • s5 • s6 • s7 • s8 • s9 • s10 • s11 • s12 • Publication Author Reference Document Chapter Section • • • • • • • • c1 c2 c3 c4 c5 c6 c7 c8
Fig. 3. Example of a partiel view of an instance of a documentary database

Documentary subdatabase

A user who wants to formulate queries on a database, is rarely interested by the whole entities in the database. In most cases, he wants to formulate queries on a portion of this database. For example, a user would like to formulate queries only on the Author class and Document class of our illustration.

We defined a subdatabase of a database D as a database which is merged into the database D.

Definition 3 : Subschema

A subschema ! " # ! ! ! = (, ,) C of a schema ! ! ! ! = (, ,) C " # is included in the ! graph, such that : -C C ! " # -! " # c C c c $ $ % % () () & -! " # c c C c c c c 1 2 1 2 1 2 , (,) (,) $ $ % % & Remarks:
-a schema is a subschema of itself.

-a class of a schema is a subschema of the schema.

- 5 gives a graphical representations of an instance of the subschema that is represented in fig. 4.

! = ! ! ! (, ,) C " # (, ,) C ! ! ! = ! = ! = ! " # is
! " " (,) , () (()) x y A y x # $ # Example: Fig.
c1 • c2 • c3 • c4 • c5 • d1 • d2 • a1 • a2 • a3 •

Fig. 5 : An example of an instance of a subschema Definition 5 : Subdatabase

A subdatabase is defined by a subschema and by an instance of this subschema. Formally, a subdatabase is defined by the triple:

(, ,)

! O A Example :
Rapport interne LIPN 1999 6 An example of a subdatabase is shown in fig. 6.

Document Chapter

Reference

title type creation-date reference title creation-date c1 • c2 • c3 • c4 • c5 • d1 • d2 • a1 • a2 • a3 •
() n ! 1 where: -c C i ! " -c c or c c i n i i i ! ! " " # # $ $ () () 1 1 1
We can define alternatively a path as a subschema P(a, b) C P = (,) ! P where:

- { } C a b c c P n = , , , ..., 1 - { } { } ! " = = + # + c C c c or c c i P P i i P i i , () () $ $ 1 1 1 depending of !
The number of classes a long path P is equal to Length(P)= Card C P () . The path length indicates the number of classes, including a and b, that must be traversed to reach the class b. Two classes can have several paths between them as of (Document, Reference).

Example :

P(Document, Reference) = {P1, P2} P1 = Document.Reference Len(P1) = 2 P2 = Document.Author.Publication.Reference
Len(P2) = 4 P1 can be defined as a subschema: P1=({Document, Reference}, {"(Document)={Référence}, ! ")

Definition 7 : Set of paths between two subschemas

Given a schema

! ! ! ! = (, ,) C " # , and two subschemas ! " # ! ! ! 1 1 1 1 = (, ,) C and ! " # ! ! ! 2 2 2 2 = (, ,) C
, the set of paths between ! 1 and ! 2 denoted by SP(! ! 1 2 ,), is the set of all paths between ! 1 and ! 2 . It is defined as follows:

{ }

SP P c c c C and c C

i j i j (,) (,) / () ! ! ! ! 1 2 1 2 = " " Num(SP(! ! 1 2 ,
)) denotes the number of paths that exists between two subschemas ! 1 and ! 2 .

Example:

The following is a set of paths for the subschemas ! 1 and ! 2 shown in fig. 6

Fig. 7. Representation of two subschemas and paths between them

Definition 8: Distance between two subschemas

Given two subschemas ! " #

! ! ! 1 1 1 1 = (, ,) C and ! " # ! ! ! 2 2 2 2 = (, ,) C
, the distance between ! 1 and ! 2 ,

denoted by D(! ! 1 2
,), is defined as :

{ } D Min Len P P SP (,) () / (,) ! ! ! ! 1 2 1 2 = " Example:
The following is a distance between subschemas ! 1 and ! 2 shown in figure 6:

D(,) ! ! 1 2 = Min {Len(Document.Reference), Len (Document.Author.Publication)} = 2
Definition 9: The upper limit of two subschemas Given two subschemas ! " #

! ! ! 1 1 1 1 = (, ,) C and ! " # ! ! ! 2 2 2 2 = (, ,) C
, the upper limit ! !

1 2
" is the least subschema containing ! 1 and ! 2 . The upper limit can be defined as the union of ! 1 , ! 2 and all the paths between ! 1 and ! 2 that have their lengths equal to D(! ! ,,)

) (,) # $ # $ % % # $ % % 1 2 1 2
Formally, the upper limit of two subschemas ! " #

! ! ! 1 1 1 1 = (, ,) C and ! " # ! ! ! 2 2 2 2 = (, ,) C
, is defined as:

! ! ! " # ! ! ! 3 1 2 3 3 3 = $ = (, ,) C
where :

! = " = C C C C P i n i # # # 3 1 2 1 U ! " # = $ = c C c c c c P i n i % % % % 1 , () () () () U -! " = # c c C c c c c c c 1 2 1 2 1 2 1 2 3 3 1 2 , (,) (,) (,) $ $ $ $ % % % Example : An example of
" 1 v " 2
Chapter Fig. 8. An example of an upper limit of two subschemas Definition 10 : Lower limit of two subschemas

The lower limit of two subschemas ! 1 et ! 2 of a schema ! is the greatest subschema which is contained both in ! 1 and ! 2 . Formally, the lower limit of two subschemas ! " #

! ! ! 1 1 1 1 = (, ,) C and ! " # ! ! ! 2 2 2 2 = (, ,) C , denoted by ! ! 1 2 " , is defined as: ! ! ! " # ! ! ! 3 1 2 3 3 3 = $ = (, ,) C
where :

! = " C C C # # # 3 1 2 ! " # = $ c C c c c % % % % & & & 3 3 1 2 , () () () !" # = $ c c C c c c c c c 1 2 1 2 1 2 1 2 3 3 1 2 , (,) (,) (,) % % % % & & &
Example: An example of a lower limit is shown in fig. 9.

Document

! 1 ! 2 " 1 #" 2
Chapter Fig. 9. An example of a lower limit of two subschemas

Algebraic operators

We have shown that the set of subdatabase of a database is closed under ! " and . We now prove that this set is also closed under algebraic operators: select, project, associate, union, intersection, difference, join, grouping, split, distribution.

The algebraic operators have as operands a subdatabase and produce a new subdatabase. In this algebra, the closure property is maintained, because the results produced by the queries are structured in the same manner as the operands. Also, this algebra allows to produce a new class of objects that enriches the existing database.

The algebraic operators will be formally defined in the appendix. The examples used to explain these operators will make use of the database shown in fig. 1 and3. We extend algebraic operators to subdatabases.

Select (#)

The Select is a unary operator, which operates on a subdatabase to produce a new subdatabase in which objects and inter-objects links satisfy a specified predicate. The resultant subdatabase has the same schema as the operand subschema, and the instances of the result is a subset of the instances of the operands which satisfy the predicate. The select operation is denoted # (X) [P] where X is an operand subdatabase and P is a predicate. The predicate P is a logical expression that is evaluated to true or false. This logical expression is composed by terms interconnected by logic operators (and, or, not). Each term can be, either a condition on an attribute value, or a condition on an inter-object link. The condition on the attribute values have the following form: a ' constant, or a ' b where a and b represent attributes.

-

Y d1 ! d2 ! d3 ! d4 ! a1! a2! a3! a4! c1! c2! c3! c4! c5! c6! c7! c8! X Fig.

Representation of the subdatabase Y resulting from a select operation

Rapport interne LIPN 1999 10

Projection (!)

The project is a unary operator, which operates on a subdatabase to produce a new subdatabase reduced to a subset of classes, a subset of inter-class links, and a subset of attributes. The project operation is denoted ! (X) [c1(p11, p12, ..., p1n), c2(p21, p22, ..., p2n), ..., cm (pm1 , pm2, ..., pmn)], where X is the subdatabase operand and the set {c1, c2, ..., cn} represents the different classes of the projected subdatabase. The set {pi1, pi2,, pin} represents the properties of the projection of the ci class.

The project operation is valid only

if the subschema ! " # Y Y Y Y C = (, ,) is such as : -C C Y X ! -! " # $ c C c c C Y Y X Y % % () (())
Example:

An example of project operation is shown in fig. 12. The expression of this project operation is:

Y := % (X) [Document (title), Author (first-name, name)] X Document title Author first-name name d1! d2! a1! a2! a3! d1 ! d2 ! a1! a2! a3! c1! c2! c3! c4! c5! Y Document

Fig. 12. An example of a project operation

Associate (")

The associate operator is a binary operator which constructs a new subdatabase by concatenating two subdatabases. The subschema of the result subdatabase is a concatenation of the subschemas of operands subdatabases through some inter-classes links. The instance of result subdatabase is constituted by the objects of the operands which are connected together. Since two subdatabase may have more than one link, it is necessary to specify through which links the concatenation is made. The associate operation between subdatabase X and Y through the links L is denoted X" [L] Y, where L={(ci, cj)} is included in the set C C X Y ! .

Example:

Let X and Y be the subdatabases represented by fig. 13, an example of associate operation is:

Z := X & [(Section, Picture)] Y
The result subdatabase of this query is shown in fig. 13. In this example, the object i1 of the Picture class is not represented in the result because it is not linked to any objet of the set {s1, s2, s3, s4, s5, s6, s7 } (cf. fig. 2). For the same reason, the objects{s2, s3, s6, s7} are not present in the result, because they are not linked to any object of the set {i1, i2, i3, i4, i5}. Consequently, the objects {c2, c5} of the Chapter class are also omitted from the result because they are not linked to any of the objects of the Section class.

! i2 ! i3 ! i4 ! i5 ! Picture title bitmap X d1 ! d2 ! c1! c2! c3! c4! c5! s1! s2! s3! s4! s5! s6! s7! d1 ! d2 ! c1! c3! c4! s1! s4! s5! i2! i3! i4! i5! Y Z Fig.

An example of associate operation (Z := X & [(Section, Picture)] Y)

Union, Intersection and Difference(+, !, -)

The union operator is a binary operator which constructs a new subdatabase by combining two subdatabases. The subschema of the result subdatabase is defined as the upper limit of the subschemas of the operands subdatabases. The instance of the result subdatabase is constituted by the union of the set of instances of operands which are extended to the subschema of the result subdatabase. The union operation is denoted X+Y.

The intersection operator, as the union operator, is a binary operator which constructs a new subdatabase by combining two subdatabases. The subschema of the result subdatabase is defined as the lower limit of the subschemas of the operands subdatabases. The instance of the result subdatabase is constituted by the intersection of the set of instances of the subdatabases operands. The intersection operation is denoted X•Y

The difference operator, as the union and intersection operators, is a binary operator which constructs a new subdatabase by subtracting from a subdatabase X of an other subdatabase Y. The subschema of the result subdatabase is defined as the subschema of X. The instance of the result subdatabase is constituted by the instance of X to which is subtracted the instances of the objects of Y.

X c3 • c4 • c5 • d2 • a2 • a3 • c1 • c2 • d1 • a1 • a2 • s1 • s2 • s3
d2 • d3 • a2 • a3 • a4 • c3 • c4 • c5 • c6 • c7 • d1 • d2 • a1 • a2 • a3 • c1 • c2 • c3 • c4 • c5 • s1 • s2 • s3 • s4 • s5 • s6 • s7 • d1 • d2 • d3 • a1 • a2 • a3 • a4 • c1 • c2 • c3 • c4 • c5 • c6 • c7 • s1 • s2 • s3 • s4 • s5 • s6 • s7 • s8 • s9 • s10 • s11 • s12 • Y X+Y Y-X X • Y

Fig. 14. Examples of union, intersection and difference operations

5. Join

Unlike the relationnel data model, in object-oriented models many relationships between objects can be represented within the objects themselves. Hence the join operations are used less frequently in the object algebra than in the relationnel algebra. However, the existing objects in a database may not explicitly reflect all relationships required by the queries. An explicit join is still needed to handle the cases when the relationship being queried upon is not defined within the object classes. Such relationship is called values-based relationship in contrast with those specified explicitly in the object model.

X Y Z r1 • r2 • r3 • p1 • p2 • p3 • p4 • o1 • o2 • o3 • o4 • o5 • o6 • o7 • o8 • User-guide Chapter Section title creation-date titre creation-date title body c1 • c2 • c3 • c4 • s1 • s2 • s2 • s4 • s5 • s6 • s7 • s8 • u1 • u2 • title creation-date title creation-date title creation-date Rereference-guide Part Subpart u1 • u2 • c1 • c2 • c3 • s1 • s2 • s3 • s4 • s5 • s6 • r1 • r2 • r3 • p1 • p2 • p3 • p4 • o1 • o2 • o3 • o4 • o5 • o6 • o7 • o8 • f1 • f2 •

Grouping (')

The grouping is an unary operator. This operator is also used in NST-Algebra [START_REF] Güting | An Algebra for Structured Office Documents[END_REF]. It is used to transform an association relationship to an aggregation relationship. The grouping operation is defined as '(X)[c1, c2, a] where X is an operand subdatabase and [c1, c2, a] is the association relationship to be transformed to an aggregation relationship.

Example:

An example of a grouping operation is shown in fig 17.

Split (()

The split operation is the inverse of the grouping operation. Indeed, the split operation is used to transform an aggregation relationship to an association relationship. The split operation is defined as ((X)[c1, c2, a] where X is an operand subdatabase and [c1, c2, a] is the aggregation relationship to be transformed to an association relationship.

Distribution (*)

The distribution operator is used to restructure a subdatabase. This restructuration is made by distributing a property of class c1 to a class c2. The distribution is valid, if there exists a link between c1 and c2. The distribution operation is defined as *(X)[c1, c2, p] where X is a subdatabase operand, p is the property of c1 to be distributed to class c2.

Example:

An example of the distribution operation is shown in figure 19.

Examples of expressions of algebraic queries

A storage and a query system of structured documents using the OODBMS technology was proposed in [START_REF] Christophides | From Structured Documents to Novel Query Facilities[END_REF]. This system was developed in the Verso project of INRIA. It is based on an extension of the model and query language of O2 OODBMS [START_REF] Al | The story of O2[END_REF]. In order to request documents by their structure and content, O2SQL was extended to:

-take into account new functions of modeling like the ordered n-tuples and unions of types -include predicates of textual retrieval like contains.

We will present examples of queries to compare our algebraic approach with the O2SQL query language. This example represents an interrogation on the content of the document as well as its structure. The formulation of such a query under an algebraic form allows a uniform specification of the condition on the content and on the structure. However, the interrogation, using O2SQL, can only be made by using key words such as: Count.

Example 2:

« Find the documents that are only constituted of two chapters with the following condition: each chapter belonging to three documents.».

The algebraic expression of the query is :

R1 := ([Document, Chapter] (Document! Chapter = 2) R2 := ([Document, Chapter] (Chapter!Document = 3) R3 := R1 • R2 R4 := % [R3] (Document)
To our knowledge, this query cannot be expressed in O2SQL. Indeed, such a query expresses a condition on the structure starting from the document to chapters and inversely, from chapters to the document.

Conclusion

We have presented in this paper an algebra for structured documents in an object-oriented approach. We have defined the concept of subdatabase on which is based the definition of algebraic operators. Indeed, the operands and the query result are subdatabases, as a consequence, the closing condition and the operators orthogonality conditions are respected because the operands and the results of the query operators are structured in the same way. The operators can be regrouped into two categories. A first category that deals with information retrieval operators (select, project, associate, union, intersection, difference and join operators). A second category that deals with information restructurating operators (grouping, split, distribution operators).

Appendix

The formal definition of the algebraic operators are given below :

-Select Let us consider a subdatabase X O A X X X = (, ,) ! (! " # X X X X C = (, ,
)). The select operation is defined as:

Y X P O A where C X Y Y Y Y Y Y = = = ! " " # $ ()[] (, ,) (, ,) such as : -C C Y X = , -! " = c C c c Y Y X , ()
() # # , -! " = c c C c c c c Y Y X 1 2 1 2 1 2 , , (,) (,)
- { } O o o O P o true Y X = ! = / : () - { } A x y
x y A P x true and P y true

Y X = ! = = (,) / (,) : () () -Project Let us consider a subdatabase X O A X X X = (, ,) ! (! " # X X X X C = (, ,)). The project operation is defined as: Y X c c c O A where C n X Y Y Y Y Y Y = = = ! " " # $ ()[, ,...,] (, ,) (, ,) 1 2 such as: - { } C c c c Y n = 1 2 , ,..., -! " = # c C c c C Y Y X Y $ $ () () -! " # c c C c c c c Y Y X 1 2 1 2 1 2 , , (,)
(,) $ $ - { } O o o O o C Y X Y = ! ! / : () " - { } A x y x y A y x Y X Y = ! ! (,) / (,) : () (()) " # " -Associate Let us consider a subdatabase X O A X X X = (, ,) ! (! " # X X X X C = (, ,)), Y O A Y Y Y = (, ,) ! (! " # Y Y Y Y C = (, ,)) and a database D = (, ,) ! O A . The association operation is defined as: Z X L Y O A where C Z Z Z Z Z Z Z = <!> = = [] (, ,) (, ,) " " # $ such as: -C C C Z X Y = ! - { } ! " = # # $ " c C c c c c c c L Z Z X Y , () () () '/(,) % % % -! " " # = " # = $ % & ' () c c C if c c C C then c c c c if c c C C then c c c c i j Z i j X X Z i j X i j i j Y Y Z i j Y i j , (,) () (,) (,) (,) () (,) (,)
* * * * - { O o o O O o o O O O O such that Z X Y X Y X Y = ! " # $! " % " / () : (,) (() (
)) :

} if o o L then o o if o o then o o (A A Z X Y ((), ()) (, ') () (()) (, ')) ! ! ! " ! # $ $ # $ $ % A or - { } { } A x y x y A x O and y O x y x y A x O and y O Z X Z Z Y Z Z = ! ! ! " ! ! ! " (
! ! ! ! A " " -Union Let us consider a subdatabase X O A X X X = (, ,) ! (! " # X X X X C = (, ,)) and Y O A Y Y Y = (, ,) ! (! " # Y Y Y Y C = (, ,)). The union operation is defined as: Z X Y O A where C Z Z Z Z Z Z Z = + = = (, ,) (, ,) ! ! " # such that : -! ! ! Z X Y = " -Let X such as: if ! ! X Z " , then X O A X X X = (, ,) ! such that ! ! X Z = and ! ()() X C X X = else X X = -Let Y such as: if ! ! Y Z " , then Y O A Y Y Y = (, ,) ! such that ! ! Y Z = and ! ()() Y C Y Y = else Y Y = -O O O Z X Y = ! -A A A Z X Y = ! -Intersection Let us consider a subdatabase X O A X X X = (, ,) ! (! " # X X X X C = (, ,)) and Y O A Y Y Y = (, ,) ! (! " # Y Y Y Y C = (, ,)). The intersection operation is defined as: Z X Y O A where C Z Z Z Z Z Z Z = • = = (, ,) (, ,) ! ! " # such as: -! ! ! Z X Y = " -O O O Z X Y = ! -A A A Z X Y = ! -Difference Let us consider a subdatabase X O A X X X = (, ,) ! (! " # X X X X C = (, ,)
i j Y i j Y X Y X , (,) (,) (,) (,)
Y X i i i n m + -! " = c C c c Y Y X , ()
() # # -! " = c c C c c c c i j Y Y i j X i j , , (,) (,) #
-O O Y X = -A A Y X = References

Fig. 4 .

 4 Fig. 4. : graphical representation of a subschema Definition 4 : An instance of a subschema An instance of a subschema ! " # ! ! ! = (, ,) C is a set of objects and a set of links between objects which respectively correspond to the classes in the subschema and to the links between classes. Formally, an instance is defined by the pair: (,) O A where O is a set of objects and A a set of inter-objects links A O O ! " with the following constraint: -! " " (,) , () (()) x y A y x # $ # Example: Fig. 5 gives a graphical representations of an instance of the subschema that is represented in fig. 4.

Fig. 6 :

 6 Fig. 6 : A graphical representation of a subdatabase. Definition 6: path between two classes Given a schema ! ! ! ! = (, ,) C " # and two classes a, b of C ! , a path P(a, b), is defined as a sequence a c c c b n 1 2

 If a, b and constant are integer, then ' can be: =, $, %, &, <, > -If a, b and constant are Boolean, then ' can be: =, $ -If a, b and constant are string, then ' can be : =, $, %, &, <, > -If a is a text and constant is a string, then ' can be: contains, notcontainsTo express the conditions on the cardinalities of links, we use the symbol "!". The conditions on the cardinalities of links have the following form: A!B ' cst, where A and B are classes, ' is a comparison operator that can be: =, $, %, &, <, > and cst is a numeric constant. For example, the predicate "Document!Author = 2" means that the object of the Document class must be linked to only two objects of the Author class.Example: « Find the documents which are written by two authors only, whose titles contain the word 'computer' and which are composed of at least two chapters ». (cf. fig. 1 and 2)The algebraic expression of this query is:X := ({Document, Author, Chapter}, {(Document, Author), (Document, Chapter) }) Y:=((X) [(Document.title contains "Computer") and (Document!Chapter > 2) and (Document!Author = 2)] If we suppose that the values of the title attribute (cf fig. 2) are: d 1 .title = "Computer and medicine", d 2 .title = "Data and Computer", d 3 .title = "Data Processing", d 4 .title = "Computer Science" The result of the select operation is shown in fig. 11. ! a1 ! a2 ! a3 ! c1 ! c2 ! c3 ! c4 ! c5 !

 For example, suppose we have a layer document class and a technical document class. A query « Find the layer document which has the same key words as the technical document », requires a value-based join between the classes layer document and technical document through the attribute keywords.The join condition links the properties of only one class of X and the properties of only one class in Y. The subschema of the result subdatabase is defined as the concatenation of the subschemas of the subdatabases operands through a new class c. This new class is defined as a set of tuples. The tuple is made of two attributes, the first attribute is a set of references to the class c1 of X, the second attribute is a set of references to a class c2 of Y. The graphical structure of class c is shown in fig 15. The instance of the result subdatabase is constituted of a portion of X that satisfies the join condition, a portion of Y that satisfies the join condition, and the union of the instances of operands which are extended to the subschema of the result subdatabase. The Join operation is denoted by X) [P] Y where X and Y are the subdatabases operands and P represents the join predicate.

Fig 15 .

 15 Fig 15. The graphic representation of the structure of the class C Example: Let X and Y be the subdatabases represented by the fig. 16.An example of join operation is : X) [Chapter.date-creation = Part.date-creation] Y if, we suppose that the values of the attributes date-creation of the reference-guide class and of the user-guide class are: c 1 .creation-date = "26-03-62", c 2 .creation-date ="26-03-62", c 3 .creation-date = "05-07-62", c 4 .creation-date = "19-03-62", p 1 .creation-date = "26-03-62", p 2 .creation-date ="26-03-62", p 3 .creation-date ="05-07-62", p 4 .creation-date = "05-07-62". The result of the join operation is shown in fig. 16. The subschema of the result subdatabase is composed of the subschema of X and of Y, and of a new Chapter-Part class which refer to Chapter class and Part Class. The Chapter-Part class is composed of two objects f1 and f2.The object f1 is linked to the objects {c1, c2} of the Chapter class and it is also linked to the objects {p1, p2} because the two sets of objects have the same value of the datecreation attribute and the join condition is fulfilled. For the same raison, the object f2 is linked to the objects {p3, p4}. However, the object c4 of Chapter class is not present in the result, because it doesn't fulfill the join condition. consequently, the objects {s7,s8} of the Selection class are also omitted from the result.

Fig. 16

 16 Fig. 16 Representation of the subdatabases X, Y and Z

!

 [Document, Author, main-author]

Fig. 17

 17 Fig. 17 Example of the grouping operation

 An example of the split operation is shown in fig 18.

Fig. 18

 18 Fig. 18 Example of the split operation

Fig. 19

 19 Fig. 19 Example of the distribution operation

Example 1 :

 1 «Find the documents containing the word Computer in the title and which are constituted of two chapters.» The request is written as follows in the O2SQL query language: Select x From x in Document y in x.Chapter Where x.title contains « computer » and count (x.chapter) =2 The algebraic expressions of the request are : R1 := % [Document, Chapter] ((Document.title contains « computer ») * (Document! Chapter = 2)) R2 := % [R1] (Document) R1 := ([Document, Chapter] (Document.title contains « computer ») R2 := ([R1] (Document! Chapter = 2) Rapport interne LIPN 1999 16

 ,)). The difference operation is defined as: ,)). The join operation is defined as: ,)). The grouping operation is defined as:

 ,)). The split operation is defined as: ,)). The distribution operation is defined as:

 a subschema of any schema.

	Example:			
	Fig. 4 represents the graph of the subschema !	" # ! ! = (, ,) ! C		which is defined as:
	C ! = { Document (title, type, creation-date), Chapter (title, creation-date), Reference (reference) }
	! " (Document) = {Chapter, Reference}			
	! " (Chapter) = #			
	! " (Reference) = #			
				title
		Document	type creation-date
	title creation-date	Chapter	Reference	reference

 an upper limit of two subschemas is shown in fig.8.

	Rapport interne LIPN 1999			
	creation-date title type	Document			Reference	! 1 reference
			title creation-date	! 2	Publication	title type date
			Section	title type
		Content	title type	Picture	title bitmap
			Author	first-name name address
					8

-Y Example:

 The difference operation is denoted XExamples of union, intersection and difference operations are shown in fig. 14.

	Document Author Chapter Document Section title title title creation-date title Rapport interne LIPN 1999 first-name name address Author Chapter first-name creation-date name	12

 •

		Document	title
	first-name name	Author Chapter	title creation-date
		Section	title creation-date
		Document	title
	first-name name address	Author Chapter	title creation-date
		Section	title creation-date
		Document	title
	first-name name	Author Chapter	title

& & & 3 3 1 2