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Analysis of Thermal Effects in a 
Cavitating Inducer Using 
Rayleigh Equation
A simple model based on the resolution of Rayleigh equation is used to analyze thermal 
effects in cavitation. Two different assumptions are considered for the modeling of heat 
transfer toward the liquid/vapor interface. One is based upon a convective type approach 
using a convection heat transfer coefficient or the equivalent Nusselt number. The other 
one is based upon the resolution of the heat diffusion equation in the liquid surrounding 
the bubble. This conductive-type approach requires one to specify the eddy thermal 
diffusivity or the equivalent Peclet number. Both models are applied to a cavitating 
inducer. The basic pressure distribution on the blades is determined from a potential flow 
computation in a two-dimensional cascade of flat plates. The sheet cavity, which develops 
from the leading edge, is approximated by the envelope of a hemispherical bubble trav-
eling on the suction side of the blade. Cavity shape and temperature distribution pre-
dicted by both models are compared. The evolutions of cavity length with the cavitation 
number for cold water (without thermal effects) and for Refrigerant 114 at two different 
temperatures is compared to experimental data. Such a simple model is easy to apply and 
appears to be quite pertinent for the analysis of thermal effects in a cavitating 
inducer.

1 Introduction

In a number of fluids, the development of cavitation goes with
significant thermal effects. The so-called thermodynamic effect
has been extensively studied since the early works of Stahl et al.
�1� and Stepanoff �2�. The phenomenon is characterized, in par-
ticular, by a temperature drop inside two-phase regions. It is due
to the latent heat of vaporization, which is taken to the liquid
surrounding the cavitating zone whose temperature is then low-
ered.

The effect is negligible in water at room temperature but may
be significant at a higher temperature or in other liquids as, e.g.,
cryogenic fluids used for the propulsion of space rockets. Several
parameters have been introduced to estimate the importance of
thermal effects in cavitating flows. Stepanoff �2� defined a char-
acteristic temperature drop by

�T* =
�

v
L

��cp�

�1�

This is the temperature drop to be applied to a unit volume of
liquid to supply the latent heat required for the vaporization of a
unit volume of vapor. Experiments show that this parameter is a
relevant order of magnitude of the temperature drop in cavitating
flows. For water at room temperature, it is quite small and equal to

0.01 K, whereas it exceeds 1 K for liquid hydrogen at 22 K. This
big difference demonstrates the major influence of the liquid prop-

erties on the phenomenon. The well-known B factor of Stepanoff
�2� is the nondimensional parameter:

B =
�T

�T*
�2�

where �T is the actual temperature drop in the cavitating flow.

Using the slope dp
v
/dT of the vapor pressure curve, a charac-

teristic pressure difference can be built on the basis of the previ-

ous characteristic temperature difference �T*:

�p
v

* =
dp

v

dT
�T* �3�

This is the drop in vapor pressure associated with the drop in

temperature �T*. Since �T* is a relevant order of magnitude of

the temperature drop, �p
v

* can be considered as a relevant order of
magnitude of the pressure drop inside the cavities. This is true as
long as the thermodynamic equilibrium condition is achieved,
which is generally the case. Nonequilibrium is expected only at
the very final stage of collapse when the kinetics of phase change
can become a limiting factor because of the very high velocity of
the interface.

Brennen �3,4� suggests the use of the thermodynamic parameter

� =
�p

v

*

��
���

�4�

to measure the importance of thermal effects in cavitating flows.

The � parameter was derived from the analysis of the dynamics of
a single bubble with the assumption that heat transfer to the inter-
face is provided by conduction through the surrounding liquid.
The thickness of the thermal boundary layer then plays an impor-
tant role and accounts for the presence of the square root of the

liquid thermal diffusivity ��. The � parameter has the units

m/s3/2.
Considering the case of a sheet cavity and still assuming heat

transfer to the cavity interface by conduction through the neigh-
boring liquid, Kato �5� introduced a similar parameter defined by

� =���

�
v

� �5�

The importance of thermal effects increases with � and �. From a
systematic analysis of Hord’s experiments �6�, Kato �5� showed a

good correlation of the nondimensional pressure drop 2�p
v
/��V2

inside the cavity with the nondimensional parameter ��c /V3,

where c and V are a reference length scale and a reference veloc-
ity scale of the flow.

It is of major concern to observe that, in such models based on
a well-defined interface between the liquid and either a cavitation
bubble or a sheet cavity, heat transfer by conduction characterized
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by the classical liquid thermal diffusivity �� is far too small to
account for the measured values of the temperature drop. For a
correct prediction, Kato �5� and Watanabe et al. �7� have shown
that the liquid thermal diffusivity should be multiplied by an am-

plifying coefficient � of the order of 8000 �7� up to 105 �5�. This
large value is supposed to account for the enhancement of heat
transfer due to both turbulence and an increase in the interface
area probably due to the small-scale instabilities of the interface.
The importance of the so-called interface roughness was con-
firmed by Fruman et al. �8,9� on the basis of Billet’s entrainment
theory �10–12�.

Besides interface models, two-phase models have been devel-
oped. The two-phase mixture is generally considered as a pseud-
ofluid, which obeys the Navier–Stokes equations. A suitable con-
stitutive equation for the mixture as the barotropic law can be
specified �Rapposelli et d’Agostino �13�, Rolland et al. �14��. An-
other option consists in solving an additional transport equation
for the vapor phase with a source term modeling the cavitation
phenomenon �see, e.g., Tani and Nagashima �15� and Hosangadi
and Ahuja �16–18��. The vaporization or condensation process can
be modeled either by ad hoc equations as in Ref. �16� or by
seeding the flow field with microbubbles and computing their evo-
lution using the Rayleigh–Plesset equation, as proposed originally
by Kubota et al. �19� �see, e.g., Singhal et al. �20��. To address
thermal effects, it is necessary to solve the energy equation for the
mixture together with the mass and momentum conservation
equations. These equations are essentially coupled through the
dependence of the vapor pressure with the temperature.

For interface models, the volume of liquid surrounding vapor is
almost infinite and heat transfer is supposed to be limited by the
growth rate of the thermal boundary layer. Conversely, two-phase
models assume an intimate mixing of liquid and vapor and the
volume of liquid surrounding a given bubble is naturally limited
by the surrounding bubbles. Hence, thermal effects are essentially
regulated by the limited volume of liquid able to supply the heat
for vaporization and not by heat diffusion as for interface models.
Thermal effects are then basically controlled by the evolution of
void fraction without any influence of the liquid thermal diffusiv-
ity.

The difference between both types of models can easily be

demonstrated by comparing basic expressions of the B factor. In

the case of a bubble whose radius grows from 0 to R during time

t, the B factor is given by �see, e.g., Ref. �21��

B �
R

���t
�6�

On the other hand, for a two-phase mixture of void fraction �
v
,

the heat conservation equation leads to �see Ref. �22��:

B �
�

v

1 − �
v

�7�

In the case of Eq. �6�, thermal effects depend upon the liquid
thermal diffusivity, which is obviously not the case for Eq. �7�. In
addition, Eq. �7� becomes singular when the void fraction ap-
proaches unity, which shows that the two-phase model is valid for
rather dilute mixtures but fails when the cavitating region be-
comes pure vapor. If so, it is necessary to switch to interface-type
models. Hence, it is of primary importance, in practice, to recog-
nize the type of cavities in order to be able to identify the appro-
priate physical mechanism, which actually limits the supply of
heat necessary for vaporization.

The present paper is devoted to an analysis of thermal effects
on the basis of the Rayleigh equation. It belongs to the class of
interface models for which heat transfer through the thermal
boundary layer is supposed to be the limiting physical phenom-
enon. The present analysis is very similar to that conducted by
Watanabe et al. �7� except that it considers bubble cavitation in-
stead of sheet cavitation. It is also applied to the case of a cavi-
tating inducer of a space rocket turbopump investigated experi-
mentally by Franc et al. �22�.

The analysis comprises two successive steps. First, the pressure
distribution in a two-dimensional �2D� noncavitating cascade is
computed using a boundary element method. Second, the Ray-
leigh equation is solved using the previous pressure distribution in
order to compute the evolution of a cavitation bubble on the blade
suction side.

The original aspect of the present contribution essentially lies in
the thermal term added to the Rayleigh equation in order to ac-
count for thermal aspects. Two different forms based either on a
convective- or a conductive-type approach are considered. Both
approaches are evaluated by comparison with the experimental
results �22�. The main objective is to evaluate whether this kind of
simple model is able to account for the trends observed experi-

mentally as the increase of the B factor with the cavity length.
In the present approach, the sheet cavity observed experimen-

tally is compared to the computed envelope of a hemispherical
bubble, which grows and collapses on the suction side of the
blades. This kind of simple model obviously suffers from limita-
tions. One is the lack of any feedback of cavitation on the pressure
distribution since the bubble evolution is computed using the non-
cavitating pressure distribution. The 2D nature of the computation
of the pressure distribution is also a limitation since inducers may
be subjected to backflow, which may significantly change angles
of attack. Nevertheless, the present work supplies a theoretical
support for the physical interpretation and understanding of ex-
perimental results.

Fig. 1 Scheme of the 2D cascade „vertical scale has been expanded…
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2 Pressure Distribution Computation

The inducer is represented by a 2D cascade of flat plates, as
shown in Fig. 1. This 2D configuration is obtained from a cylin-

drical section of the inducer at radius r. Enlargements of the lead-
ing edge and trailing edge are shown in Figs. 2 and 3. Calculation
of the bubble evolution was started at the back end of the bevel,

from point B where the pressure is minimum �see also Fig. 4�.
This location corresponds to the observed point of detachment of
cavities. As for the trailing edge, its shape was chosen in order to
allow a smooth detachment of the flow in a direction parallel to
the blades.

The relative thickness of the blade is about 1% and the solidity

c /H is 2. The incidence angle �a and the stagger angle � of the

cascade are such that the blade bevel is parallel to the j direction

of the grid. The inlet velocity Vui is supposed perpendicular to the
grid �no prerotation�. At upstream infinity, the reference relative
velocity is

Wu = �Vu
2 + �2r2 �8�

where � is the angular speed of rotation. Any radial flow normal
to the cylinder surface is ignored and the flow is then supposed to

be 2D in the �i , j� plane. In addition, it is assumed incompressible,

irrotational, and inviscid. Under these assumptions, the pressure
coefficient is given by

Cp = 1 −
W2 − �2r2

Wu
2 − �2r2

�9�

The pressure distribution on the blade is computed using the
boundary element method. A double distribution of sources and

vortices ��* ,�*� is distributed on the blade surface with the space

periodicity H in the j direction to take into account the infinite
series of blades. This distribution is chosen so that the relative

velocity at upstream infinity is in the I direction. The boundary
conditions consist in a zero normal velocity on the blade �slip
condition� and the continuity of pressure at the trailing edge. Con-
servation of flowrate through the inducer requires that the compo-

nent of the relative velocity W · i is the same at upstream and
downstream infinity. The flow at downstream infinity is deviated

with an angle 	 given by

tan 	 =

�sin ���
blade

�*dx

HWu + �cos ���
blade

�*dx

�10�

The double distribution used here introduces more unknowns than
equations to be solved. Additional conditions are imposed in order
to minimize the discretization errors. This allows us to compute,
with an improved accuracy, the pressure coefficient on blades of
small relative thickness.

The computational method has been validated by comparison
with the results obtained by Watanabe et al. �7�. Both computa-
tions agree fairly well, as shown in Fig. 4. The differences, which
are observed particularly at the leading edge near the bevel, are
due to the nonlinear nature of the present computation contrary to
Ref. �7�, which assumes blades of zero thickness.

3 Basic Equations

3.1 Nondimensional Form of the Rayleigh Equation. Once
the pressure distribution has been computed, Rayleigh equation

R
d2R

dt2
+

3

2
�dR

dt
	2

=
p

v
�Tc� − p�t�

��

�11�

is solved in order to determine the evolution of the radius R of a

bubble traveling on the suction side of the blades. p�t� is the time

dependent pressure to which the bubble is subjected as it moves
along the blades. The effects of viscosity and gas content, which
generally become negligible as soon as the original microbubble
becomes a macroscopic cavitation bubble, are disregarded and the
present work is focused on the thermodynamic effect. To account
for thermal effects, it is necessary to consider in Rayleigh equa-

tion the vapor pressure corresponding to the actual temperature Tc

inside the bubble, which is different from the liquid temperature

T
 far from the bubble.
Using the pressure coefficient previously calculated

Cp =
p − pu

�1/2���Wu
2

�12�

and the usual cavitation number defined on the basis of the vapor

pressure at the liquid temperature at infinity p
v
�T
�

�
v

=
pu − p

v
�T
�

�1/2���Wu
2

�13�

Rayleigh equation �11� becomes

R
d2R

dt2
+

3

2
�dR

dt
	2

=
p

v
�Tc� − p

v
�T
�

��

− Wu
2Cp + �

v

2
�14�

The first term on the right hand side accounts for thermal effects.
The bubble is supposed to travel on the blade with the local

fluid velocity Wu
�1−Cp. Time derivatives in the original Rayleigh

equation are then transposed into space derivatives using the fol-
lowing equation:

Fig. 2 Close view of the blade leading edge

Fig. 3 Close view of the blade trailing edge

Fig. 4 Pressure distribution on the blades. Comparison be-
tween the present results and that of Watanabe et al. „Ref. †7‡….
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d

dt
= Wu

�1 − Cp

d

dx
�15�

In addition, lengths are made nondimensional using the foil chord

length c. Then, Eq. �14� takes the following nondimensional form:

�1 − Cp�
R̄
d2R̄

dx̄2
+

3

2
�dR̄

dx̄
	2� −

1

2

dCp

dx̄
R̄

dR̄

dx̄
+

1

��Wu
2

dp
v

dT
�T
 − Tc�

= −
Cp + �

v

2
, �16�

where bars denote nondimensional variables.

3.2 Convective Approach. The problem is now to estimate

the temperature inside the bubble Tc. Two different approaches are
considered. In the present section, heat transfer at the bubble wall
is supposed to be of convective nature. In other words, the heat
flux at the interface is supposed to be proportional to the tempera-

ture difference T
−Tc:

� = h�T
 − Tc� �17�

where h is the convection heat transfer coefficient. The validity of
the convective approach is open to discussion especially when
considering that the bubble is traveling at the same velocity as the
liquid. From this viewpoint, the conductive approach considered
in Sec. 3.3 might appear more appropriate. Nevertheless, the state-
ment that the heat flux at the bubble wall is proportional to the
temperature difference appears physically reasonable. In the ab-
sence of any validated correlation applicable to cavitating flows,
the heat transfer coefficient is considered here as a tuning
parameter.

Under this assumption, the heat balance for the bubble is writen
as

d

dt

4

3
�R3�

v�L = 4�R2h�T
 − Tc� �18�

This equation allows us to compute the temperature inside the
bubble:

T
 − Tc =
�

v
L

h

dR

dt
�19�

Equation �19� shows that the thermal effect �T=T
−Tc is propor-

tional to dR /dt. In the growing phase, the bubble temperature is
then lower than the liquid temperature and is higher during col-
lapse. Using form �19� of the thermal effect, Rayleigh equation
�16� becomes

�1 − Cp�
R̄R̄
¨

+
3

2
R̄
˙ 2� −

1

2
ĊpR̄R̄

˙
+

1

Nu

�p
v

*

����


�1 − CpR̄
˙

= −
Cp + �

v

2

�20�

where Nu is the Nusselt number defined by

Nu =
hc

��

�21�

and 
=c /Wu is the transit time.
According to this approach, the thermodynamic effect intro-

duces an additional term in Rayleigh equation, which is propor-

tional to the bubble growth rate R̄
˙
. The magnitude of thermal

effects depends upon the factor:

1

Nu

�p
v

*

����


 �22�

It is the ratio of two characteristic times, the transit time 
 and the
following time:


T = Nu
����

�p
v

*
�23�

which can be considered as a thermal time since it essentially
contains the information on heat transfer at the interface.

If the thermal time is much larger than the transit time, thermal
effects are negligible and Eq. �20� reduces to the usual Rayleigh
equation. Conversely, if the thermal time is much smaller than the
transit time, thermal effects are predominant. A suitable criterion
for estimating the magnitude of thermal effects is then based on
the comparison of these two characteristic times. Besides the Nus-

selt number, the thermal time depends on �p
v

* /����, which is very
similar to Brennen’s parameter �4�. Equation �20� will be solved
to compute the bubble evolution with thermal effects. As already
mentioned, the convection heat transfer coefficient or the corre-
sponding nondimensional Nusselt number is a free parameter of
the model. We can also imagine correlating the Nusselt number

with the Reynolds �Re=cWu�� /��� and Prandtl �Pr=�� /�����
numbers as in traditional convection heat transfer theory, but this
has not yet been done for cavitating flows.

Let us observe that Eq. �19� takes the following nondimensional
form:

B =
Pe�1 − Cp

Nu
R̄
˙

�24�

where Pe is the Peclet number �see Eq. �27��.

3.3 Conductive Approach. The second approach tested here
is the conductive approach. It requires to solve the heat diffusion
equation in the liquid surrounding the bubble. An explicit expres-
sion of the bubble wall temperature has been proposed by Plesset
and Zwick �23–25� �see also Brennen �3�� under the assumption
that the thickness of the thermal boundary layer is much smaller
than the bubble radius. The validity of this assumption is evalu-
ated at the end of the present section. If so, bubble wall tempera-

ture Tc can be calculated at each instant t by the following expres-
sion:

B =
T
 − Tc

�T*
=

1

�����

�
u=0

u=t
R2�u��dR/dt��u�du

��
v=u

v=t

R4�v�dv

�25�

This equation is the solution of the unsteady heat diffusion prob-
lem with a moving spherical boundary. It includes the enhance-

ment coefficient � discussed in Sec. 1. It is similar to some extent
to Eq. �19�, although more complicated. Both approaches will be
compared in detail in Sec. 4.1.

Using the nondimensional procedure given in Sec. 3.1 and
switching to a space dependency rather than a time dependency,
Eq. �25� becomes

B =
T
 − Tc

�T*
=�Pe

�
J�x̄� �26�

where Pe is the Peclet number defined by

Pe = Re Pr =
Wuc

��

�27�

and J is the integral

J�x̄� =
1

��
�

u=0

u=x̄
R̄2�u�dR̄/dx̄�u�du

��
v=u

v=x

R̄4�v�/�1 − Cpdv

�28�

By introducing expression �26� of the interface temperature into
Rayleigh equation �16�, we get the final following equation:
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�1 − Cp�
R̄R̄
¨

+
3

2
R̄
˙ 2� −

1

2
ĊpR̄R̄

˙
+

�p
v

*

��Wu
2
�Pe

�
J = −

Cp + �
v

2

�29�

When using Brennen’s parameter � defined in Eq. �4�, previous
equation takes the equivalent form:

�1 − Cp�
R̄R̄
¨

+
3

2
R̄
˙ 2� −

1

2
ĊpR̄R̄

˙
+ �� c

Wu
3

1

��
J = −

Cp + �
v

2

�30�

Bubble evolution including thermal effects is obtained by solving
Eq. �30� together with Eq. �28�. The numerical procedure is pre-
sented in Sec. 3.4.

As mentioned previously, the consistency of the approach de-
pends upon the relative order of magnitude of the thermal bound-
ary layer thickness compared to bubble size, which is typically of
the order of the chord length. The order of magnitude of the
boundary layer thickness is

� � ����
 �31�

so that

�

c
�

��

�Pe
=

��

�Re Pr
�32�

A typical value of the Reynolds number for rocket turbopump

inducers is 106. For Refrigerant 114 considered later in this work,

we have Pr
5. A typical value for the amplifying coefficient � is

104 �see Sec. 4�. Hence, we have � /c�0.04 so that the hypothesis
of a thin thermal boundary layer compared to the characteristic

length scale of the cavities appears appropriate. The larger the �,
the larger the effective thermal diffusivity and the less accurate
this hypothesis.

In a few cases and particularly when thermal effects become
important, the conductive model presented above may lead to an
unrealistic shape of the cavity characterized by oscillations. This
effect is generally observed around cavity closure when the
bubble starts to collapse, i.e., when the local pressure exceeds the
vapor pressure. It is due to the fact that the temperature increases
because of condensation as well as the corresponding vapor pres-
sure. If thermal effects are large enough, the vapor pressure may
exceed the local pressure. The bubble will then grow again so that
the cavity interface oscillates.

To avoid this effect, which is not observed experimentally, it is

chosen to set the temperature difference Tc−T
 to zero as soon as
it becomes positive. This is equivalent to assuming that the bubble
temperature cannot exceed the liquid temperature. In other words,
it is assumed that heat diffusion is considerably enhanced during
the collapse phase so that the temperature becomes uniform al-
most instantaneously. The instability of the spherical shape to-
gether with the splitting of the vapor phase into small scale struc-
tures during collapse can justify this assumption. The entire
growth phase is not affected by this effect. A similar assumption is
made by Watanabe et al. �7�, who neglected the heat flux due to
condensation near the trailing edge of the cavity, assuming that
condensation occurs far downstream of the cascade because of the
shedding of vapor structures by the cavity.

For coherence and to make relevant comparisons between the
conductive and the convective model, the same assumption of a
uniform temperature in the condensation zone is also made for the
convective model. The consequence on the temperature distribu-
tion in the cavity is clearly visible on Fig. 5�b�, for instance.

3.4 Numerical Aspects. Equation �20� is a nonlinear differ-
ential equation of the second order, whereas Eq. �30� is an inte-
grodifferential equation because of integral �28�. To solve these
equations, a combination of two Runge–Kutta methods of orders 4
and 5, respectively, is used. The first provides the solution, and the
second an estimate of the error. This combination, due to Fehlberg

and improved by Kash and Carp �26�, allows us to control the
error during iterations. Indeed, for a specified tolerance, the order
of magnitude of the error is calculated and the integration step is
modified so that the precision criterion is satisfied: the step value
is increased if the error is too small and decreased if the error is
too large. Thus, the integration step is variable and the computing
time is considerably reduced while keeping an excellent relative

precision �10−6�. This method is extended to the resolution of a

system of two first order differential equations, using R and dR /dx
as unknown functions. In this case, the relative error is simply the
maximum value of the two relative errors.

The iterative resolution procedure makes it possible to trans-
form the integrodifferential equation �30� into an ordinary differ-

ential equation. Indeed, at the current iteration, integral J is cal-
culated using estimates obtained at the previous iteration.

Mechanical and thermal equilibriums are assumed as initial

conditions for the bubble. So, the interface velocity �dR /dx�0 and

acceleration �d2R /dx2�0 are initially zero, and the temperature is

equal to T
 and J0=0 �Eq. �25��. To correctly initiate the iterative

procedure, a nonzero value of R0 is required. It has been checked
that the subsequent behavior of the bubble is insensitive to the
value of its initial radius within a very large range of variation.

Under these assumptions, strictly speaking, Eq. �20� or �30�
imposes that Cp0+�

v
=0 at the initial time. The cavity starting

point being fixed, this last condition is generally not satisfied,

except for the very special case �
v
=−Cp0. Nevertheless, for all

values of �
v
, the preceding initial conditions are preserved.

Hence, the interface velocity presents a discontinuity at the initial
time. The numerical results show that this discontinuity does not
affect the resolution of the differential equation.

4 Results and Discussion

4.1 Comparison Between the Convective and the Conduc-
tive Model. Cavity shape and temperature distribution obtained
by both approaches are compared on Fig. 5. Values of Nusselt

number Nu for the convective model and of the ratio � of the eddy

Fig. 5 Comparison between the convective „Nu=7.31Ã106…

and the conductive „�=5Ã104… models for the same cavity
length. „a… cavity shape. „b… Temperature distribution „R114
40°C−�v=0….
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diffusivity to the molecular one for the conductive model have
been chosen so that the cavity length is the same. Figure 5�b�
shows that temperature distributions are quite different for both
cases.

For the convective model, temperature exhibits a sudden drop
at the leading edge of the cavity. The temperature depression is
maximum there and the temperature increases regularly along the
cavity. As shown by Eq. �19�, the convective model assumes that
the temperature depression is proportional to the bubble growth
rate. Since the latter is maximum at the cavity leading edge where
pressure is minimum, the temperature depression is also maxi-
mum at this location.

For the conductive model, the temperature depression is zero at
the cavity leading edge. The temperature inside the cavity first
decreases and then increases so that a minimum is observed. This
smooth behavior is the consequence of the solution of the heat
diffusion equation in the liquid, which does not allow any jump in
temperature.

Because of the large temperature drop at the cavity leading
edge, the initial bubble growth rate is smaller for the convective
approach. In the conductive case, it is the same as that without
thermal effects �see Fig. 9�, since temperature depression is ini-
tially zero. As a consequence, the cavity is somewhat thinner for
the convective model.

The maximum cavity thickness is located closer to the cavity
trailing edge for the convective approach �see Fig. 5�a��. Its loca-

tion corresponds exactly to the point where the B factor vanishes,

still because of the proportionality between B and Ṙ. For the con-

ductive model, the relationship between B and Ṙ is more compli-
cated �see Eq. �25��, since the cavity temperature at any time
depends upon the whole temperature history of the surrounding
liquid. As a consequence, the conductive model predicts a shift
between the location of maximum cavity thickness and the point

where the B factor vanishes, as shown in Fig. 5�a�.
It is difficult to know which model is more appropriate. On the

one hand, the instantaneous initial jump in temperature predicted
by the convective model may be considered as unrealistic from a
physical viewpoint. On the other hand, experimental results �see
Hord �6� and Fruman et al. �8�� tend to prove that the temperature
depression is maximum at the cavity leading edge and decreases
regularly downstream. However, the maximum observed experi-
mentally is usually not as pronounced as the convective model
predicts and measured temperature profiles are generally rather
flat just downstream of the cavity detachment. On the whole, the
conductive model may be preferred although no definite conclu-
sion can be drawn from the present work. It will be shown in next
section that the differences between both models decrease when
thermal effects increase and that both models tend toward the
same limit for large enough thermal effects.

4.2 Effect of Nu or � on Thermal Effects. Both models
include a free parameter, which controls the amplitude of thermal
effects. The tuning parameter is the Nusselt number for the con-

vective approach and the ratio � for the conductive one. Thermal

effects are zero when Nu or � are infinite and increase with de-

creasing Nu or �.

The similar influence of Nu and � can be understood by com-
paring both models. The heat flux to the interface is given by

q = h · �T �33�

for the convective model, and by approximately

q � �t ·
�T

�
�34�

for the conductive one since �T /� is the order of magnitude of the
temperature gradient.

The identification of forms �33� and �34� of the heat flux to-
gether with the estimate �31� of the boundary layer thickness leads
to the following nondimensional relation:

Nu � ��Pe �35�

This equation suggests a link between the conductive and the
convective models. To some extent, it can be expected that the
influence of the Nusselt number in the convective model is similar

to that of ��Pe for the conductive one. Figure 6�a� confirms that

the variations of cavity length with Nu and ��Pe for the convec-
tive and the conductive model, respectively, are comparable.

When thermal effects are increased, i.e., when either Nu or ��Pe
are decreased, cavity length decreases in a similar way. Moreover,
both models predict the same minimum cavity length for very
large thermal effects.

This minimum cavity length is not zero. However, Fig. 6�b�
indicates, and detailed computations confirm, that the cavity thick-
ness as well as the cavity volume comes to zero when thermal

effects are increased. The bubble growth rate Ṙ together with R̈

Fig. 6 Effect of Nu „convective model… or � „conductive model…
on „a… cavity length, „b… cavity shape, and „c… maximum B factor
„R114 40°C−�v=0….
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also vanishes. Then, the inertial term on the left hand side of
Rayleigh equation �11� tends to zero. As a consequence, the right
hand side term should also vanish. This implies that, whatever the

thermal model may be the vapor pressure p
v
�Tc� based on the

actual cavity temperature Tc tends toward the local pressure at any
point along the cavity. This is confirmed on Fig. 7, which clearly

shows that the opposite of the cavitation number −�c based on the
actual cavity pressure approaches everywhere the pressure coeffi-

cient Cp when thermal effects are increased. In the limit case
corresponding to the suppression of cavitation by thermal effects,
the temperature distribution inside the cavity is determined only
by the pressure distribution on the blade and the vapor pressure

curve of the fluid. In particular, the maximum value of the B
factor is independent of the model, as shown by Fig. 6�c�, and

determined by the minimum pressure pmin on the blade. The mini-

mum value of the temperature inside the cavity Tc min is deter-

mined by p
v
�Tc min�= pmin.

The existence of a minimum value of the cavity length when
thermal effects become predominant can be qualitatively under-
stood on the basis of the convective model. The limit shape of the
cavity is given by the solution of Rayleigh equation �20� in which
the inertial terms are neglected as previously mentioned. This sim-
plified equation writes

R̄
˙


 −

T




Cp + �
v

2�1 − Cp

�36�

Since

�
0

�

Ṙdx = 0 �37�

the minimum cavity length � is determined by the following equa-
tion:

�
0

�
Cp + �

v

�1 − Cp

dx = 0 �38�

It depends only upon the pressure distribution and the cavitation
number. In practice, the situation is more complicated since the B
factor is forced to zero in the condensation region, where Eq. �36�
is then no longer valid. The situation is even more complex in the
conductive case for which equations are much more complicated.
Anyway, the previous simplified argument makes the idea of a
minimum cavity length quite understandable when thermal effects
are increased even though an exact equation for the quantitative
prediction of this minimum cavity length could not be derived.

4.3 Comparison With Experiments. Figure 8 presents the
evolution of cavity length with the cavitation number for water
and Refrigerant 114. The cavitation number plotted here is the

inducer cavitation number �inducer. It is deduced from the cavita-

tion number of the 2D cascade � defined in Eq. �13� by the fol-
lowing relation:

�inducer

�



1

2

 r

R
�2

�39�

where r is the local radius between hub and casing where the 2D

cascade is considered and R is the inducer peripheral radius used
as reference length scale for the computation of the inducer cavi-
tation number.

In the case of water, i.e., without thermal effects, the predicted

curve ���� is in reasonable agreement with experiments. Because

Fig. 7 Effect of increasing thermal effects on the distribution
of the cavitation number �c based on the vapor pressure at the
local cavity temperature pv„Tc…. Comparison with the pressure
coefficient distribution „R114 40°C−�v=0….

Fig. 8 Cavity length versus cavitation number. Comparison
between computation and experiments „Ref. †22‡… for cold wa-
ter and R114 at two different temperatures „20 and 40°C…. Cav-
ity length is made nondimensional using blade spacing H „con-
vective model, Nu=2.085Ã106; conductive model, �=5000….
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of several shortcuts in the modeling mentioned in Sec. 1, together
with the oversimplification of the real shape of the inducer blades
by flat plates, discrepancies are unavoidable. However, they are
not prejudicial to the present discussion, which is focused on ther-
modynamic effect.

The influence of thermal effects computed from both models on

cavity length ���� is shown in Fig. 8 for R114 at two different

temperatures �20 and 40°C�. The computation was conducted

with the value �=5000 for the conductive model. As for the con-
vective one, the Nusselt number was adjusted to give the same
cavity length as the conductive model in the particular case

�inducer=0 for R114 at 20°C. This value of the Nusselt number

�2.085�106� was then kept constant for all computations includ-

ing at 40°C.
The comparison of experimental and computational results

shows that, with these values of � and Nu, both models lead to a
reduction in cavity length due to the thermal effects of the same
order of magnitude as that observed experimentally. Both models
can then be considered as acceptable for the modeling of thermal
effects although further computations are required for an ad-
vanced validation. In particular, the choice of the Nusselt number

or the � parameter remains an open question. The use of a specific
correlation between Nusselt number and Reynolds and Prandtl
numbers as for classical convection would make the method pre-
dictive and give a basis for transposition of experimental results to
other fluids and/or other operating conditions.

Figure 9 presents a comparison of cavity shapes obtained with
the conductive model, in water �without thermal effects� and in
Refrigerant 114 for two different temperatures. For each compu-

tation, the � value was adjusted in order to keep the cavity length
approximately constant. As already observed, the cavity becomes
thinner as thermal effects increase. This is due to a decrease in the
bubble growth rate �and also in the collapse rate�. Similarly, Ahuja
and Hosangadi �16� noticed differences in the cavity content com-
puted from their two-phase model. They report that the cavity
becomes more porous and frothy as thermal effects increase as it
can reasonably be expected assuming a smaller growth rate due to
thermal effects.

From Fig. 9, it can be concluded that there is no similarity in
cavity shape when the amplitude of thermal effects changes.
Strictly speaking, cavities with and without thermodynamic effect
are not similar as well as cavities for the same fluid but at two
different temperatures. If thermal effects are not negligible, exact
scaling requires the conservation of an additional parameter, char-

acterizing thermal effects �as ��c /V3 introduced in Sec. 1� in

addition to the usual � scaling law. Results can be transposed
rigorously only if such an additional scaling law is satisfied. The
same conclusion holds for the temperature distribution inside the
cavity which cannot be transposed from water to R114 neither
between two different temperatures in R114.

The computed maximum temperature drop inside the cavity is
plotted as a function of cavity length on Fig. 10 and compared to

the experimental results. The experimental procedure for comput-

ing the B factor consisted in determining the equivalent vapor
pressure drop �and so the corresponding temperature drop�, which
would lead to the observed reduction in cavity length in compari-
son with reference tests in cold water �22�. In the absence of any
direct measurement of the temperature distribution inside the cavi-
ties, this experimental procedure based on visualizations is the
only way to get a practical estimate of the temperature depression
in the rotating machinery and make a possible comparison with
computational results.

The predicted temperature depression increases with cavity
length, as shown by experiments. The conductive approach pre-

dicts a rapid increase in the B factor for short cavities, whereas the

experimental trend is an almost linear increase of the B factor with
cavity length over the whole range of variation of cavity length
investigated experimentally. As for the influence of the fluid tem-
perature on thermal effects, the present approach appears to be in
reasonable agreement with experiments, since it predicts a negli-
gible influence of the fluid temperature on the nondimensional

temperature depression B at least for small enough cavities as
observed experimentally.

The conductive model is suitable for a comparison with experi-

mental data in terms of B factor since the temperature distribution
in the cavity is rather flat �see Fig. 5�. The minimum temperature
can then be considered as representative of a kind of mean cavity
temperature as determined experimentally from visualizations of
cavitation extent. This is not the case for the convective approach
because of the sudden jump in temperature at the cavity leading
edge �see Fig. 5�. The temperature is far from being uniform and

the comparison with experiments in terms of B factor is difficult.
The mean cavity temperature, for example, proved to be inad-
equate for the comparison. Nevertheless, it has to be noticed that

the experimental evolution of the B factor with cavity length

shown in Fig. 10 was deduced from the ���� curves presented in

Fig. 8 and then contains basically the same information. Hence, in
the absence of direct measurements of temperature inside the
cavities, it seems better to base the confrontation of computational

and experimental results on the curves ���� rather than B���.

5 Concluding Remarks

The present work is devoted to an analysis of thermal effects in
a cavitating inducer. The rotating machinery is modeled by a 2D
cascade of flat plates. The potential flow is computed using a

Fig. 9 Influence of thermodynamic effect on the shape of the
cavity. Results for water and R114 at two different temperatures
„20 and 40°C… are compared. For the three cases, the cavity
length is kept constant �HÆ0.5 „conductive model, �=5000….

Fig. 10 B factor versus cavity length for �=5000. Comparison
between computation by the conductive model and experi-
ments „Ref. †22‡… for R114 at two different temperatures „20 and
40°C…. Cavity length is made nondimensional using blade
spacing H. The plotted value of B corresponds to maximum
temperature depression.
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nonlinear approach based on the boundary element method. The
development of cavitation is predicted by solving Rayleigh equa-
tion using the pressure distribution deduced from the fully wetted
flow computation. The interface of the sheet cavity is approxi-
mated by the envelope of a hemispherical bubble traveling on the
suction side of the blades. Thermal effects in the Rayleigh equa-
tion are taken into account by considering the vapor pressure at

the actual bubble temperature Tc, which is different from the liq-

uid temperature T
 far from the bubble.
Two different approaches are evaluated to model heat transfer

at the bubble wall and compute the cavity temperature Tc. In the
convective approach, the heat flux is supposed to be proportional

to the temperature difference �T=T
−Tc. The amplitude of ther-
mal effects is controlled by the magnitude of the convective heat
transfer coefficient or the corresponding nondimensional Nusselt
number. The second approach is based upon the resolution of the
heat diffusion equation in the liquid surrounding the bubble. For
this conductive-type model, thermal effects are controlled by the

ratio � of the eddy thermal diffusivity to the liquid molecular
thermal diffusivity.

The main conclusions of the present work are the following.

�1� The convective model predicts a sudden drop in tempera-
ture at the cavity leading edge followed by a gradual in-

crease up to T
. For the conductive model, the temperature

decreases smoothly from T
 at cavity detachment, and ex-

hibits a minimum before gradually increasing to T
. Such
differences in temperature distributions induce differences
in cavity shapes. The convective approach predicts a thin-
ner cavity and the location of maximum thickness is also
different.

�2� Thermal effects are increased by decreasing either the Nus-

selt number for the convective model or the � heat transfer
enhancement factor for the conductive one. Cavity length
decreases and reaches a minimum value, which is the same
for both models but which is not zero. The cavity thickness
also decreases but tends toward zero. Both models tend
toward the same solution when thermal effects are pre-
dominant. This solution corresponds to the suppression of
cavitation by thermal effects, which is achieved by a local

vapor pressure p
v
�Tc� equal everywhere to the local pres-

sure on the blade.
�3� The evolution of cavity length with cavitation number is

compared to experimental data obtained for an inducer �22�
in the case of cold water �i.e., without thermal effect� and
R114, which exhibits a significant thermal delay at 20 and

40°C. On the whole, both models lead to an acceptable
reduction in cavity length as compared to experiments
when the Nusselt number or the eddy thermal diffusivity is
kept constant.

Such a simple model based on a 2D potential flow computation
coupled to the resolution of the Rayleigh equation presents clear
limitations due to simplifying assumptions. However, this work
shows that they are easy to run and can supply a support for the
interpretation of experimental data relative to thermal delays, in
particular, in inducers. They can also help in the prediction of
basic trends following changes in fluid, operating conditions and
geometry.
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Nomenclature
B � B factor of Stepanoff �Eq. �2��

c � chord length of the blade

Cp � pressure coefficient

cp� � liquid heat capacity

e � blade thickness

h � convection heat transfer coefficient

� � cavity length

L � latent heat of vaporization
Nu � Nusselt number based on chord length �Eq.

�21��
p � pressure

pu � reference upstream pressure

p
v

� vapor pressure
Pe � Peclet number �Eq. �27��
Pr � Prandtl number

R � bubble radius

R̄ � nondimensional bubble radius R /c
Re � Reynolds number based on chord length

t � time

T � temperature

Tc � local temperature in the cavity

T
 � liquid temperature at infinity

V � flow velocity

Vu � upstream flow velocity

W � relative flow velocity

Wu � upstream relative flow velocity

x � curvilinear abscissa on the blade

x̄ � nondimensional distance x /c

� � Kato’s thermodynamic parameter �Eq. �5��
�a � angle of attack

�� � thermal diffusivity of the liquid

�t � turbulent thermal diffusivity

�
v

� void fraction

� � thermal boundary layer thickness

�p
v

* � characteristic vapor pressure drop �Eq. �3��
�T � temperature drop in the cavitating flow T
−Tc

�T* � characteristic temperature drop �Eq. �1��
� � heat transfer enhancement coefficient �t /�� or

�t /��

�� � thermal conductivity of the liquid

�t � turbulent thermal conductivity

�� � water molecular viscosity

�
v

� vapor density

�� � liquid density

� � Brennen’s thermodynamic parameter �Eq. �4��
�c � local cavitation number based on p

v
�Tc�

�
v

� cavitation number �Eq. �10��

 � transit time c /W
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